Zhaohui Wu
Chun Chen
Minyi Guo
Jiajun Bu (Eds.)

Embedded Software
and Systems

First International Conference, ICESS 2004
Hangzhou, China, December 2004
Revised Selected Papers

LNCS 3605

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3605

Zhaohui Wu Chun Chen Minyi Guo
Jiajun Bu (Eds.)

Embedded Software
and Systems

First International Conference, ICESS 2004
Hangzhou, China, December 9-10, 2004
Revised Selected Papers

@ Springer

Volume Editors

Zhaohui Wu

Chun Chen

Jiajun Bu

Zhejiang University, College of Computer Science
Hangzhou, 310027 P.R. China

E-mail: {wzh,chenc,bjj} @cs.zju.edu.cn

Minyi Guo

The University of Aizu Tsuruga

School of Computer Science and Engineering

Ikki-machi Aizu-Wakamatsu, Fukushima 965-8580, Japan
E-mail: minyi @u-aizu.ac.jp

Library of Congress Control Number: 2005932310

CR Subject Classification (1998): C.3,C.2,C.5.3,D.2, D.4, H.4

ISSN 0302-9743
ISBN-10 3-540-28128-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28128-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 11535409 06/3142 543210

Preface

Welcome to the post proceedings of the First International Conference on Embedded
Software and Systems (ICESS 2004), which was held in Hangzhou, P. R. China, 9-10
December 2004.

Embedded Software and Systems technology is of increasing importance for a
wide range of industrial areas, such as aerospace, automotive, telecommunication, and
manufacturing automation. Embedded technology is playing an increasingly dominant
role in modern society. This is a natural outcome of amazingly fast developments in
the embedded field.

The ICESS 2004 conference brought together researchers and developers from
academia, industry, and government to advance the science, engineering, and
technology in embedded software and systems development, and provided them with
a forum to present and exchange their ideas, results, work in progress, and experience
in all areas of embedded systems research and development.

The ICESS 2004 conference attracted much more interest than expected. The total
number of paper submissions to the main conference and its three workshops, namely,
Pervasive Computing, Automobile Electronics and Tele-communication, was almost
400, from nearly 20 countries and regions. All submissions were reviewed by at least
three Program or Technical Committee members or external reviewers. It was
extremely difficult to make the final decision on paper acceptance because there were
so many excellent, foreseeing, and interesting submissions with brilliant ideas. As a
result of balancing between accepting as many papers as possible and assuring the
high quality of the conference, we finally decided to select 80 papers for the post-
proceeding. We firmly believe that these papers not only present great ideas, inspiring
results, and state-of-the-art technologies in recent research activities, but will also
propel future developments in the Embedded Software and Systems research field.

The magnificent program for this conference was the result of the hard and
excellent work of many people. We would like to express our sincere gratitude to all
authors for their valuable contributions and to our Program/Technical Committee
members and external reviewers for their great inputs and hard work. We are
particularly grateful to our workshop chairs: Xiangqun Chen, Zhanglong Chen, Yue
Gao, Xiaoge Wang, Xingshe Zhou and Mingyuan Zhu for their invaluable work in
organizing wonderful workshops. We would also like to express our thanks to Jiajun
Bu, Tianzhou Chen, Kougen Zheng, Minde Zhao, Hui Zhu, Shuying Tian, Fengxian
Li and Cheng Jin for putting everything together to create this magnificent scientific
event.

June 2005 Chun Chen, Xiangke Liao
Zhaohui Wu, Ranfun Chiu

VI Organization

Organization

ICESS 2004 was organized by Zhejiang University, Important Software Committee of
the National 863 Program, the China Computer Federation, and the Hangzhou
Association for Science and Technology.

Executive Committee

Honorary Chair

General Chairs

Program Chairs

Workshop Chairs

Public Relation Chair
Publication Chair

Local Organizing Committee

Sponsoring Corporations

Intel Corporation

China Putian Corporation
Hopen Software Eng. Co. Ltd.
ZTE Corporation

Huawei Technologies Co. Ltd.
CoreTek Systems Incorporated
China Mobile Software League

Yunhe Pan, Zhejiang University, China

Xiangke Liao, 863 Program Expert, China
Chun Chen, Zhejiang University, China

Zhaohui Wu, Zhejiang University, China
Ranfun Chiu, HP lab, USA

Minyi Guo, The University of Aizu, Japan
Kougen Zheng, Zhejiang University, China

Tianzhou Chen, Zhejiang University, China
Jiajun Bu, Zhejiang University, China
Minde Zhao (Chair)

Shuying Tian, Hui Zhu, Fengxian Li,
Cheng Jin, Wei Chen

Program Committee

Makoto Amamiya
Jiamei Cai
Tak-Wai Chan
Xiangqun Chen
Yaowu Chen
Zhanglong Chen
Walter Dosch
Nikil Dutt

Jesse Z. Fang
Yue Gao

Naiping Han

R. Nigel Horspool
Chris Hsiung
Margarida Jacome
Moon Hae Kim
Insup Lee

Meng Lee
Xinming Li
Kwei-Jay Lin

Lei Luo

Yi Pan
Xian-he Sun
Walid Taha
Xiaoge Wang
Xing Zhang
Xingshe Zhou

Workshop Chairs

Organization VIL

Kyushu University, Japan

Zhejiang University of Industry, China

National Central University, China

Peking University, China

Zhejiang University, China

Fudan University, China

Medizinische Universitét Liibeck, Germany
University of California, Irvine, USA

Intel Labs, USA

Hopen Software Eng. Co. Ltd. China

Chinasoft Network Technology Co., Ltd., China
University of Victoria, Canada

Hewlett-Packard Lab, USA

University of Texas at Austin, USA

Konkuk University, Korea

University of Pennsylvania, USA
Hewlett-Packard Lab, USA

ACET, China

University of California, Irvine, USA
University of Electronic Science and Technology
of China, China

Georgia State University, USA

Ilinois Institute of Technology, USA

Rice University, USA

Tsinghua University, China

Peking University, China

Northwestern Polytechnical University of China,
China

The International Workshop on Embedded Systems and Pervasive Computing

Xiangqun Chen
Xingshe Zhou

Peking University, China
Northwestern Polytechnical University, China

The International Workshop on Embedded Systems and Automobile Electronics

Zhanglong Chen
Mingyuan Zhu

Fudan University, China
CoreTek Systems Incorporated, China

VI Organization

The International Workshop on Embedded Systems in Telecommunication

Yue Gao
Xiaoge Wang

Technical Committee

Hamid R. Arabnia
Alessandro Bogliolo
Luciano Bononi
Jiajun Bu
Rajkumar Buyya
Jiannong Cao
Tiziana Calamoneri
Adriano Mauro Cansian
Naehyuck Chang
Vipin Chaudhary
Shu-Ching Chen
Shuoying Chen
Tianzhou Chen
Wenzhi Chen

Yu Chen

Ziéd Choukair
Hao-hua Chu

Chen Ding

PeiYu Fang

Feng Gao

Dan Grigoras
Jianjun Hao

Hangen He
Qianhua He
Yan Hu
Liqun Huang

Zhiping Jia

Xiaohong Jiang

Qun Jin

Mahmut Taylan Kandemir
Ryan Kastner

Dieter Kranzlmiiller
Mohan Kumar

Hsien-Hsin (Sean) Lee
Trong-Yen Lee

Qing Li

Hopen Software Eng. Co. Ltd., China
Tsinghua University, China

University of Georgia, USA

University of Urbino, Italy

University of Bologna, Italy

Zhejiang University, China

The University of Melbourne, Australia
Hong Kong Polytechnic University, China
University of Rome "La Sapienza", Italy
State University of Sao Paulo, Brazil

Seoul National University, Korea

Wayne State University, USA

Florida International University, USA
Beijing Institute of Technology, China
Zhejiang University, China

Zhejiang University, China

Tsinghua University, China

ENST Bretagne, France

National Taiwan University, China
University of Rochester, UK

DYNA Technology, China

Zhejiang University, China

University College Cork, Ireland

Beijing University of Posts and Tele-
communications, China

Changsha Institute of Technology, China
South China University of Technology, China
China Electronics Standardization Institute, China
Huazhong University of Science and Technology,
China

Shandong University, China

JAIST, Japan

Waseda University, Japan

Pennsylvania State University, USA
University of California, Santa Barbara, USA
University of Linz, Austria

The University of Texas at Arlington, USA
Georgia Institute of Technology, USA
National Taiwan University, China

City University of Hong Kong, China

Organization

Technical Committee (continued)

Jinlong Lin
Youn-Long Steve Lin
Jilin Liu

Xiang Liu

Xiang Liu

Yan Liu

Zhaodu Liu

Zhen Liu

Bin Luo

Lei Luo

Jingjian Lv
HongBing Ma
Joberto Sérgio Barbosa
Martins

Malena Mesarina
Marius Minea
Tatsuo Nakajima
Stephan Olariu
Mohamed Ould-Khaoua
Victor Prasanna
Huabiao Qin

Omer Rana

Edwin Sha

Lihong Shang

Beibei Shao
Xiumin Shi
Timothy K. Shih
Gurdip Singh
Zechang Sun
Zhenmin Tang

Pin Tao

Lorenzo Verdoscia
Cho-li Wang
Dongsheng Wang
Farn Wang

Lei Wang

Qing Wang

Guowei Wu

Peking University, China

National Tsing Hua University, China
Zhejiang University, China

GRAND Software, China

Peking University, China

Putian-Smartcom, China

Beijing Institute of Technology, China
Nagasaki Institute of Applied Science, Japan
Nanjing University, China

CoreTek Systems Incorporated, China
Beijing Open Lab (BOL) System Inc., China
Tsinghua University, China

University of Salvador, Brazil

HP Labs, USA

IX

Universitatea Politehnica din Timigoara, Romania

Waseda University, Japan

Old Dominion University, USA
University of Glasgow, UK

University of Southern California, USA
South China University of Technology, China
Cardiff University, UK

University of Texas at Dallas, USA
Beijing University of Aeronautics and
Astronautics, China

Tsinghua University, China

Beijing Institute of Technology, China
Tamkang University, China

Kansas State University, USA

Tongji University, China

Nanjing University of Science and Technology,
China

Tsinghua University, China

ICAR, CNR, Italy

The University of Hong Kong, China
Tsinghua University, China

National Taiwan University, China
Beijing University of Aeronautics and
Astronautics, China

Institute of Software, Chinese Academy of
Sciences, China

Dalian Institute of Technology, China

X Organization

Technical Committee (continued)

Jie Wu Florida Atlantic University, USA

Yong Xiang Tsinghua University, China

Mingbo Xiao Xiamen University, China

Cheng-Zhong Xu Wayne State University, USA

Weikang Yang Tsinghua University, China

Yanjun Yang Peking University, China

Binyu Zang Fudan University, China

Chengcui Zhang University of Alabama at Birmingham, USA

Guobao Zhang Southeast University, China

Jong Zhang Beijing University of Aeronautics and
Astronautics, China

Youtao Zhang The University of Texas at Dallas, USA

Lin Zhong Princeton University, USA

Huiyang Zhou University of Central Florida, USA

Dakai Zhu University of Pittsburg, USA

Table of Contents

Keynote Speeches and Invited Talks Abstracts (Partial)

Keynote Speech: Abstraction and the C++ Machine Model............................

Bjarne Stroustrup

Keynote Speech: Industrializing Software Development.................cccoveuiin.

Alexander Stepanov

Keynote Speech: Testing Methodologies for Embedded Systems and
SyStemS-0N-CRiP.......oitiiii e

Laurence T. Yang and Jon Muzio

Keynote Speech: China Putian Promote Commercial TD-SCDMA Services......
Qingfang Chen

Invited Talk: Agent-Oriented Approach to Ubiquitous Computing.................
Makoto Amamiya

Invited Talk: Resource-Aware Programming...................ooooiiiiiiiiniin...
Walid Taha

Invited Talk: In-House Tools for Low-Power Embedded Systems...................
Naehyuck Chang

Invited Talk: CODACS Project: A Development Tool for Embedded System
PO O Y PINE. .o v ittt e

Lorenzo Verdoscia

Track 1 Distributed Embedded Computing

A Study on Web Services Selection Method Based on the Negotiation Through
Quality Broker: A MAUT-based Approach..............coooiiiiiiiiiiiiiiiiii,

Young-Jun Seo, Hwa-Young Jeong, and Young-Jae Song

14

15

30

XII Table of Contents

CA-Ex: A Tuning-Incremental Methodology for Communication Architectures
in Embedded Systems.oooiuiiiii 74

Haili Wang, Jinian Bian, Yawen Niu, Kun Tong, and Yunfeng Wang

Efficient Parallel Spatial Join Processing Method in a Shared-Nothing Database
(0] 11] G 412 3o VP 81

Warnill Chung, Soon-Young Park, and Hae-Young Bae

Maximizing Parallelism for Non-uniform Dependence Loops Using Two
Parallel Region Partitioning Method................ocooiiiiiiiiiii e

Sam Jin Jeong

The KODAMA Methodology: An Agent-Based Distributed Approach............. 94

Guogiang Zhong, Satoshi Amamiya, Kenichi Takahashi, and
Makoto Amamiya

Track 2 Embedded Systems

A New Iris Recognition Approach for Embedded System............................ 103
Hongying Gu, Yueting Zhuang, Yunhe Pan, and Bo Chen

A RAID Controller: Software, Hardware and Embedded Platform Based on
INtel TOP 32 . e 110

Xiao-Ming Dong, Ji-Guang Wan, Rui-Fang Liu, and Zhi-Hu Tan

Component-Based Integration Towards a Frequency-Regulating Home
Appliance Control System... .. veeveneeeee 118

Weigin Tong, Qinghui Luo Zhl]le an Xzaolz Zhl and Yuwez Zong

Design and Implementation of the System for Remote Voltage Harmonic
IMIONIEOT. .. e ettt 124

Kejin Bao, Huanchuen Zhang, and Hao Shentu

Guaranteed Cost Control of Networked Control Systems: An LMI Approach...... 130
Shanbin Li, Zhi Wang, and Youxian Sun

Robust Tuning of Embedded Intelligent PID Controller for Induction Motor
Using Bacterial Foraging Based Optimization.................ocooiiiiiiiiiiiiiannn. 137

Dong Hwa Kim

Table of Contents XIII

The Customizable Embedded System for Seriate Intelligent Sewing
EqQuipment. ... 143

Kailong Zhang, Xingshe Zhou, Ke Liang, and Jianjun Li

Track 3 Embedded Hardware and Architecture

A Distributed Architecture Model for Heterogeneous Multiprocessor
System-0n-Chip Design........oviuiiiiiiiitii e, 150

Qiang Wu, Jinian Bian, and Hongxi Xue

A New Technique for Program Code Compression in Embedded
1Y 06 0] 0 (0Tt o) 158

Ming-che Lai, Kui Dai, Li Shen, and Zhi-ying Wang

Design of System Area Network Interface Card Based on Intel IOP310............ 165
Xiaojun Yang, Lili Guo, Peiheng Zhang, and Ninghui Sun

Dual-Stack Return Address Predictor.............ooviiiiiiiiiiiiiiiiieiieee . 172

Caixia Sun and Minxuan Zhang

Electronic Reading Pen: A DSP Based Portable Device for Offline OCR and
Bi-linguistic Translation...............cooiiiiiiiii 180

Qing Wang, Sicong Yue, Rongchun Zhao, and David Feng

Formal Co-verification for SoC Design with Colored Petri Net....................... 188
Jinyu Zhan, Nan Sang, and Guangze Xiong

Hardware for Modular Exponentiation Suitable for Smart Cards..................... 196
Luiza de Macedo Mourelle and Nadia Nedjah

PN-based Formal Modeling and Verification for ASIP Architecture................. 203
Yun Zhu, Xi Li, Yu-chang Cong, and Zhi-gang Wang

The Design and Performance Analysis of Embedded Parallel Multiprocessing

Guanghui Liu, Fei Xia, Xuejun Yang, Haifang Zhou, Heng Zhao, and
Yu Deng

X1V Table of Contents

Use Dynamic Combination of Two Meta-heuristics to Do Bi-partitioning.......... 216
Zhihui Xiong, Sikun Li, Jihua Chen, and Maojun Zhang

Track 4 Middleware for Embedded Computing

A New Approach for Predictable Hard Real-Time Transaction Processing in
Embedded Database.c.ovuiiniiiiii i 222

Tianzhou Chen, Yi Lian, and Jiangwei Huang

A QoS-aware Component-Based Middleware for Pervasive Computing............ 229
Yuan Liao and Mingshu Li
AnyCom: A Component Framework Optimization for Pervasive Computing..... 236

Wenzhi Chen, Zhou Jiang, and Zhaohui Wu

Association Based Prefetching Algorithm in Mobile Environments................. 243

Ho-Sook Kim and Hwan-Seung Yong

Integration Policy in Real-Time Embedded System..............c.c.oooeiiiiiiii 251
Hyun Chang Lee

Prism-MW Based Connector Interaction for Middleware Systems................... 258
Hwa-Young Jeong and Young-Jae Song

ScudWare: A Context-Aware and Lightweight Middleware for Smart Vehicle

Zhaohui Wu, Qing Wu, Jie Sun, Zhigang Gao, Bin Wu, and Mingde Zhao

Track 5 Mobile Systems

Application of Cooperating and Embedded Technology for Network Computer
Media Player.......ooviiti i 274

Yue Gao, Bin Zhang, Xichang Zhong, and Liuying Qu

QoS Adaptive Algorithms Based on Resources Availability of Mobile
TErMINALS. .. oot 280

Yun Li and Lei Luo

Table of Contents

Semi-Videoconference System Using Real-Time Wireless Technologies...........

Cheng Jin, Jiajun Bu, Chun Chen, Mingli Song, and Mingyu You

Smart Client Techniques for Online Game on Portable Device......................

Huacheng Ke, Haixiang Zhang, and Chun Chen

The Implementation of Mobile IP in Hopen System.......................ocoivinn.e

Yintang Gu and Xichang Zhong

Track 6 Transducer Network

A New CGI Queueing Model Designed in Embedded Web Server.................

Xi-huang Zhang and Wen-bo Xu

A New Embedded Wireless Microcensor Network Based on Bluetooth

Scatternet and PMOCNt e

Kangqu Zhou and Wenge Yu

A New Gradient-Based Routing Protocol in Wireless Sensor Networks............

Li Xia, Xi Chen, and Xiaohong Guan

A Sensor Media Access Control Protocol Basedon TDMA.........cccoovvvvveennnn.

Xiaohua Luo, Kougen Zheng, Yunhe Pan, and Zhaohui Wu

Clusters Partition and Sensors Configuration for Target Tracking in Wireless

SenSOr NEtWOIKS. e

Yongcai Wang, Dianfei Han, Qianchuan Zhao, Xiaohong Guan, and
Dazhong Zheng

Enhanced WFQ Algorithm with (m,k)-Firm Guarantee..............................

Hongxia Yin, Zhi Wang, and Youxian Sun

Fuzzy and Real-Time Queue Management in Differentiated Services

Mahdi Jalili-Kharaajoo, Mohammad Reza Sadri, and
Farzad Habibipour Roudsari

XV

XVI Table of Contents

Issues of Wireless Sensor Network Management..............c.oovvviiiiinniinnnnnn. 355

Zhigang Li, Xingshe Zhou, Shining Li, Gang Liu, and Kejun Du

OPC-based Architecture of Embedded Web Server..........................ooo 362
Zhiping Jia and Xin Li

Synchronized Data Gathering in Real-Time Embedded Fiber Sensor
NEEWOTK . . e e 368

Yanfei Qiu, Fangmin Li, and Ligong Xue

The Energy Cost Model of Clustering Wireless Sensor Network Architecture.... 374
Yanjun Zhang, Xiaoyun Teng, Hongyi Yu, and Hanying Hu

Traffic Control Scheme of VCNs' Gigabit Ethernet Using BP........................ 381
Dae-Young Lee and Sang-Hyun Bae

Track 7 Embedded Operating System

A lJitter-Free Kernel for Hard Real-Time Systems..............cccevviiiiiiinininnnnnn 388
Christo Angelov and Jesper Berthing

A New Approach to Deadlock Avoidance in Embedded System..................... 395
Gang Wu, Zhigiang Tang, and Shiliang Tu

A Novel Task Scheduling for Heterogeneous Systems..............coevvvviniininnnnn. 400
XuePing Ren, Jian Wan, and GuangHuan Hu

Applying Component-Based Meta-service in Liquid Operating System for
Pervasive COMPULING.oouinit e 406

Bo Ma, Yi Zhang, and Xingguo Shi

Embedded Operating System Design: The Resolved and Intelligent Daemon
APPIOACK. ...t s 412

Hai-yan Li and Xin-ming Li

Table of Contents XVII

New Approach for Device Driver Development — Devil+ Language................ 418

Yingxi Yu, Mingyuan Zhu, and Shuoying Chen

On Generalizing Interrupt Handling into a Flexible Binding Model for Kernel
(0107010107 3153 11 £ 423

Qiming Teng, Xiangqun Chen, and Xia Zhao

Research Directions for Embedded Operating Systems.................c.ooeeienie. 430
Xiangqun Chen, Xia Zhao, and Qiming Teng

SmartOSEK: A Real-Time Operating System for Automotive Electronics......... 437
Minde Zhao, Zhaohui Wu, Guoging Yang, Lei Wang, and Wei Chen

Track 8 Power-Aware Computing
A Functionality Based Instruction Level Software Power Estimation Model for

Embedded RISC ProCesSOrs.c.vuiuititiiiiiiiieeien e 443
Jia Chen, Sheng-yuan Wang, Yuan Dong, Gui-lan Dai, and Yang Yang

Robust and Adaptive Dynamic Power Management for Time Varying System... 449
Min Li, Xiaobo Wu, Menglian Zhao, Ping Li, and Xiaolang Yan

Skyeye: An Instruction Simulator with Energy Awareness............................ 456

Shuo Kang, Huayong Wang, Yu Chen, Xiaoge Wang, and Yiqi Dai

The Modeling for Dynamic Power Management of Embedded Systems............ 462
Jiangwei Huang, Tianzhou Chen, Minjiao Ye, and Yi Lian

Qi Wu and Guang-ze Xiong

Track 9 Real-Time System

An Adaptive Fault Tolerance Scheme for Applications on Real-Time
Embedded SyStem........cviuiitii it 474

Hongzhou Chen, Guochang Gu, and Yizun Guo

XVIII Table of Contents

Concurrent Garbage Collection Implementation in a Standard JVM for
Real-Time PUrposes.o.ueiei i 481

Yugiang Xian, Ning Zhang, and Guangze Xiong

Relating FFTW and Split-RadiX.........o.ouiieiiiiiiiii i 488
Oleg Kiselyov and Walid Taha

Selecting a Scheduling Policy for Embedded Real-Time Monitor and Control
£ 3 80 T 494

Qingxu Deng, Mingsong Lv, and Ge Yu

Sharing 1/0O in Strongly Partitioned Real-Time Systems..................ccoooeinne. 502
Ravi Shah, Yann-Hang Lee, and Daeyoung Kim

The Efficient QoS Control in Distributed Real-Time Embedded Systems.......... 508

You-wei Yuan, La-mei Yan, and Qing-ping Guo

Track 10 Embedded System Verification and Testing

An Efficient Verification Method for Microprocessors Based on the Virtual
MACHINE. ..ttt e e e 514

Jianfeng An, Xiaoya Fan, Shengbing Zhang, and Danghui Wang

EFSM-based Testing Strategy for APIs Test of Embedded OS........................ 522
SongXia Hao, XiChang Zhong, and Yun Wang

EmGen: An Automatic Test-Program Generation Tool for Embedded IP Cores... 528
Haihua Shen, Yunji Chen, and Jing Huang

Formal Verification of a Ubiquitous Hardware Component........................... 536
Lu Yan

Model Optimization Techniques in a Verification Platform for Classified
PrOPEItIES. . ot 542

Ming Zhu, Jinian Bian, and Weimin Wu

Table of Contents XIX

Using Model-Based Test Program Generator for Simulation Validation............ 549
Youhui Zhang, Dongsheng Wang, Jinglei Wang, and Weimin Zheng

Track 11 Software Tools for Embedded Systems

A New WCET Estimation Algorithm Based on Instruction Cache and
Prefetching Combined Model...........cooiiiiiii i 557

Guowei Wu and Lin Yao

A Component-Based Model Integrated Framework for Embedded Software...... 563
Wenzhi Chen, Cheng Xie, and Jiaoying Shi

A Cooperative Web Framework of Jini into OSGi-based Open Home
L1 570

Zhang-Long Chen, Wei Liu, Shi-Liang Tu, and Wei Du

A Structure Modeling Method for Multi-task Embedded Software Design......... 576
Jiamei Cai, Tieming Chen, and Liying Zhu

Chaos-Model Based Framework for Embedded Software Development............ 582
Huifeng Wu, Jing Ying, Xian Chen, Minghui Wu, and Changyun Li

Hierarchical Integration of Runtime Models................ccooviiiiiiiiiiiiii, 589
Cheng Xie, Wenzhi Chen, Jiaoying Shi, and Lii Ye

Object-Oriented Software Loading and Upgrading Techniques for Embedded
and Distributed SYStem.........covuiiiitii e 595

Bogustaw Cyganek

Preserving Consistency in Distributed Embedded Collaborative Editing

Bo Jiang, Jiajun Bu, and Chun Chen

AUthOr INdeX. ..o 607

Abstraction and the C++ Machine Model

Bjarne Stroustrup

Texas A&M University
(and AT&T Labs — Research)

http://www.research.att.com/~bs

Abstract. C++ was designed to be a systems programming language and has
been used for embedded systems programming and other resource-constrained
types of programming since the earliest days. This paper will briefly discuss
how C++'s basic model of computation and data supports time and space
performance, hardware access, and predictability. If that was all we wanted, we
could write assembler or C, so I show how these basic features interact with
abstraction mechanisms (such as classes, inheritance, and templates) to control
system complexity and improve correctness while retaining the desired
predictability and performance.

Ideals and Constraints

C++ [6] [10] is used in essentially every application areas, incl. scientific calculations,
compilers, operating systems, device drivers, games, distributed systems
infrastructure, animation, telecommunications, embedded systems applications (e.g.
mars rover autonomous driving), aeronautics software, CAD/CAM systems, ordinary
business applications, graphics, e-commerce sites, and large web applications (such as
airline reservation). For a few examples of deployed applications, see
http://www.research.att/~bs/applications.html.

How does C++ support such an enormous range of applications? The basic answer
is: “by good use of hardware and effective abstraction”. The aim of this paper is to
very briefly describe C++’s basic model of the machine and how it’s abstraction
mechanisms map a user’s high-level concepts into that model without loss of time of
space efficiency. To put this in context, we must first examine the general ideals for
programming that C++ is designed to support:

* Work at the highest feasible level of abstraction

Code that is expressed directly using the concepts of the application domain (such
as band diagonal matrices, game avatar, and graphics transforms) is more easy to get
correct, more comprehensible, and therefore more maintainable than code expressed
using low-level concepts (such as bytes, pointers, data structures, and simple loops).
The use of “feasible” refers to the fact that the expressiveness of the programming
language used, the availability of tools and libraries, the quality of optimizers, the size
of available memory, the performance of computers, real-time constraints, the
background of programmers, and many other factors can limit our adherence to this
ideal. There are still applications that are best written in assembler or very-low-level

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 1-13, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 Bjarne Stroustrup

C++. This, however, is not the ideal. The challenge for tool builders is to make
abstraction feasible (effective, affordable, manageable, etc.) for a larger domain of
applications.

By “abstract”, I do not mean “vague” or “imprecise”. On the contrary, the ideal is
one-to-one correspondence between application concepts and precisely defined
entities in the source code:

* Represent concepts directly in code

* Represent independent concepts independently in code

* Represent relationships among concepts directly in code

* Combine concepts freely in code when (and only when) combination makes
sense

Examples of “relationships among concepts” are hierarchies (as used in object-
oriented programming) parameterized types and algorithms (as used in generic
programming).

This paper is about applying these ideas to embedded systems programming, and
especially to hard-real time and high-reliability embedded systems programming
where very low-level programming techniques traditionally have been necessary.

What’s special about embedded systems programming? Like so many answers
about programming, this question is hard to answer because there is no generally
accepted definition of “embedded systems programming”. The field ranges from tiny
controllers of individual gadgets (such as a car window opener), through stereo
amplifiers, rice cookers, and digital cameras, to huge telephone switches, and whole
airplane control systems. My comments are meant to address all but the tiniest
systems: there can be no ISO C++ on a 4-bit micro-processor, but anything larger
than that could potentially benefit from the ideals and techniques described here. The
keys from a system design view are

* The system is not just a computer
— It’s a “gadget”/system containing one or more computers
* Correctness
“but the hardware misbehaved” is often no excuse
* Reliability requirements
— Are typically more stringent than for an “ordinary office
application”
* Resources constraints
— Most embedded systems suffer memory and/or time constraints
* Real time constraints
— Hard or soft deadlines
* No operator
— Just users of “the gadget”
* Long service life
— Often a program cannot be updates for the years of life of its gadget
* Some systems can’t be taken down for maintenance
— Either ever or for days at a time

What does C++ have to offer in this domain that is not offered by assembler and
C? In particular, what does the C++ abstraction mechanisms offer to complement the
model of the machine that C++ shares with C? For a discussion of the relationship
between C and C++, see [11].

Abstraction and the C++ Machine Model 3

Machine Model

C++ maps directly onto hardware. Its basic types (such as char, int, and double) map
directly into memory entities (such as bytes, words, and registers), most arithmetic
and logical operations provided by processors are available for those types. Pointers,
arrays, and references directly reflect the addressing hardware. There is no “abstract”,
“virtual” or mathematical model between the C++ programmer’s expressions and the
machine’s facilities. This allows relatively simple and very good code generation.
C++’s model, which with few exceptions is identical to C’s, isn’t detailed. For
example, there is nothing in C++ that portably expresses the idea of a 2™ level cache,
a memory-mapping unit, ROM, or a special purpose register. Such concepts are hard
to abstract (express in a useful and portable manner), but there is work on standard
library facilities to express even such difficult facilities (see the ROMability and
hardware interface sections of [7]). Using C++, we can get really close to the
hardware, if that’s what we want.

Let me give examples of the simple map from C++ types to memory. The point
here is not sophistication, but simplicity.

Basic arithmetic types are simply mapped into regions of memory of suitable size.
A typical implementation would map a char to a byte, an int to a word, and a double

to two words:
char: I:I

int:

double:

The exact map is chosen so as to be best for a given type of hardware. Access to
sequences of objects is dealt with as arrays, typically accessed through pointers
holding machine addresses. Often code manipulating sequences of objects deal with a
pointer to the beginning of an array and a pointer to one-beyond-the-end of an array:

pointer: pointer:

array:

The flexibility of forming such addresses by the user and by the code generators
can be important.
User-defined types are created by simple composition. Consider a simple type
Point:
class Point { int x; inty; /* ... */ };
Point xy(1,2);
Point* p = new Point(1,2);

4 Bjarne Stroustrup

p Xy: ;
Heap
info 2
1
2

A Point is simply the concatenation of its data members, so the size of the Point
Xy is simply two times the size of an int. Only if we explicitly allocate a Point on the
free store (the heap), as done for the Point pointed to by p, do we incur memory
overhead (and allocation overhead). Similarly, basic inheritance simply involves the
concatenation of members of the base and derived classes:

class X { int b; }
class Y : public X {int d; };

X: b b

Only when we add virtual functions (C++’s variant of run-time dispatch supplying
run-time polymorphism), do we need to add supporting data structures, and those are
just tables of functions:

class Shape {

public:
virtual void draw() = 0;
virtual Point center() const = 0;
...

}s

Class Circle : public Shape {
Point c;
double radius;

public:
void draw() { /* draw the circle */ }
Point center() const { return c; }
...

}s

Shape* p = new Circle(Point(1,2),3.4);

Abstraction and the C++ Machine Model 5

p: Heap
\\ info
vptr
(1,2)
34
CirCle,S vtbl:
draw()
Ndraw
Circle’'s I center
center()

Naturally, this simple picture leaves out a lot, but when it comes to estimating time
and space costs it’s pretty accurate: What you see is what you get. For more details
see [7]. In general, C++ implementations obey the zero-overhead principle: What you
don’t use, you don’t pay for [8]. And further: What you do use, you couldn’t hand
code any better.

Please note that not every language provide such simple mappings to hardware and
obeys these simple rules. Consider the C++ layout of an array of objects of a user-
defined type:

class complex { double re, im; /* ... */};
complex a[| = { {1,2}, {3,4} };

al 11 2| 3| 4

The likely size is 4*sizeof(double) which is likely to be 8 words. Compare this
with a more typical layout from a “pure object-oriented language” where each user-
defined object is allocated separately on the heap and accessed through a reference:

Reference: \

References:

0

I 2 31 4

The likely size is 3*sizeof(reference)+3*sizeof(heap_overhead)+ 4*sizeof (double).
Assuming a reference to be one word and the heap overhead to be two words, we get

6 Bjarne Stroustrup

a likely size of 17 words to compare to C++’s 8 words. This memory overhead comes
with a run-time overhead from allocation and indirect access to elements. That
indirect access to memory typically causes problems with cache utilization and limits
ROMability.

Myths and Limitations

It is not uncommon to encounter an attitude that “if it’s elegant, flexible, high-level,
general, readable, etc., it must be slow and complicated”. This attitude can be so
ingrained that someone rejects essentially every C++ facility not offered by C without
feeling the need for evidence. This is unfortunate because the low-level alternative
involves more work at a lower level of abstraction, more errors, and more
maintenance headaches. Bit, byte, pointer, and array fiddling should be the last resort
rather than the first choice. C++ balances costs with benefits for “advanced features”,
such as classes, inheritance, templates, free store (heap), exceptions, and the standard
library. If you need the functionality offered by these facilities, you can rarely (if
ever) provide better hand-coded alternatives. The ISO C++ standard committee’s
technical report on performance [7] is provides data and arguments for that
proposition.

Obviously, we should not use every feature of C++ for every problem. In
particular, not every feature is suitable for hard real time because their performance is
not 100% predictable (that is, we can’t state in advance exactly how much an
operation cost without knowing how it is used and the/or state of the program when it
is used). The operations with this problem are:

* Free store (new/delete): The time needed for an allocation depends on the
amount of available free memory and fragmentation can cause deterioration
of performance over time. This implies that for many systems, free store
cannot be used or can be used only at startup time (no deallocation implies
no fragmentation). Alternatives are static allocation, stack allocation, and use
of storage pools.

* RTTI (dynamic_cast/typeid): This is rarely needed in small embedded
systems, so just don’t use it for such systems. It is possible to implement
dynamic_cast to be fast and predictable [3] but current implementations
don’t implement this refinement.

» Exceptions (throw/catch): The time needed to handle an exception depends
on the distance (measured in function calls) from the throw-point to the
catch-point and the number of objects needed to be destroyed on the way.
Without suitable tools that’s very hard to predict, and such tools are not
available. Consequently, I can’t recommend exceptions for hard real time;
doing so is a research problem, which I expect to be solved within the decade.
For now, we must use more conventional error-handling strategies when
hard real time is needed, and restrict the use of exceptions to large embedded
systems with soft real time requirements.

The rest of C++ (including classes, class hierarchies, and templates) can be used
and has been used successfully for hard real time code. Naturally, this requires
understanding of the facilities and their mapping to hardware, but that’s no different

Abstraction and the C++ Machine Model 7

from other language constructs. Writing code for hard-real-time or high-reliability
systems also requires caution and a good compiler (see http://www.research.att/~bs/
compilers.html). It is worth noting that for many styles of usage, modern exception
implementations are within 5% of the performance of non-exception code — and that
non-exception code must be augmented with alternative exception-handling code
(returning error codes, explicit tests, etc.). For systems where exceptions can be used,
I consider them the preferred basis for an error-handling strategy [10].

Compilers used for embedded systems programming have switches to disable
features where they are undesirable (e.g. in a hard-real time application). Anyway,
their use is obvious from the source code.

Abstraction Mechanisms

The main abstraction mechanisms provided by C++ are classes, inheritance of classes,
and templates. Here, I’ll concentrate on templates because they are the key tool for
modern statically type-safe high-performance code. Templates are a compile-time
composition mechanism implying no runtime or space cost compared to equivalent
hand-written code. Templates allow you to parameterize classes and functions with
types and integers. If you like fancy words, they provide parametric polymorphism
complementing the ad-hoc polymorphism offered by class hierarchies. Generally,
systematic use of templates is called “generic programming” which complements the
“object-oriented programming” that you get from systematic use of class hierarchies.
Both programming paradigms rely on classes.

I will first present some simple “textbook examples” to illustrate the general
techniques and tradeoffs. After that, I’ll show some real code from a large marine
diesel engine using those same facilities to provide reliability, safety, and
performance.

Here is a slightly simplified version of the C++ standard library complex type. This
is a template class parameterized by the scalar type used:

template<class Scalar>
class complex {
Scalar re, im;
public;
complex() {}
complex(Scalar x) : re(x) {}
complex(Scalar x, Scalar y) : re(x), im(y) { }

complex& operator+=(complex z) { re+=z.re; im+=z.im; return
*this; }
complex& operator+=(Scalar x) { re+=x; return *this; }

...
}5

This is a perfectly ordinary class definition, providing data members (defining the
layout of objects of the type) and function members (defining valid operations). The

8 Bjarne Stroustrup

template<class Scalar> says that complex takes a type argument (which it uses as its
scalar type). Given that definition — and nothing else — we can write

complex<double> z(1,2); /] z.re=1; z.im=2;
complex<float>z2 = 3; /I z2.1re=3;
z+=172; /] zre=z.retz2.re; z.im=z.im+z2.im;

The comments indicate the code generated. The point is that there is no overhead.
The operations performed are at the machine level exactly those required by the
semantics. A complex<double> is allocated as two doubles (and no more) whereas a
complex<float> is allocated as two floats. A complex<int> would make a rather
good Point type. No code or space is generated for the template class complex itself
and since we didn’t use the += operation taking a scalar argument, no code is
generated for that either. Given a decent optimizer, no code is laid down for the used
+= operation either. Instead, all the operations are inlined to give the code indicated in
the comments.

There are two versions of += to ensure optimal performance without heroic efforts
from the optimizer. For example, consider:

z+=2; /| zre+=2
2+=(2,0); /] z.re+=2; zim+=0;

A good optimizer will eliminate the redundant z.im+=0 in the second statement.
However, by providing a separate implementation for incrementing only the real part,
we don’t have to rely on the optimizer to be that clever. In this way, overloading can
be a tool for performance.

We can use the += operation to define a conventional binary +:

template<class S>
complex<S> operator+(complex<S> x, complex<S>y)
{
complex<S>r =x; /l r.re=x.re; r.im=y.im;
r+=y; /l r.ret=y.re; rim+=y.im;

}

/I define complex variables x and y
complex<double>z =x+y; // zre=x.rety.re; z.im=x.im+y.im;

Again the comments indicate the optimal code that existing optimizers generate for
this. Basically, the templates map to the implementation model for classes described
above to give good use of memory and inlining of simple function calls ensures good
use of that memory. By “good” I mean “optimal given a good optimizer” and
optimizers that good are not uncommon. The example above might make a simple
first test of your compiler and optimizer if you want to see whether it is suitable for an
application.

Abstraction and the C++ Machine Model 9

The performance of this code depends on inlining of function calls. It has correctly
been observed that inlining can lead to code bloat when a large function is inlined
many times (either for many different calls or for s few calls but with different
template arguments). However, that argument does not apply to small functions (such
as, the += and + defined for complex) where the actual operation is smaller and faster
than the function preamble and value return. In such cases, inlining provides
improvements in both time and space compared with ordinary functions and ordinary
function calls. In fact, a popular use of class objects and inline function is to
implement parameterization where the parameter can be a single machine instruction,
such as <[9].

Inlining a large function is usually a very bad idea. Doing so typically indicates
carelessness on behalf of the programmer or a poorly tuned optimizer.

In sharp contrast to the claim that templates cause code bloat, it so happens that
templates can be used to save code space. A C++ compiler is not allowed to generate
code for an unused template function. This implies that if a program uses only 3 of a
template class’ 7 member functions, only those three functions will occupy space in
memory. The equivalent optimization for non-template classes is not common (the
standard doesn’t require it) and extremely hard to achieve for virtual functions.

The perfect inlining of small member functions and the guarantee that no code is
generated for unused functions is the reason that function objects have become the
preferred way of parameterizing algorithms. A function object is an object of a class
with the application operator () defined to perform a required action. For example

template<class T> struct less {
bool operator()(const T& a, const T& b) const { return a<b; }

}s

This function object, less, is used by most standard library facilities that need to
perform a comparison. The result can be factors of improvement in run time
compared to parameterization with a function pointers for algorithms such as sort()
[Stroustrup, 1999].

Most uses of templates are described as “generic programming” or “template meta-
programming”. Both are based on overloading where we let the compiler pick the
right implementation based on types (and integer values). The simplest and most
familiar example is the compiler choosing the right implementation of + when we add
int, double, complex, etc. values. The compiler can pick the right function (or basic
operation) based on argument types. Similarly, the compiler will pick the right type
for an object based on template arguments.

The selection of types and operations is done at compile time and can lead to major
improvements. For example, in an embedded application the indirection through
pointers to manipulate device drivers turned out to be the bottleneck. The solution
was to replace hand-optimized low-level C with templates parameterized on the
device register addresses and object types; a 40% improvement in performance was
achieved that way. The resulting code was also much shorter and easier to maintain
[5]- Section 5 of [7] contains code illustrating such techniques; the examples there
relate to a standard interface to special-purpose registers.

It’s amazing what you can do using these techniques. One place to look for
techniques and examples is the STL (the C++ standard library’s framework for

10 Bjarne Stroustrup

containers and algorithms) [10]. Since the STL relies on free store it may not be
applicable to your particular embedded application, but the techniques are general.
For more advanced/extreme uses labeled “template metaprogramming”, see [1] and
for lots of examples see the Boost collection of libraries [2].

For generality, it is important that templates can have integer arguments. In
particular, you can do arbitrary computations at compile time; compile-time constant
folding is just the simplest example.

Code Examples

Consider briefly a problem faced by the designers of control and monitoring software
for large (100,000Hp+) marine diesel engines at MAN B&W Diesel A/S. These
engines simply can’t be allowed to fail (or a huge ship is adrift), the engine computers
must potentially work for years without maintenance, and programs must be portable
to new generations of computers (since computer generations are shorted than engine
generations) [4].

How can we compute accurately and safely? Using numbers of different
accuracies? And detect errors such as dived by zero and overflow? Fast enough for
hard-real time? (on rugged hardware based on 25MHz Motorola 68332 processors
used for electronic fuel injection). The solution chosen and now running on huge
ships on the high seas involves:

* Make a template class for fixed-point arithmetic

— Fixed point is completely portable

— Fixed point is most efficient on the relevant processors
» Use template specializations where needed

As expected and required, this solution has zero overhead in time and space.

Consider first an example of a function that performs a critical computation. I have
done nothing to this code except adjusting the indentation. I am told that it is easy to
read if you understand about the engine. Having seen far worse looking code for far
simpler problems, I have no trouble believing that:

StatusType<FixPoint16> EngineClass::InternalLoadEstimation(

const StatusType<FixPoint16>&
UnsigRelSpeed,
const StatusType<FixPoint16>&
Fuellndex)
{

StatusType<FixPoint16> sl =UnsigRelSpeed*Fuellndex;

StatusType<FixPoint16> IntLoad =
sl*(PointSevenFive+sl*(PointFiveFour-PointTwoSeven*sl))

PointZeroTwo*UnsigRelSpeed*UnsigRelSpeed*UnsigRelSpeed;

IntLoad=IntLoad*NoFuelCylCorrFactor.Get();

Abstraction and the C++ Machine Model 11

if (IntLoad.GetValue()<FixPoint16ZeroValue)
IntLoad=sFIXPOINT16_0;

return IntLoad;

}

The 16-bit fixed point type is just an ordinary class:

stuct FixPoint16 {
FixPoint16();
FixPoint16(double aVal);

bool operator==(const FixPointl6& a) const { return
val==a.val; }

bool operator!=(const FixPoint16&) const;

bool operator>(const FixPoint16&) const;

bool operator<(const FixPoint16&) const;

bool operator>=(const FixPoint16&) const;

bool operator<=(const FixPoint16&) const;

short GetShort() const;

float GetFloat() const;

double GetDouble() const;
private:

long val; /le.g. 16.16

}s

The real computation (of engine status) takes place on status types (parameterized
by arithmetic types, such as FixPoint16):

template <class T>
struct StatusType {
StatusType();
StatusType(const StatusType&);
StatusType(const T aVal,const unsigned long aStat);

/l Member Compound-assignment operator functions:
StatusType& operator+=(const StatusType&);

// Miscellaneous:
const T& GetValue() const;

/I Access functions for status bits:
bool isOk() const;
bool IsValid() const;
private:
T value;

12 Bjarne Stroustrup

unsigned long fpStatus; /I Bit codes defined by type
tagFixPoint16Status

}s

This template class is designed and implemented using the techniques we saw for
complex. For its time and space performance, it relies on the same techniques and
optimizations. This implies that the techniques (and the tools that supports them) are
effective in real-world embedded systems contexts.

The low-level details of the engine and the processor are encoded in constants and
encapsulated in functions relying on such constants:

template<class T>
inline bool StatusType<T>::IsValid() const

{
return (bool)((fpStatus & 0x0000FFFF) ==VS_VALID);

}

template <>
StatusType<long>&

StatusType<long>::operator+=(const StatusType<long>& rhs)
{

long sum = value + rhs.value;

if ((value * sum) & (rhs.value * sum) & LONG _MSB) { //
overflow
AppendToStatus(VS_OVERFLOW);
value = (sum & LONG_MSB ? LONG_MAX : LONG_MIN);
}
else {
value = sum;

}

AppendToStatus(rhs.GetStatus());

return (*this);

The designers of this software emphasize (my translation from Danish):

* C++isnot just used as A better C”

— Our results far exceeded our outside consultants experience with
comparable C-based projects.

* Heavy use of object-oriented techniques
— Including class hierarchies and virtual functions

* Heavy use of generic programming and templates
— Essential to avoid code duplication

Abstraction and the C++ Machine Model 13

— Essential to achieve optimal performance
— Object-oriented and generic programming used in combination
* A good tool chain is essential
The code does not use exceptions (since it is a hard-real-time program) and free
store allocation is only used during startup where memory exhaustion and
fragmentation cannot occur.

Acknowledgements

Special thanks to Mogens Hansen and Martin O’Riorden for making their examples
available to me and educating me in some newer techniques used in performance-
critical and safety-critical embedded systems programming. Also thanks to the
members of the ISO C++ standard committee’s Performance working group who
collected the information for [7].

References

1. David Abrahams and Aleksey Gurtovoy: “C++ Template Metaprogramming: Concepts,
Tools, and Techniques from Boost and Beyond”. Addison Wesley. 2005. ISBN 0-321-
22725-5.

2. www.boost.org.

3. Michael Gibbs and Bjarne Stroustrup: “Fast Dynamic Casting”. Software-
Practice&Experience. Wiley. To appear 2005.

4. Mogens Hansen: “C++ I embedded systemer”. Elektronik 04. Odense Congress Center.
September 2004. And personal communication.

5. Martin J. O’Riordan: “C++ For Embedded Systems”. And personal communications.

6. “The C++ Standard” (ISO/IEC 14882:2002). Wiley 2003. ISBN 0 470 84674-7.

7. “Technical Report on C++ Performance”. ISO.DEC PDTR 18015.
(http://www.research.att.com/ ~bs/performanceTR.pdf).

8. Bjarne Stroustrup: “The Design and Evolution of C++”. Addison Wesley, 1994. ISBN 0-
201-54330-3.

9. Bjarne Stroustrup: “Learning standard C++ as a new language”. C/C++ Users Journal. May
1999

10. Bjarne Stroustrup: “The C++ Programming Language”. Addison Wesley. 2000. ISBN 0-
201-70073-5.

11. B. Stroustrup: “C and C++: Siblings”, “C and C++: A Case for Compatibility”, “C and
C++: Case Studies in Compatibility”. The C/C++

Keynote Speech: Industrializing Software Development

Alexander Stepanov

Adobe Systems
USA

The objective of the talk is to discuss economic, organizational, and technological
aspects of software industrialization. While it is impossible to predict exactly when
the industrial revolution in software will occur, it is clear that when it happens it will
cause a dramatic redistribution of wealth and a decline of the software monopolies.

There is the economic reason why software components as an industry (predicted
in the late sixties by Doug Mcllroy) never materialized: it is the emergence of the
software industry, whose very existence is based on unspecified, irregular and
extremely complex interfaces.

Organizationally, there is no division of labor, a very low level of professionalism,
and a reward system that is based on number of features, rather than on the level of
reliability, correctness, and security.

Finally, technologically we still have to learn to produce comprehensive, well-
organized catalogs of highly generic, reliable components with precise time and space
performance characteristics.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 14-14, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Testing Methodologies for Embedded Systems
and Systems-on-Chip

Laurence T. Yang! and Jon Muzio?

! Department of Computer Science, St. Francis Xavier University
P.O. Box 5000, Antigonish, B2G 2W5, NS, Canada
2 Department of Computer Science, University of Victoria
Victoria BC, V8W 3P6 Canada

Abstract. Testing of a fabricated chip is a process that applies a se-
quence of inputs to the chip and analyzes the chip’s output sequence
to ascertain whether it functions correctly. As the chip density grows to
beyond millions of gates, Embedded systems and systems-on-chip test-
ing becomes a formidable task. Vast amounts of time and money have
been invested by the industry just to ensure the high testability of prod-
ucts. On the other hand, as design complexity drastically increases, cur-
rent gate-level design and test methodology alone can no longer satisfy
stringent time-to-market requirements. The High-Level Test Synthesis
(HLTS) system, which this paper mainly focuses on, is to develop new
systematic techniques to integrate testability consideration, specially the
Built-In Self-Test (BIST) methodology, into the synthesis process. It
makes possible for an automatic synthesis tool to predict testability of
the synthesized embedded systems or chips accurately in the early stage.
It also optimizes the designs in terms of test cost as well as performance
and hardware area cost.

1 Introduction

Driven by the rapid growth of the Internet, communication technologies, perva-
sive computing, automobiles, airplanes, wireless and portable consumer electron-
ics, Embedded Systems and Systems-on-Chip (SoC) have moved from a craft to
an emerging and very promising discipline in today’s electronic industry.
Testing of a fabricated very large scale integrated embedded systems and
system-on-chip is a process that applies a sequence of inputs to the circuit and
analyzes the circuit’s output sequence to ascertain weather it functions cor-
rectly. As the chip density grows to beyond millions of gates, testing becomes
a formidable task. Vast amounts of time and money have been invested by the
semiconductor industry just to ensure the high testability of products. A number
of semiconductor companies estimate that about 7% to 10% of the total cost is
spent in single device testing [17]. This figure can rise to as high as 20% to 30% if
the cost of in-circuit testing and broad-level testing is added. However, the most
important cost can be the loss in time-to-market due to hard-to-detect faults.
Recent studies show that a six-month delay in time-to-market can cut profits

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 15-24, 2005.
© Springer-Verlag Berlin Heidelberg 2005

16 Laurence T. Yang and Jon Muzio

by 34% [17]. Thus, testing can pose serious problems in embedded system and
systems-on-chip designs.

Part of reason testing cost so much is the traditional separation of design
and testing. Testing is often viewed inaccurately as a process that should start
only after the design is complete. Due to this separation, the designer usually
has little appreciation of testing requirements, whereas the test engineer has
little input into the design process. In order to effectively reduce testing cost,
methods which take into account testability of the final product are needed
and are usually called Test Synthesis. This approach is motivated by the high
complexity of current design and related testing costs. The design test related
activities, such as test generation and test application, usually have a relatively
big share of the total design and test cost. In some cases, this can reach to as
high as 50% of the total cost. Thus the main idea of Test Synthesis is to improve
testability of the design during early stages which is expected to reduce the later
design testing costs.

On the other hand, as design complexity drastically increases, current gate-
level synthesis methodology alone can no longer satisfy stringent time-to-market
requirement. High-level Synthesis [2,5] which takes a behavioral specification
of a digital system and a set of design constraints as input and generates a
Register-Transfer Level (RTL) hardware implementation is hence considered as
a promising technology to boost design quality and shorten the development
cycle.

The main objective of the High-level Test Synthesis this paper focus on is
to develop new systematic techniques to integrate testability consideration into
synthesis process and make it possible for an automatic synthesis tool to predict
testability of the synthesized circuits accurately in the early stage and optimize
the designs in terms of test cost as well as performance and area cost.

2 Recent Research Summary

Due to the increasing gate-to-pin ratios which limit the feasibility of testing digi-
tal circuits externally, this paper mainly describes some recent research progress
on our work of a built-in self-test synthesis system. Its framework is depicted in
Figure 1.

2.1 Design Representation

First of all, our system takes a VHDL behavioral specification of a digital sys-
tem and a set of design constraints as input and generates a Register-Transfer
Level (RTL) hardware implementation which consists of a data path and a con-
troller. The kernel of the system is an intermediate design representation, called
Extended Timed Petri Net (ETPN), which can be used both for testability anal-
ysis and high-level synthesis [14]. In ETPN, the structural properties of the data
path and controller are explicitly captured in order to facilitate accurate analysis
of the intermediate design in term of performance, area and testability.

Testing Methodologies for Embedded Systems and Systems-on-Chip 17

1. Scan/BIST inseration VHDL
2. Partitioning specification
3. Transformations
Y

Testability
improvement

transformation

High-level
synthesis

Intermediate Testability
~— representation measurement

‘ \
Resource - Testability
Optimization analysis

Y

RTL implementation Mentor Graphics
with built-in DFT LBISTArchitect

BIST
architecture
primitives

l Logic synthesis

Fig. 1. The built-in self-test synthesis system

2.2 Data Path Testability Analysis

Based on the design representation, we have developed register transfer level
data path testability metrics to evaluate various BIST configurations and make
improvement decision [23,25]. The early decision about testability improvement
gives the possibility that designs can be optimized in later synthesis processes.
The testability analysis carried out at high-level abstraction will also reduce
the computational complexity, since the complexity of a design at this level is
significantly lower.

The objective of testability metrics is to analyze and quantify BIST testa-
bility for a given register transfer level design. Basically, our BIST testability
metrics quantify two important testability aspects, namely controllability and
observability. In our approach, we mainly follow the test scheme, namely min-
imal behavioral BIST originally proposed in [10]. Both of controllability and
observability are further divided into two factors: combinational factor and se-
quential factor. The combinational factor is measured in terms of the quality of
pseudo-random values as they propagate through embedded modules and regis-
ters, and the sequential factor is used for the estimated number of steps or clock
cycle to control under test. Similarly the combinational observability is mea-
sured in terms of sensitivity of embedded modules and registers to erroneous
value propagation, i.e. in terms of how difficult it is to propagate an erroneous
value through to an observable output, and the sequential factor is used for the
estimated number of steps or clock cycle to observe under test. As a result, our
testability metric consists of, therefore, four measures: combinational controllabil-

18 Laurence T. Yang and Jon Muzio

ity (CC), sequential controllability (SC), combinational observability (CO) and
sequential observability (SO) [31] based on Markov chain model [3], and provides
a means of measuring the effect of test improvement with regards to BIST test
quality.

2.3 State Reachability Analysis

Besides the data path testability metrics, we also have developed state reachabil-
ity metrics which are used to characterize the testability of the given controller
in term of a ETPN [23,25]. It is defined by the difficulty of reaching a state from
an initial state. This measurement is associated with each state in the control
part. The state reachability consists of two measurements, namely combinational
state reachability (CSR) and sequential state reachability (SSR) [7]. The com-
binational state reachability measures the probability to reach the current state
from an initial state, and the sequential state reachability measures the number
of cycles (transitions) needed to reach the current state from the initial state.

2.4 Incremental Testability and Reachability

Due to the large computational complexity of testability and state reachability
analysis and the need to perform such analysis after each synthesis steps, we
have applied a similar systematic technique used for ATPG technique for the
present BIST technique to approximate accurately the repeated testability and
state reachability calculation and evaluation [23,25].

First of all, the global testability of a data path is based on a cost function in
[9] and is used to estimate the global testability of an entire design. Based on the
above global testability measurement, we propose a new and efficient estimation
method [23,25] which is based partially on explicit re-calculation and partially on
gradient techniques for incremental testability and state reachability to update
the test property.

2.5 BIST Partitioning

Based on the above testability measurements, we develop a new improvement
method with BIST technique at register transfer level(RTL). RTL circuits con-
sist of interconnections of registers, functional units (ALUs), multiplexors and
buses. Both conventional BIST [1] and circular BIST [15,16] are well-suited for
automatic circuit improvement at the register transfer level. Traditionally, each
ALU in a circuit is made directly testable by placing test registers to generate
test patterns at the ALU’s inputs, and the test registers to compact the responses
at the ALU’s output. However, it may not be necessary to add this many test
registers [4]. For example, suppose that the input registers to the ALU are not di-
rectly controllable, but they still can generate patterns that are random enough
to efficiently test the ALU; in this case, there is no need to replace the normal
system registers with more expensive, slower test registers. Thus, an efficient

Testing Methodologies for Embedded Systems and Systems-on-Chip 19

partitioning technique, which decide either which registers should be configured
as test registers (conventional BIST) or which registers should be linked in the
circular scan path (circular BIST), is necessary.

Partitioning for a design can lead to the simplifications of many design pro-
cedures such as synthesis and test. Partitioning for testability will lead to the
simplification of test efforts and the ability to apply different test strategies to
different partitions. The proposed partitioning technique in the paper [23,25]
transforms some hard-to-test registers and/or lines to boundary components.
These components act as normal registers and/or lines in the normal mode and
serve as partitioning boundaries in test mode or test registers. Therefore, a de-
sign is partitioned into several sub-circuits and each of them can be tested and
controlled based on BIST test schemes. It is, therefore, possible to apply differ-
ent test strategies, such as scan for deterministic and BIST for random test to
different partitions.

The circuit partitioning problem can, in general, be formulated as a graph
partitioning problem. Given a graph with nodes and arcs, the objective is to
partition the nodes into several subsets, such that the total costs of the arcs be-
tween nodes in different partitions is minimized. Optimal partitioning is known
to be NP-complete [6]. In our research work, we present an efficient and eco-
nomic BIST partitioning approach [23,25]. Tt is based on a BIST testability
analysis algorithm with an incremental testability analysis approach for data
path and a state reachability analysis algorithm with its incremental analysis
approach for control path at register-transfer level. Initially we use the testa-
bility algorithm for data path and state reachability algorithm for control part
to find partitioning boundaries. Then the partitioning procedure is performed
quantitatively by a clustering algorithm which clusters directly interconnected
components excluding boundary components based on the global testability of
data path and global state reachability analysis of control part. After each se-
lection step, we use the proposed new and efficient estimation method which is
based partially on explicit re-calculation and partially on gradient techniques
for incremental testability and state reachability to update the test property.
This process will be iterated until the design is partitioned into several disjoint
sub-circuits and each of them can be tested independently. Therefore, the design
is fully self-testable.

2.6 Resource Optimization

Applying BIST techniques for resource optimization before going to RTL imple-
mentation or performing high-level synthesis involves modification of the hard-
ware on the chip so that the chip has the capability to test itself. Table 1 in
[20] shows different types of test registers that can be used. Concurrent built-
in logic observation (CBILBO) and built-in logic observation (BILBO) registers
can both generate test pattern and compress test response, and ensure high
fault-coverage. BILBO registers need more test sessions while CBILBO registers
require more hardware area. Note that a test register usually has larger hardware
area than a normal register (see Table 1 in [20] where w is the area scaling factor

20 Laurence T. Yang and Jon Muzio

over normal register). For example, CBILBOs have an area approximation twice
that of the normal registers. One of the main considerations for BIST resource
optimization is, therefore, the extra area for the test circuitry. Here we would
like to describe an optimal modification approach [21] based on Integer Linear
Programming formulation [11] to find BIST embeddings in the data path pre-
pared for the synthesis algorithm or before going to RTL implementation such
that the cost of modification is minimum.

2.7 Data Path Allocation

It has been shown that MISR registers can also be used to generate pseudo-
random test patterns [8,18]. This results in both reduction of testing times and
reduction of extra registers which reduces hardware area. However, since the ac-
tual time required for a MISR register to obtain exhaustive pattern coverage is
exponential with respect to the number of bits in the register, as shown in [20],
the test quality might be reduced. How to reduce this area overhead without
sacrificing the test quality is one of the major concern of our research work.

Considering testability issues at high-level synthesis can lead to a more ef-
ficient exploration of the design space, thus resulting in a digital circuit that
requires minimal BIST area overhead and has high test concurrency while guar-
anteeing the test quality.

The fact that the contents of signature registers (MISR) can be used as
test patterns leads to the following advantages. First, the algorithm produces
designs with high test concurrency which reduces the overall testing time due
to increased testing parallelism. Moreover, the number of extra registers for
implementing BIST can be reduced. However, since the actual time required for
a MISR register to obtain exhaustive pattern coverage is exponential with respect
to the number of bits in the register, we consider such template as incompletely
embedded module. We describe a high-level data path allocation algorithm in
[20] which generates highly testable data path designs while maximizing the
sharing of modules and test registers. Module allocation is guided by a testability
balance principle where incompletely embedded modules can be mapped into the
same function module that is completely embedded. In this way, the incompletely
embedded module after allocation will be fully testable. The register allocation
is mainly based on the sharing degrees of registers which reflects the number
of modules for which the register can be configured as RTPG and the number
of modules for which it can be configured as a MISR. Using this measure the
register allocation is guided by choosing mergers that result in large increases
in the sharing degrees of registers over those resulting in smaller increases. This
would result in registers with high sharing degrees, thereby requiring a smaller
number of BIST registers globally in the design.

However, the approach still has some drawbacks, for example, if an incom-
pletely embedded module can not find a match to be merged with a completely
embedded module during the iterative allocation algorithm. It probably will not
become fully testable. If there are several such modules un-mapped in the design,
the resulting testing quality will be not satisfactory. This motivates us to make

Testing Methodologies for Embedded Systems and Systems-on-Chip 21

use of two types of redundant transformations introduced in [11,12,13], which
add redundancy that improves test resources to be shared in the data path with-
out affecting the scheduling step (latency) and functional resource requirement
of the behavior, to improve our data path allocation algorithm and to make all
incompletely embedded modules become fully testable [27].

2.8 Integrated Synthesis Algorithm

After our system takes a VHDL behavioral specification of a digital system
and a set of design constraints as input, the design representation is always
unscheduled. Therefore, we need to consider not only operation scheduling but
also data path allocation.

In our research work, we describe a high-level test synthesis algorithm for
operation scheduling and data path allocation [24]. It generates highly testable
data path designs while maximizing the sharing of test registers, which means
that only a small number of registers is modified for BIST. The algorithm pro-
duces also designs with high test concurrency, thereby decreasing test time. The
algorithm is motivated by that if the contents of signature registers can be used
as test patterns, the overall testing time can be reduced due to increased test-
ing parallelism, moreover, the number of extra registers for implementing BIST
can be reduced. In our approach, module allocation is guided by a testability
balance principle where incompletely embedded modules can be mapped into the
same function module that is completely embedded. In this way, the incompletely
embedded module after allocation will be fully testable. The register allocation
is guided by an incremental sharing measurement which chooses merges that
result in large increases in the sharing degrees of registers. When two modules
are merged, the operations executed on these modules must be scheduled in
different control steps so that they can share the same component. Similar for
registers, the variables stored in these registers must be disjoint. We will present
the rescheduling transformation which is performed by a merge-sort algorithm.
These transformations change locally the execution orders of some operations in
the current schedule in order to improve the testability and satisfy the schedul-
ing constraints imposed by the merger. Contrary to other works in which the
scheduling and allocation tasks are performed independently, our approach inte-
grates scheduling and allocation by performing them simultaneously so that the
effects of scheduling and allocation on testability are exploited more effectively.

In [22], we also introduce some concepts and techniques to improve our pre-
vious work [24] during the operation scheduling part, specially to determine the
execution order of different operations when rescheduling transformations are
performed.

However, the above described integrated approach still has some drawbacks,
for example, during the module allocation, if an incompletely embedded module
can not find a match to be merged with a completely embedded module during the
iterative allocation algorithm. It probably will not become fully testable. If there
are several such modules un-mapped in the design, the resulting testing quality
will be not satisfactory. Similarly if a pair of operation in the same scheduling

22 Laurence T. Yang and Jon Muzio

step to be merged based on the allocation balance principle is decided, we have
to introduce dummy places which have negative impacts or increase the control
steps leading to longer execution time or slow performance. This motivates us
to make use of two types of redundant transformations introduced in [11,13],
which add redundancy that improves test resources to be shared in the data
path without affecting the scheduling step (latency) and functional resource
requirement of the behavior, to improve our data path allocation algorithm and
to make all incompletely embedded modules become fully testable [28]. Also this
can avoid the increase of scheduling steps because one of the operations can be
merged with the introduced redundant operations at different scheduling steps.
In [28] we have demonstrated the advantage of the approach by introducing the
redundant transformations for operation scheduling and data path allocation.

2.9 Testability Metrics-Based Synthesis

In [19], we also present a different BIST synthesis methodology, namely a BIST
testability metrics-based algorithm for operation scheduling and data path al-
location. It is based on the BIST data path testability analysis algorithm at
register-transfer level described in previous subsections. In the approach, mod-
ule and register allocation are guided by a testability balance technique. In our
approach, the selection of nodes to be merged is based on the testability measures
generated by the testability analysis algorithm. The main goal is to generate a
data path with good controllability and observability for all the nodes and with
as few loops as possible. The basic idea is to fold nodes with good controllability
and bad observability to nodes with good observability and bad controllability.
Note that the controllability of a node is defined as the best controllability of
any of its input lines. While the observability of a node is the best observability
of any of its output lines. In this way, the new node will inherit the good con-
trollability from one of the old nodes and the good observability from the other.
The synthesis algorithm introduces scheduling constraints imposed by data path
allocation and performs scheduling and allocation simultaneously in an iterative
fashion so that their effects on testability are exploited more effectively.

With the help of an incremental BIST testability analysis and a state reacha-
bility analysis with its incremental approach for control path at register-transfer
level, we mainly make use of some concepts and techniques to improve the above
work [19] not only during the data path synthesis part, but also during the op-
eration scheduling part [26].

Similarly redundant transformations have been introduced [29]. We add re-
dundancy that improves test resources to be shared in the data path without
affecting the scheduling step (latency) and functional resource requirement of the
behavior, to improve our data path allocation algorithm and to make all mod-
ules become fully testable. Also this can avoid the increase of scheduling steps
because one of the operations can be merged with the introduced redundant
operations at different scheduling steps [30].

Testing Methodologies for Embedded Systems and Systems-on-Chip 23

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

V. D. Agrawal, C. R. Kime, and K. K. Saluja. A tutotial on Build-in Self-test,
part 1: principles. IEEE Design and Test of Computers, March 1993.

R. Camposano and W. H. Wolf. High-Level VLSI Synthesis. Kluwer Academic
Publishers, 1991.

J. Carletta and C. A. Papachristou. Testability analysis and insertion for RTL
circuits based on pseudorandom BIST. In Proceedings of International Conference
on Computer Design, 1995.

S. Chiu and C. A. Papachristou. A design for testability scheme with applications
to data path synthesis. In Proceedings of Design Automation Conference, pages
271-277, June 1991.

D. D. Gajski, N. D. Dutt, A. C-H. Wu, and Steve Y-L. Lin. High-Level Synthesis:
Introduction to Chip and System Design. Kluwer Academic Publishers, 1992.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Co., San Francisco, 1979.

X. Gu, E. Larsson, K. Kuchcinski, and Z. Peng. A controller testability and en-
hancement technique. In Proceedings of FEuropean Design and Test Conference,
pages 153-157, Paris, France, March 1997.

K. Kim, D. S. Ha, and J. G. Tront. On using signature registers as pseudorandom
pattern generators in built-in self-testing. IEEE Transactions on Computer-Aided
Design of Integrated Clircuits and Systems, 7(8):919-928, August 1988.

R. Lisanke, F. Braglez, A. J. Degues, and D. Gregory. Testability-driven ran-
dom test pattern generation. IFEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 6:1082-1087, 1987.

C. A. Papachristou and J. Carletta. Test synthesis in the behavioral domain. In
Proceedings of International Test Conference, October 1995.

I. Parulkar. Optimization of BIST resource during high-level synthesis. PhD thesis,
University of South California, May 1998.

I. Parulkar, S. Gupta, and M. Breuer. Introducing redundant computations in
a behavior for reducing BIST resources. In Proceedings of the 35th ACM/IEEE
Design Automation Conference (DAC-98), pages 548-553, San Francisco, USA,
June 15-18, 1998.

I. Parulkar, S. Gupta, and M. Breuer. Introducing redundant computations in RTL
data paths for reducing BIST resources. ACM Transactions on Design Automation
of Electronic Systems, 6(3):423-445, 2001.

Z. Peng and K. Kuchcinski. Automated transformation of algorithms into register-
transfer level implementations. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pages 150-166, 1994.

S. Pilarski, A. Krasniewski, and T. Kameda. Estimating testing effectiveness of the
circular self-test path technique. IEEE Transactions on Computer-Aided Design
of Integrated Clircuits and Systems, 11(10):1301-1316, October 1992.

M. M. Pradhan, E. J. Brrien, S. L. Lam, and J. Beausang. Circular BIST with par-
tial scan. In Proceedings of International Test Conference, pages 719-729, October
1988.

L. Rosqvist. Application Specification Integrated Circuit (ASIC) Technology, chap-
ter 8, Test and testability of ASICs. Academic Press, San Diego, California, 1991.
L. T. Wang and E. J. McCluskey. Built-in self-test for sequential machines. In
Proceedings of International Test Conference, pages 334-341, 1987.

24

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Laurence T. Yang and Jon Muzio

L. T. Yang and J. Muzio. A BIST testability metric-based algorithm to integrate
scheduling and allocation in high-level test synthesis. In Proceedings of the 9th
International Symposium on Integrated Circuits, Devices and Systems (ISIC-01),
pages 409-413, Singapore, September 3-5, 2001.

L. T. Yang and J. Muzio. Built-in self-testable data path synthesis. In Smailagic A.
and De Man H., editors, Proceedings of the 2001 IEEE Computer Society Workshop
on VLSI (WVLSI-01), pages 7884, Orlando, Florida, April 19-20, 2001.

L. T. Yang and J. Muzio. High-level data path synthesis for built-in self-testable
designs. In Proceedings of the IEEE Pacific Rim Conference on Communication,
Computers and Signal Processing (PARCIM-01), volume 1, pages 279-282, Victo-
ria, Canada, August 26-28, 2001.

L. T. Yang and J. Muzio. An improved high-level built-in self-test synthesis al-
gorithm. In Proceedings of the 8th IEEE International Conference on Electron-
ics, Circuits and Systems (ICECS-01), volume 1, pages 549-552, Msida, Malta,
September 2-5, 2001.

L. T. Yang and J. Muzio. An improved register transfer level built-in self-test
partitioning. In Proceedings of the 9th International Symposium on Integrated
Clircuits, Devices and Systems (ISIC-01), pages 414-417, Singapore, September
3-5, 2001.

L. T. Yang and J. Muzio. An integrated high-level test synthesis algorithm for
built-in self-testable designs. In Proceedings of the XIV International Symposium
on Integrated Circuits and System Designs (SBCCI-01), pages 115-121, Brasilia,
Brazil, September 10-15, 2001.

L. T. Yang and J. Muzio. A register-transfer level BIST partitioning approach
for ASIC designs. In Proceedings of the 2001 IEEE Pacific Rim Conference on
Commaunication, Computers and Signal Processing (PARCIM-01), volume 1, pages
275-278, Victoria, Canada, August 26-28, 2001.

L. T. Yang and J. Muzio. An improved BIST testability metric-based high-level
test synthesis approach. In Proceedings of the 2002 International Conference on
VLSI (VLSI-02), pages 7885, Las Vegas, USA, June 24-27, 2002.

L. T. Yang and J. Muzio. Introducing redundant transformations for built-in
self-testable data path allocation. In Proceedings of the 2002 IEEE International
Conference on Communications, Circuits and Systems (ICCCAS-02), volume 2,
pages 1346-1350, Chengdu, China, June 29-July 1, 2002.

L. T. Yang and J. Muzio. Introducing redundant transformations for high-level
built-in self-testable synthesis. In Proceedings of the 9th IEEE International Con-
ference on Electronics, Circuits and Systems (ICECS-02), volume 2, pages 475-479,
Dubrovnik, Croatia, September 15-18, 2002.

L. T. Yang and J. Muzio. Redundant transformations for the testability metrics-
based built-in self-testable data path allocation. In Proceedings of the 2002 IEEE
Asia-Pacific Conference on Clircuits and Systems (APCCAS-02), volume 2, pages
119-123, Bali, Indonesia, October 28-31, 2002.

L. T. Yang and J. Muzio. Redundant transformations for the testability metrics-
based high-level built-in self-testable synthesis. In Proceedings of the XVII In-
ternational Conference on Design of Circuits and Integrated Systems (DCIS-02),
Santander, Spain, November 19-22, 2002.

T. Yang and Z. Peng. Register-transfer level testability analysis and improvement
with pseudorandom BIST. In Proceedings of the 1st IEEE International Workshop
on Design, Test and Application (WDTA-98), pages 117-120, Dubrovnik, Croatia,
June 8-10, 1998.

China Putian Promote Commercial TD-SCDMA Services

Qingfang Chen

CHINA PUTIAN Institute of Technology
The 2™ Street, Shangdi Information Industry Base Haidian District, Beijing, 100085 China
cqgf@rd.china-putian.com

Abstract. TD-SCDMA is a 3G standard and its IPRs are owned by China
which eventually will be one of the world’s major Third Generation (3G)
mobile markets. As the largest telecom manufacturer in China, China Putian
has played an important role in the research and development of domestic TD-
SCDMA sector. The industrialization of TD-SCDMA is driving along a fast
lane, China Putian and TD-SCDMA Industry Alliance will try our best to make
TD-SCDMA be one successful commercial system as planned.

China Putian Profile

China added 55.08 million mobile phone users in the first 10 months of this year,
bringing the total number of subscribers to 325.03 million by the end of October.
Eventually China will be one of the world’s major Third Generation (3G) mobile
markets, and this is an great opportunity for all telecom manufacturers.

As we know, China Putian is the largest telecom manufacturer in China with 7
wholly-owned manufacturing facilities, 28 subsidiaries, 50 joint ventures and 40
alliances. The company was founded in 1980. It is a key enterprise directly under the
leadership of the State-owned Assets Supervision and Administration Commission of
the State Council (SASAC). Its available communication equipment and terminal
products mainly include: mobile communication network equipments and handsets,
optical transmission equipment, microwave communication equipment, videophones
and IC card payphones, PHS handsets, etc.

Headquartered in Beijing, China Putian employs 50,000 people and has revenues
of 64 billion RMB ($US 7.8B) for 2003.

China Putian ranked consecutively No. 1 among Top 100 Chinese Electronic &
Information Enterprises in 2001 and 2002. In 2003, China Putian ranks No. 1 among
the overall listing of China's largest enterprise groups in the manufacture sector of
electronic and communication equipment. It ranks No. 5 both in the listing of the 500
largest import & export enterprises and in the listing of the 200 largest export
enterprises.

China Putian Institute of Technology is funded directly by China Putian
Corporation in 2002, with focus on the R&D works and the all-around management
for new technologies and new products.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 25-29, 2005.
© Springer-Verlag Berlin Heidelberg 2005

26 Qingfang Chen

China Putian has been a front-runner in the development and commercialization
of TD-SCDMA technology and products. China Putian has a directorship in and is the
incumbent chairman by rotation in China’s TD-SCDMA Industry Alliance.

Introduction of TD-SCDMA

TD-SCDMA, or "Time Division Synchronous Code Division Multiple Access," is
China‘s contribution to the ITU‘s IMT-2000 specification for 3G wireless mobile
services. The dominant IPR holder behind the TD-SCDMA standard is Datang.

As one of three popular 3G standards, when TD-SCDMA is designed, the
compatibility is considered, besides the advanced smart antenna, joint detection and
synchronous CDMA techniques are adopted; the network structure is kept the same as
3GPP. So its outstanding advantages are shown in large system capacity, high
spectrum efficiency, high ability to mitigate interference and low cost, flexibility and
applicability; the core network can be shared with other systems, for example
WCDMA. It can construct a network independently or construct a network with other
mobile networks.

According to China‘s 3G planning, TD-SCDMA technology shall achieve
commercialization by June of 2005. Assuming a theoretical commercial launch of all
three 3G technologies by the end of next year, TD-SCDMA could account for 15% of
the 3G market.

Fig. 1. Dr. Tao Xiongqgiang - Chairman of the TD-SCDMA Industry Alliance

The TD-SCDMA standard is promoted by the TD-SCDMA Forum, an industry
group founded in late 2002, the target of TD-SCDMA Forum is to promote the
industrialization, commercialization and internationalization of TD-SCDMA. Now Dr.
Tao Xionggiang is chairman of the TD-SCDMA Industry Alliance, and he is Vice
President of China Putian Corporation and President of the China Putian Institute of
Technology.

China Putian Promote Commercial TD-SCDMA Services 27

TD-SCDMA has got strong supports from Chinese government. Simulative 3G-
launch Project has been started by CATT of MII which is supported by government
with a investment of RMB 1986 millions Yuans. It also is used for TD-SCDMA R&D
and industrialization.

Vice- Chairman Mr. Zeng Qinghong, Primer Mr. Wen Jiabao, vice-Premier Mr.
Huang Ju, Commissary of State Ms. Chen Zhili, Pre vice-Chairman of NPC Standing
Committee Mr. Zou Jiahua and Mister of MII Mr. Wang Xudong visited TD-SCDMA
booth in “PT/EXPO COMM CHINA 2004” exhibition on Oct. 27th. 2004. National
leaders give a positive evaluation to TD-SCDMA fast development.

Fig. 2. Strong supports from Chinese government

The past year has seen a rapid development of the TD-SCDMA value chain, but in

China‘s 3G planning, TD-SCDMA technology shall achieve commercialization by
June of 2005. So the coming months will mark a crucial period for TD-SCDMA and
will decided whether the standard achieves success.
The industrial chain for the TD-SCDMA standard has already been formed including
system networks, chips and handsets. Telecom equipment providers such as China
Putian, Datang Mobile, ZTE Corporation and Huawei Technologies are able to
construct the TD-SCDMA networks. Many members of the alliance are working on
chipsets such as T3G, Commit, Chongqing Chongyou Information Technology Co Ltd
(CCIT), and Spreadtrum. More and more handset makers are manufacturing handsets
supporting TD-SCDMA system, such as China Putian, Lenovo, Huawei, Amoi,
DBTEL and Quanta.

Test network for TD-SCDMA is to be jointly constructed by four manufacturers:
China Putian, ZTE, Datang and Nortel Networks. China Putian will work with Nortel
to build a network for TD-SCDMAMTNET, a core net for the TD-SCDMA
technology, in Beijing. Datang will join forces with ZTE to build a similar net in
Shanghai.

28 Qingfang Chen

China Putian’s TD-SCDMA Strategy and Progess

As the chairman in China’s TD-SCDMA Industry Alliance, China Putian has put
heavily investment and efforts in R&D for TD-SCDMA. The R&D team of China
Putian comes from China Putian Institute of Technology, which now has more than
300 full time TD-SCDMA R&D engineers.

China Putian will provide end-to-end TD-SCDMA solution: system (own UTRAN,
cooperation with Nortel on core network), chipset (cooperation with COMMIT),
terminal (cooperation with Bird), network planning and mobile applications. During
“PT/EXPO COMM CHINA 2004, China Putian exhibits our TD-SCDMA solution.
In 2005, China Putian will provide pre-commercial products that can be used in field
trials in Beijing with China Telecom and China Satcom.

Fig. 3. Infrastructure of TD-SCDMA Total Solution

About TD-SCDMA terminal, Bird has involved in TD-SCDMA terminal activities.
Totaling 230 million RMB in capital investment, COMMIT is funded by China Putian
and other five globally acknowledged companies, and is developing a complete TD-
SCDMA terminal chipset solution which includes: Digital Base Band (DBB),
Analogue Base Band (ABB), Radio Frequency (RF), and SW protocol stack.
COMMIT’s TD-SCDMA terminal chipset will be launched at the end of this year.

And China Putian involved in developing two important national terminal
technology standards: China Mobile Storage Standard(CMSS), Mobile Multimedia
Technology Alliance(MMTA) and China Mobile Software Alliance Operating System
API Standard.

China Putian Promote Commercial TD-SCDMA Services 29

Fig. 4. China Mobile Storage Standard

Conclusion

2004 is the most important year in TD-SCDMA developing history. In this year, TD-
SCDMA industrialization has made great progress. Government officers, experts and
carriers give a high evaluation to TD-SCDMA progress with one voice. The
industrialization of TD-SCDMA is driving along a fast lane, China Putian and TD-
SCDMA Industry Alliance will try our best to make TD-SCDMA be one successful
commercial system as planned.

Agent-Oriented Approach to Ubiquitous
Computing

Makoto Amamiya

Faculty of Information Science and Electrical Engineering
Kyushu University
Kasuga, Fukuoka, Japan 816-8580
amamiya@is.kyushu-u.ac. jp

Abstract. With today’s developments in device miniaturization, wire-
less networking, such as PCs, PDAs, Cell phones, RFID tags and so on,
we are facing great opportunities and challenges to realize the ubiquitous
computing vision. In this paper, we first identify the key characteris-
tics of ubiquitous computing systems; then argue that agents and agent
networks are the right metaphor for managing the dynamism and com-
plexity of system integration and on demand interactions in ubiquitous
computing systems.

1 Introduction

As the 20th century turned into the 21st century, hardware technologies are
further advanced by device miniaturization, wireless networking, mobile devices
and many others. With this background, the new challenges for software tech-
nologies are the realization and exploitation of the ubiquitous computing vision
of “the metwork and computer are everywhere,” which is beyond the scope of
Web technologies.

The drawback of Web technologies is that they are typically described in
terms of protocols on top of the TCP/IP stack. Some well-known examples in-
clude World Wide Web (HTTP), electronic mail (SMTP), file transfer (FTP),
virtual terminal (TELNET), etc. Thus different applications use different pro-
tocols and interoperability between them is hard, if not impossible. Even worse,
those tailor-made protocols are hard to be enhanced or replaced because they
require worldwide changing of independently written implementations. Defin-
ing protocols and testing their compatibility on different system platforms are
no longer rational and feasible for ubiquitous computing systems in which on-
demand integration and interactions are involved all the time.

Our solution lies in the development of a global computing architecture based
on agent-oriented programming paradigm. Rather than developing applications
directly in terms of protocols, agents are basic building blocks from which di-
verse application systems can be abstracted, organized and constructed. This
paradigm, compared with more traditional approaches, can be best character-
ized by autonomous software agents, agent organizations and agent interactions.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 30-37, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Agent-Oriented Approach to Ubiquitous Computing 31

Through our work, we concentrate on enabling technologies for building a scal-
able, flexible and secure agent networks that provides us with a convenient pro-
gramming model, sufficient transparency and interoperability.

The argument presented in this paper examines the new challenges in ubiqg-
uitous computing, and concentrates on the approaches we take to formalize the
agent-based global software infrastructure.

2 New Challenges

We base our analysis of ubiquitous computing, or ubicomp, on common scenarios
that Mark Weiser [1] and others presented [2,3,4,5] as the followings:
Specialized elements of hardware and software artifacts — connected by wired
or wireless networks — interact to support human-centered activity seamlessly.
The underlying challenges of ubiquitous computing software, therefore come
in seven parts [6]:

— integration: Due to the inherent openness, components of ubicomp systems
changes constantly and it is thus impossible to have prior knowledge of
their ultimate size. They should be dynamically configured and integrated
on demand.

— self-adaptation: Some computing contexts of ubicomp vary physically — such
as device characteristics, resources and access methods [7]. Others vary log-
ically — such as personal preferences, current session state, and history of
interactions. This requires the capability of supporting self-adaptation.

— discovery: When a component enters an environment, mutual discovery takes
place between it and other available services and devices, and find out to
whom the interaction is appropriate.

— location-aware: Ubicomp systems are usually divided into environments with
boundaries, which often, but not necessarily, specified by their physical lo-
cation, such as homes, offices, or museums.

— interaction: In a ubiquitous system, components must spontaneously interact
with each other to make their resources and services accessible in changing
environments because they all vary unpredictably from moment to moment.

— robustness: Compared to wired distributed systems, ubiquitous systems are
supposed to face much more transient failures, especially those in wireless
networking. When failure is a common case, system designers should clearly
indicate which operations are failure-free or failure-prone.

— security: Security is so critical in open environments that no one can ignore
it. Our experiences also confirm that security issues, such as the protection of
components’ resources and privacy, trust and authentication, system avail-
ability, data confidentiality, and data integrity, should be carefully considered
at the stage of design.

32 Makoto Amamiya

3 Agent-Based Approach

Nowadays, software agent (or agent for short) has been advocated by many

researchers and software developers as a promising and innovative way to model,

design and implement complex distributed systems [8,9]. The key notion behind

this new paradigm is a self-directed behavioral structure [10]. In effect, it is a new

programming tool that emphasizes the idea of interaction, as well as the idea of
choice and options at the time of action, rather than at the time of programming.

On analogy with object-based concurrent programming (OBCP), our ap-

proach is based on agent-based concurrent programming (ABCP). Basically, agent-
based systems are more difficult to correctly design and implement than other

non-agent systems. This is mainly because agents are computational entities

that perceive their environment through sensors and act upon their environ-

ment through efforts. In this diagram, three aspects of an agent are identified.

— An agent has to have a repertoire of possible actions available to it which
constitute its ability to modify its environments.

— An agent has to have some interaction with the world around it and get
feedback about its choice, whether it is successful or not. Interaction can
take place indirectly through the environment (e.g., by carrying out an ac-
tion that modifies the environmental state) or directly (e.g., by exchanging
information with other agents) through a shared language.

— An agent has to have a continuous operating engine that persistently strives
for success without any need to account at the outset for all possible con-
ditions it will face or in what order it will face them. What programmers
provide to an agent is a goal or a utility function and a collection of building
blocks for getting there and, in some advanced cases, even a way to learn
something new that is needed.

3.1 Layered Architecture

In an instance of the idea that “the network and computer are everywhere,” agent
technology emphasizes the ability to reach out, discover and interact with others.

Table 1. Examples of logic at each layer

problem solving
application choice and options
self-learning
interaction pattern
social relationship

agent jame addressing (agent world)
security policy (agent world)
agent name resolution (network world)
agent message deliver
network

quality of service management
network security (network world)

Agent-Oriented Approach to Ubiquitous Computing 33

Such an emphasis raises a number of challenging issues that all are centered
around an elementary question of what, when and how to interact with whom.

Through our work on the KODAMA (Kyushu University Open & Distributed
Autonomous MultiAgent) project [11], we have established a separation principle
that mandates the separation of application-level logic from agent-level logic and
the separation of agent-level logic from network-level logic. Some examples of
logic at different layers are given in Table 1.

In accordance with the separation principle, a layered architecture has been
adopted. This layered architecture makes higher-level (i.e. application-level and
agent-level) logic to deal with the problem of what, when and with whom to
interact, while low-level (i.e. network-level) logic concentrates on the problem of
how to interact.

By detaching data exchange activities from agent programmes, it is possible
to build generic agent communication facilities in the network layer. This helps
improve productivity in several ways.

— First, agent programmers can focus on higher-level abstractions only, and
leave the low-level details of communication to network layer programmers.
They do not need to write special software to move data between each pos-
sible pair of agents.

— Second, agent development is not restricted to a particular architecture,
thus keeping the entire system flexible. Agents, for example, can remain
unchanged while the network layer are reconfigured or updated and vice
versa.

— Third, low-level logic handles agent communication traffic without under-
standing the applications that use it. The specification of the network layer
can be publicly available and it accommodates a wide variety of underlying
hardware, communication technologies and contents of agent communica-
tion.

It is important to note that both agent-layer logic and network-layer logic are
application independent. The main purpose of having these two levels, therefore,
is to integrate a set of common distribution services that forms a uniform de-
veloping platform upon which various applications can be efficiently built with
inherent support of cooperation.

Furthermore, a plug-and-play standard has been deployed to separate the
application-level logic from the agent-level logic within an agent. More precisely,
an agent is made up of a kernel unit, which encapsulates the common modules,
and an application unit, which encapsulates the application-dependent modules
[11]. In this way, the implementation aspects of data sharing, exchange and
management among agents are made transparent to application programmers.

On the other hand, the wired or wireless network itself is full of latencies,
congestion, overload and unforeseen failure. In the layered architecture, there
is a specific layer, we call it agent communication infrastructure (or agent in-
frastructure for short), on which agents running in different physical spaces can

34 Makoto Amamiya

Table 2. Layered architecture

level layer
application agent application unit
agent agent kernel unit
agent infrastructure (middleware)
network networking

Table 3. Agent/Infrastructure interface (registration and de-registration)

method time parameter return value
. ti t logical
register creation, agent logical name message queue
immigration (in agent layer) false
deletion, . .
remove . . agent logical name void
emigration

communicate with each other easily, freely and without concern about the inter-
connection issues. Actually, this is another separation between agent-level logic
and network-level logic.

In sum, from the highest layer to the lowest level, the layered architecture
consists of agent application unit layer, agent kernel unit layer, agent infrastruc-
ture layer and networking layer. The relations between the separation principle
and the layered architecture are summarized in Table 2.

3.2 Agent Layer

The agent layer stays on the top, which can be further divided into application
unit sub-layer and kernel unit sub-layer. Typically, all agents speak one or more
languages called agent communication language (ACL). ACL itself only spec-
ifies the format, or syntax, of the information being transfered. The meaning,
or semantics of the information on the other hand, is specified by application
logic. Such considerations are also reflected in our plug-and-play architecture
of agents. That is, the basic support of ACL, such as message validating and
message parsing is integrated into the kernel unit. On the other hand, message
contents and message interpretation are open to different application units. As a
consequence, once the kernel unit is finished, it can be used by all agents, whereas
various application units need to be developed to meet the exact requirements
of various applications.

Table 4. Agent/Infrastructure interface (agent message delivery)

method time parameter return value

put send message agent message void
get receive message void agent message

Agent-Oriented Approach to Ubiquitous Computing 35

However, agent interaction is more complex than interactions in conventional
models, such as client-server or publish-subscribe. This is because data is trans-
mitted among agents (sometimes users), regardless of whether a prior relation-
ship exists. At the time of design, for example, nobody knows how many agents
will be created, where agents will reside, or what agents will do. Rather, in a
practical, worldwide, distributed agent-based system, interaction may occur at
unpredictable times, for unpredictable reasons, between unpredictable compo-
nents [12].

To support the scenario of agent communication, all agents are usually logi-
cally organized and located into various agent communities, which in turn may
be linked together to form a unified agent society. As a consequence, an agent
system can be divided into a number of top-level communities and each one
may cover many agents or be partitioned into sub-communities. In this way, any
agent can be uniquely located and named by giving its community position. It
is also possible for agents to join two or more communities concurrently, so that
they can be found in different communities. Agent communities have a dynamic
membership because agents can join or quit from time to time. Social networks
of agents, as a whole, can develop in an evolutionary fashion.

3.3 Agent Infrastructure Layer

Next comes the agent infrastructure layer, which plays a vital role in connecting
the agent layer with the networking layer. Such connection is guaranteed and
realized by two well-defined interfaces, one between the agent layer and the agent
infrastructure layer, and the other between the agent infrastructure layer and
the networking layer.

Beyond physical interconnection, this layer provides additional services tailor-
made for agent communication over networks. Some examples of such services
include agent name resolution, agent message delivery, mobile computing sup-
port, quality of service management and information security. Additionally, this
layer absorbs the variety and complexity of communication processes, and make
the collection of agent systems appear to be a single large-scale and open system.

In practice, agents are self-contained entities that rely on the agent infras-
tructure layer to provide transparent support for on-line interactions. Once agent
messages are passed from agents to the agent infrastructure, they should be de-
livered to their destination without further interaction with agents. With the
relationship and interaction between the two layers clear, it is natural to define
the contents of their interface. Two examples are given in Table 3 and Table 4.

3.4 Networking Layer

The underlying layer below the agent infrastructure is the networking layer in
which the communication service is concretely realized. Currently, the TCP /TP
protocol suit is the de facto standard in the wired networks while wireless net-
working technologies include IEEE 802.11, bluetooth, infrared, etc.

36 Makoto Amamiya

In a layered system, each layer provides services to the layer above it and
serves as a client to the layer below it, and interfaces between adjacent layers
determine how layers will interact [13]. Usually, interfaces are well-defined so that
higher layers are hidden from lower ones. This approach has several desirable
properties.

— First, it supports designs based on increasing levels of abstraction.

— Second, it dramatically simplifies system enhancement and maintenance.
Changes to the function or interface of one layer, for example, affect at most
two other layers (below and above).

— Third, it supports component reuse. Whenever the interfaces are the same,
different implementations can be built and used interchangeably.

4 Conclusions

This paper addressed the importance of the agent-based approach to ubiquitous
computing, and gave a general introduction to an agent-based software architec-
ture. In particular, the discussion was focused on the layered architecture which
is configured with agent application unit layer, agent kernel unit layer, agent
infrastructure layer and networking layer.

We have conducted several work on applications (see [14,15,16,17]), and we
are convinced that agent-based approaches to information management are both
scalable and cost-effective for real-world ubiquitous applications. However, our
work is still relatively simple and has some limitations. Instead of in-house pro-
gram development, for example, a formal specification of agent roles and interac-
tion protocols is needed to close the gap between analysis phase and subsequent
development and verification phases. Another important issue for real-world ap-
plications is security management in message communication between agents.

References

1. M. Weiser. The computer for the 21st Century. Scientific American, Vol. 265, no.
3, pages 94-104, September 1991.

2. M. Fleck, M. Frid, T. Kindberg, E. O’Brien-Strain, R. Rajani, and M. Spasojevic.
From Informing to Remembering: Ubiquitous Systems in Interactive Museums.
IEEE Pervasive Computing, 1(2):13-21, April-June 2002.

3. V. Stanford. Using Pervasive Computing to Deliver Elder Care. IEEE Pervasive
Computing, 1(1):10-13, January—March 2002.

4. M. Beigl, H. W. Gellerson, and A. Schmidt. MediaCups: Experience with De-
sign and Use of Computer-Augmented Everyday Objects. Computer Networks,
35(4):401-409, March 2001.

5. Joseph M. Kahn, R. H. Katz, and Kristofer S. J. Pister. Mobile Networking for
Smart Dust. In Proc. of Int’l Conf. Mobile Computing and Networking, pages
271-278, ACM Press, 1999.

6. T. Kindberg, and A. Fox. System Software for Ubiquitous Computing. IEEE
Pervasive Computing, 1(1):70-79, January—March 2002.

10.

11.

12.

13.

14.

15.

16.

17.

Agent-Oriented Approach to Ubiquitous Computing 37

P. Bellavista, A. Corradi, and C. Stefanelli. The Ubiquitous Provisioning of Inter-
net Services to Portable Devices. IEEE Pervasive Computing, 1(3):81-87, July—
September 2002.

G. Weiss, editor. Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. MIT Press, Cambridge, USA, 2000.

F. Zambonelli, N. R. Jennings, A. Omicini, and M. Wooldridge. Agent-oriented
software engineering for Internet applications. In Coordination of Internet Agents,
pages 326-346. Springer-Verlag, New York, USA, 2001.

L. Gasser. Agents and concurrent objects. IEEE Concurrency, 6(4):74-77, 81,
October-December 1998. Interviewed by Jean-Pierre Briot.

G. Zhong, S. Amamiya, K. Takahashi, T. Mine, and M. Amamiya. The design and
implementation of KODAMA system. I[EICE Transactions on Information and
Systems, E85-D(4):pp. 637-646, April 2002.

N. R. Jennings. Agent-based computing: Promise and perils. In Proc. of Sixteenth
International Joint Conference on Artificial Intelligence, pp. 1429-1436, July 1999.
E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

B. Hodjat and M. Amamiya. Introducing the Adaptive Agent Oriented Software
Architecture and its Application in Natural Language User Interfaces. In The First
Workshop on Agent Oriented Sftware Engineering (AOSE-2000), Lecture Notes in
Computer Science vol. 1957, Springer-Verlag, pp.285-306, 2001.

T. Helmy, S. Amamiya and M. Amamiya. Collaborative Kodama Agents with
Automated Learning and Adapting for Personalized Web Searching. In Proceed-
ings of the Thirteenth Innovative Applications of Artificial Intelligence Conference
(IJCAI/TAAI-2001), Emerging Application, Technology, and Issue Paper, Seattle,
Washington, USA, pp. 65-72, 2001.

K. Takahashi, S. Amamiya, T. Iwao, G. Zhong, and M. Amamiya. An Agent-based
Framework for Ubiquitous Systems. In Proc. of the 2nd International Workshop
on Challenges in Open Agent Cities, pp. 4952, July. 2003.

T. Iwao, S. Amamiya, K. Takahashi, G. Zhong, T. Kainuma, L. Ji and
M. Amamiya. Information Notification Model with VPC on KODAMA in an Ubig-
uitous Computing Environment and its Experiment. In CIA2003, LNAI 2782, pp.
30-45, Aug. 2003.

Resource-Aware Programming*
Invited Paper

Walid Taha

Rice University, Houston, TX, USA
taha@rice.edu

Abstract. Traditional wisdom in programming language design sug-
gests that there is a trade-off between expressive power and static guar-
antees. We describe a novel schema for designing a class of languages
that we call Resource-aware Programming (RAP) languages. By taking
into account the natural distinction between the development platform
and the deployment platform for embedded software, RAP languages
can alleviate the need for drastic trade-offs between expressive power
and static guarantees. We describe our preliminary experience designing
and programming in a RAP language for hardware design, and give a
brief overview of directions for future work.

1 Introduction

Designers of embedded and real-time software must attend not only to functional
specifications, but also to a wider range of concerns, including resource consump-
tion and integration with the physical world. In current practice, the dominant
medium for programming is various dialects of C. This is a puzzling state of
affairs, given that: First, C is now over thirty years old, has many well-known
limitations, including several well-known safety problems, and has a limited set
of abstraction mechanisms; second, since then the programming languages com-
munity has produced new languages that address many of these safety problems,
and developed several powerful abstraction mechanisms. Today, there is pressing
need for addressing this issue. In particular, as new embedded hardware plat-
forms continue to flow into the embedded systems market, the need for effective
techniques for producing reliable software in a cost-effective manner becomes
more pressing.

Real, technical challenges have hampered the adoption of language innova-
tions in the embedded software domain. Possibly the most important reason is
that it often appears as if a choice has to be made between expressive power
and static guarantees. Expressive programming languages, often referred to as
high-level languages, generally offer powerful abstraction mechanisms like higher-
order functions, managed dynamic data structures, and general recursion. At the

* Supported by NSF ITR-0113569 “Putting Multi-stage Annotations to Work” and
Texas ATP 003604-0032-2003 “Advanced Languages Techniques for Device Drivers.”

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 38—43, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Resource-Aware Programming 39

same time, these languages provide little or no guarantees about resource uti-
lization. Because such languages tend to deprive the programmer of control over
resources that she must take full responsibility for, they are generally not well-
suited for building embedded applications. Resource-bounded languages, such
as state charts or synchronous languages, provide strong guarantees about the
runtime behavior of programs. Because such languages generally deprive the
programmer of constructs that allow her to write concise, structured, modular,
and reusable programs, an unsafe language that provides more expressive power
can be significantly more attractive in practice.

While there are several important innovations as well as ongoing efforts in
the programming languages community to offer better trade-offs between these
poles, an important insight has long been overlooked. Our key observation is that
this apparent need to choose between expressive power and static guarantees can
be often be avoided. Resource-aware Programming (RAP) languages are a class
of languages aimed at addressing the problems described above by:

1. Providing a highly expressive untyped substrate supporting state-of-the-art
abstraction mechanisms such as dynamic data-structures, modules, objects,
and higher-order functions. The role of this substrate is to provide a com-
mon, unified model of the semantics of the whole computation, starting from
what happens on the platform used to design the software, and extended to
what must take place on the embedded platform where the software must
ultimately operate. Because of their simpler reasoning principles and the
wealth of results on statically checking them, our studies tend to use func-
tional programming languages as untyped substrate [5]. In principle, these
ideas should be applicable to any programming language.

2. Allowing the programmer to express the stage distinction between compu-
tation on the development platform and computation on the deployment
platform. Expressing the stage distinction is, in principle, achieved by any
language that can support program generation or that has a macro-expansion
facility. But mechanisms based on strings or s-expressions would be insuffi-
cient, as they would interfere with the possibility of automatic static checking
of programs before they are generated.

3. Using static checking to ensure that computations intended for execution
on resource-bounded platforms are indeed resource-bounded. In fact, the
ability to perform this kind of static checking is the most novel feature of
RAP languages. To get an appreciation for the importance and the challenge
involved in doing this, consider the analogous situation in the context of C:
It would correspond to statically checking the safety and resource usage of
C programs before they are pre-processed using configuration parameters for
various target platforms.

The combination of these three ingredients allows the programmer to use so-
phisticated abstraction mechanisms in programs that are statically guaranteed
to generate only resource-bounded programs. We expect that languages with
these features can provide a solid bridge between traditional software engineer-

40 Walid Taha

ing techniques on one side, and the specific demands of the embedded software
domain on the other.

For general-purpose programming, the idea of statically checked generators
has been studied extensively, largely in the context of multi-stage programming
[3]. For general-purpose software, statically checked generators provide a mech-
anism for avoiding the runtime overhead typically associated with abstraction
mechanisms such as functions and objects. For embedded software, the primary
role of such generators will be to allow powerful abstraction mechanism to co-
exist with statically checkable properties on resource usage.

To date, our preliminary efforts to explore the idea of RAP languages have
consisted of two main efforts: First, we have shown how a heap-bounded pro-
gramming language can be extended with higher-order features [4]. Our expe-
rience in this study suggests that the static checking problems that arise in
designing a RAP language can be non-trivial but nevertheless tractable. Second,
we have shown how to use a two-stage language to concisely express Cooley and
Tukey’s recurrence that defines the Fast Fourier Transform (FFT) [1,2]. These
definitions are essentially program generators which can be used to generate
exactly the butterfly circuit for FFT for any size 2". Our experience with this
effort is discussed in the following section.

2 A RAP Hardware Description Language

RAP languages can play an important role in hardware design because, except for
very high-end applications, verifying the correctness of hardware systems can be
prohibitively expensive. In contrast, software languages are primarily concerned
with issues of expressive power, safety, clarity, and maintainability. Software
languages can provide abstraction mechanisms, which make designs more main-
tainable and reusable. They can also keep programs close to the mathematical
definitions of the algorithms they implement, which helps with ensuring correct-
ness. Hardware description languages such as VHDL and Verilog provide only
limited support for such abstraction mechanisms. A RAP language for hardware
circuits would allow us to capture the schema (or generator) for a family of cir-
cuits in an executable form. With such a schema, rather than having to verify
circuits on a case-by-case basis, a unified substrate for the full process would
enable the verification of a whole family of circuits en bloc.

A basic method for building a circuit schema in a RAP language has been
proposed [1]. In addition to allowing us to implement a schema for FFT cir-
cuits concisely, following this systematic approach also yielded new insights into
the relation between the FFTW and Split-radix implementations [2]. In this
method, we start with naively-generated circuits that are correct by construc-
tion. In the case of FFT, this becomes evident because the schema is almost a
literal transliteration of a textbook definition of the recurrence defining FFT.
Then, more efficient circuits are correct as long as they are produced by system-
atic, verified improvements on a correct but naive generator. Note that these
improvements can be carried out by improvements on the schema. Note also

Resource-Aware Programming 41

that correctness is not achieved by verifying a naive generator and verifying a
posteriori (post-generation) optimizations that fix up the result of the generator.
This means that we replace the problem of verifying transformations to one of
verifying modifications to one program: the generator.

2.1 Manifest Interfaces, Composition and Static Checking

As noted briefly in the introduction, statically checking generators can be hard
to achieve using traditional type systems. For example, if strings, algebraic
datatypes, parse trees, or even graphs are used to represent the generated pro-
gram, they would only allow us to express a manifest interface with a type such
as: gen_fft : int -> circuit, where circuit is the type we choose to rep-
resent circuits with. The static type int -> circuit says that gen_fft is a
function that can only take an integer and can only produce a circuit. As soon
as we start composing generators — for example, if we want to build a circuit
that computes the FFT, performs a multiplication, and then computes the in-
verse FFT — we run into a problem: The type circuit does not provide any
static information or guarantees about the consistency or well-formedness of the
composite circuit. This is an instance of a general need for manifest interfaces
that would provide us with enough static information to allow us to guarantee
some degree of well-formedness on the result of the composite program. To il-
lustrate, assume we are given two trivial generators which take no inputs and
produce an AND-gate and an inverter:

and : circuit
inv : circuit

A meaningless composition arises if we write let bad = inv --> and, where
the connect operator ——> is an infix operator that has the type

circuit \times circuit -> circuit

and which wires the output of its first circuit to the input of the second circuit.
The problem is that the second circuit does not have just one input but two, and
the type system does not prevent this error: All circuits just have type circuit.

It is generally desirable that the circuit type be as expressive as possible,
but at the same time only express values that are circuit-realizable. For example,
the programmer might want to use abstractions such as lists (or any other dy-
namic data structure) in describing the circuit, but will need to know as early as
possible in the development process that these uses can be realized using finite
memory [4].

2.2 Better Static Checking

Rather than using one concrete type to represent circuits, a RAP language pro-
vides an abstract datatype parameterized by information about the generated
circuit. The type of the two trivial generators above would be:

42 Walid Taha

and : (bool X bool -> bool) circuit
inv : (bool -> bool) circuit

The type of the connect operator ——> would be refined from being
circuit X circuit -> circuit

to being

(a => () circuit x (B -> 7) circuit -> (a ->) circuit

where «, (3, and are generic type variables that must always be instantiated
consistently. With this extra information, the type system can reject the above
bad declaration, because the type variable 3 cannot be instantiated to both the
output of inv (which is bool) and the input of and (which is bool xbool). Note
that the type of this function is similar to the type of the standard mathematical
function composition operation of type (a => B) x (8 ->) -> (a -> 7).

2.3 Safe Implementations of Domain-Specific Optimization

To ensure that generated programs are well-typed and resource-bounded be-
fore they are generated, the circuit type constructor in a RAP language must
remain abstract, meaning, that there is no mechanism within the language to
allow the programmer to de-construct code once it has been generated. Provid-
ing constructs for traversing values of this type jeopardizes the soundness and
decidability of static typing, and complicates reasoning about the correctness
of programs written in these languages. At the same time, not being able to
look inside the generated circuit descriptions means that a posteriori optimiza-
tions cannot be expressed within the language. While such optimizations can
still be implemented as stand-alone source-to-source transformations outside the
language, doing so invalidates the safety and resource-boundedness guarantees.

We distinguish two forms of a posteriori optimizations: Generic ones that
are independent of the application, and ones that are specific to the application.
Generic optimizations are generally well-tested and are less likely to invalidate
the guarantees provided by the RAP setting. Such optimizations can be provided
as special extensions of the language as long as they have been proven to preserve
all guarantees. But domain-specific optimizations written by the programmer for
a particular application are less likely to have been tested as extensively, and are
therefore more problematic. At the same time, systems such as FFTW make a
strong case for the practical importance of such domain-specific optimizations.

We were able to show that abstract interpretation on program generators
can be used to avoid the need for a posteriori optimization [1]. This allows us
to generate the desired circuits without losing the guarantees provided by RAP
languages. The benefits of the proposed technique extend to the untyped setting,
as it avoids the generation of large circuits in the first place, thus reducing the
overall runtime needed to generate acceptable circuits. From the verification
point of view, this approach replaces the problem of verifying a source-to-source
transformation to that of verifying the correctness of a finite set of optimizations
on one specific program: the generator.

Resource-Aware Programming 43

3 Key Directions for RAP Research

The design space for RAP languages is huge, primarily because there are numer-
ous notions of resource-boundedness and languages that can be considered for
the deployment platform, as well as the numerous abstraction mechanisms that
may be desirable on the development platform. A systematic survey is therefore
beyond the scope of this paper. However, there are a number of broad directions
that we expect to be important to progress in this area:

— Extensions of traditional static analysis techniques (including type systems)
to work in a generative setting. We expect our own efforts to focus on analysis
that have direct applications in challenging domains, such as device drivers,
control systems, and hardware description languages.

— Better understanding of the process of writing RAP programs, including
further study of the use of program structuring mechanisms such as monads,
as well as the use of abstract interpretation as a programming technique for
implementing domain specific optimizations.

— Support for certification. In particular, while previous work on RAP lan-
guages have so far focused on static guarantees, the execution model on the
development platform can be naturally extended to preserve the proof behind
this guarantee, and this proof can then be produced along side the deploy-
ment platform computation. Such a certificate can be verified independently
of the generation process, much in the same way as proof-carrying-code is
used to verify the safety of software received from an untrusted source.

Acknowledgment: Anthony Castanares, Emir Pasali¢ and Kedar Swadi have
kindly read and commented on drafts of this paper.

References

1. Oleg Kiselyov, Kedar Swadi, and Walid Taha. A methodology for generating ver-
ified combinatorial circuits. In the International Workshop on Embedded Software
(EMSOFT ’04), Lecture Notes in Computer Science, Pisa, Italy, 2004. ACM.

2. Oleg Kiselyov and Walid Taha. Relating FFTW and Split-Radix. In Proceedings of
the International Conference on Embedded Software and Systems, 2004. Appears in
this volume.

3. Walid Taha. A gentle introduction to multi-stage programming. In Don Batory,
Charles Consel, Christian Lengauer, and Martin Odersky, editors, Domain-specific
Program Generation, LNCS. 2004.

4. Walid Taha, Stephan Ellner, and Hongwei Xi. Generating Imperative, Heap-
Bounded Programs in a Functional Setting. In Proceedings of the Third International
Conference on Embedded Software, Philadelphia, PA, October 2003.

5. Walid Taha, Paul Hudak, and Zhanyong Wan. Directions in functional programming
for real(-time) applications. In the International Workshop on Embedded Software
(EMSOFT ’01), volume 2221 of Lecture Notes in Computer Science, pages 185-203,
Lake Tahoe, 2001. Springer-Verlag.

In-House Tools for Low-Power Embedded Systems

Naehyuck Chang

School of CSE, Seoul National University, Korea
naehyuck@snu.ac.kr

Abstract. Power consumption emerged as a distinct axis for system optimiza-
tion especially for battery operated applications. Most of all, circuit and device
level low-power design has leveraged battery-operated embedded systems over
dozens of years. As of today, high-level or system-level power reduction is be-
lieved for another significant power saving opportunity. Nevertheless, existing
power-related tools are not familiar with system and software designers, who
have to pay more attention to power consumption than other optimization fac-
tors.

In this paper, we introduce a series of power measurement and estimation tools
that differentiate the quality and effectiveness of high-level power reduction prac-
tices for embedded systems. To fulfill necessary requirement for high-level power
reduction, we have developed a cycle-accurate energy measurement technique
using switched capacitors. This new technique enabled us to develop innovative
power measurement tools for memory devices, FPGAs and CPUs. This individual
power measurement tools contribute quality energy characterization of compo-
nents, and eventually come up with an integrated system-level power estimation
tool: SEE (Seoul National University Energy Explorer, http://see.snu.ac.kr).

1 Introduction

Together with speed and cost, energy consumption is now a primary performance met-
ric for battery-operated embedded systems. A well-designed embedded system should
be globally optimized to the target application, from user interface right through to de-
vice technology. This kind of global optimization over many layers of software and
hardware is challenging, due to the need for extensive inter-disciplinary collaborations.
Energy estimation is a routine job in low-level hardware design. Unfortunately, at this
stage, the specific application of most hardware components is not known, and de-
signers cannot perform an application-specific optimization. Another opportunity for
optimization is given to software and system designers; but they are often unfamiliar
with hardware-related energy issues. This problem is compounded because traditional
energy estimation tools like SPICE and PowerMill [1] are designed for use by low-
level hardware engineers, which can discourage designers working at a higher level to
attempt global optimization.

With the increasing trend towards low-power design, a higher-fidelity, system-level
energy estimation environment is demanded. In this paper, we propose a series of energy
measurement, estimation and exploration tools, which overcome limitations of existing
tools.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 44-58, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

In-House Tools for Low-Power Embedded Systems 45

2 Related Work

A simple approach is to analyze actual measurements from a hardware platform. Tools
like Powerscope [2] and Itsy [3] use computer-controlled multi-meters or A/D convert-
ers to measure energy consumption. Other studies adopt software energy estimation
methodology, which has been an important aspect of embedded systems design since it
was first introduced by [4]. While the early literature [4] focuses on the possibility of
software optimization, recently proposed tools extend the methodology to support high-
level hardware optimization [5,6,7,8]. JouleTrack [5] is a publicly available web-based
software energy profiling tool for processor cores. SimplePower [6] and Wattch [7]
estimate the power consumption of processors including the on-chip cache, on-chip
bus and on-chip SRAM, but still excluding off-chip subsystem. JouleTrack and sim-
ilar systems [5,6,7] are good for architecture-level analysis since they only consider
processors. On the other hand, a power estimation framework [8] presents a system-
level energy estimation that includes a processor, L1/L2 cache, off-chip memory, and
DC-DC converter. However, energy models for off-chip memory devices are too simple
to support a cycle-level analysis. A simple power characterization is taken and devices
are assumed to have only two modes: active and idle. Consequently, most high-level
energy estimators are not incapable of cycle-accurate analysis of each important com-
ponent, since energy consumption is averaged out over the entire execution time, which
means that they are not suitable for high-level power reduction but for high-level power
estimation.

3 Power Characterization for High-Level Power Reduction

High-level design such as RTL and behavior levels, overcome explosive complexity by
proper abstraction that hides low-level design details. In that sense, high-level power
saving may not have to consider microscopic power changes. This is true for high-
level power estimation. Suppose we have three different characterization schemes of
gas consumption of a vehicle as shown in Table 1. All the three different characteriza-

Table 1. Characterization of gas consumption of a vehicle (G, S,1,R,n,c: gas consump-
tion, vehicle speed, idle gas consumption, engine restarting cost, number of engine
starts, and a constant, respectively).

Characterization 1 Linear mode G=cS
Characterization 2~ Non linear model G=cS+1
Characterization 3 Including restarting cost G = ¢S+ 1+ nR

tion schemes are useful for high-level gas consumption estimation. Of course, Charac-
terization 3 is more accurate than Characterization 2, and Characterization 2 is better
than Characterization 1. However, if a vehicle stops only a few minutes and the engine
is never turned off during the entire trip, all the characterization schemes may show sim-
ilar accuracy. Now, suppose we need to devise a gas consumption saving scheme that

46 Naehyuck Chang

is useful when a vehicle temporary stops at a parking space. Characterization 1 shows
that the vehicle does not consume any gas when the speed is zero, i.e. the vehicle stops.
Thus, there is even no need to devise such a gas consumption saving technique. Char-
acterization 2 shows that / is still consumed while the vehicle stops. Thus, the best way
to save gas consumption from Characterization 2 is turning off the engine whenever the
vehicle stops even for just a second. Characterization 3 considers the engine restarting
cost, and thus we better keep the engine running during a short stop, which is a practi-
cal solution while previous ones are not applicable to real situation. Consequently, for
the derivation of a power saving policy, we must be extremely careful in abstraction of
low-level behaviors even for high-level approaches, unlike in case of high-level power
estimation.

4 Energy State Machine

In this paper, we introduce an energy state machine to describe accurate energy con-
sumption behavior of digital systems where each node and each transition describe
the static power and the dynamic energy, respectively. A finite state machine M is four-
tuple (S,%,8,s9) where S = (s, ...,s,) is a set of finite states, X is a finite input alphabet,
0:X xS — Sis a state transition function, and sq is the initial state. Each arc, that de-
notes state transition 9, is labeled with a finite set of state transitions T = (fg, ..., fn)-
Fig.1 illustrates the variation of power supply current iz; in asynchronous and syn-
chronous devices. It also justifies the static and the dynamic energy association of the
energy state machine. Asynchronous devices consume the dynamic energy when strobe

50 to §1 s2 to s2
dynamic dynamic

A So to s sptos; ; A 50 t0 80 51 t0 52

tad dynamic dynamic “ dynamic l dynamic l

51
leakage 2 S0
5o leakage leakage N\ 52
leakage T leakage
— — > F——— — ﬁ\ i >
time 50 o 52 clock

leakage leakage leakage

(a) igq of an asynchronous device (b) iyq of a synchronous device

Fig. 1. iy, variation due to state change.

signals are issued. The strobe signal changes the device state leading to variation of the
static energy consumption. Synchronous devices consume the dynamic energy at each
clock edge rather than logical state change.

Definition 1. Energy state machine Il is three-tuple (M, ®,Z) where M is a finite state
machine, ® = (0o, ...,0,) is leakage energy associated with state S = (sg,...,sn), and
E = (&o,...,Em) is the dynamic energy associated with transition T = (ty,...,t,).

In-House Tools for Low-Power Embedded Systems 47

(a) Asynchronous energy state (b) Synchronous energy state

machine machine

Fig. 2. Energy state machine.

5 Cycle-Accurate Energy Measurement

To complete the energy state machine, we have to annotate the energy values ® and
E. At first, we need to distinguish energy consumption behavior of target devices be-
fore deciding a characterization method. While synchronous energy FSM is ideal for
high-fidelity characterization of energy consumption for synchronous digital systems,
a special technique is required to annotate energy values for transitions and states. As
shown in Fig. 1, dynamic energy consumption represented by the iy, current only occurs
during the propagation time, which is usually a matter of nanoseconds. The propagation
delay is not determined by the operating frequency but by the physical design, and thus
the power spectrum of iy reaches well over several hundred MHz, regardless of the
operating frequency. This seriously discourages us from trying to distinguish iz; from
the cycle-by-cycle dynamic energy using conventional equipment such as an ammeter
[9].

Since cycle-accurate energy measurement is essential to annotate a synchronous en-
ergy FSM, we have developed a special technique to handle the cycle-by-cycle energy
measurement of high-speed digital systems [9]. Fig. 3 shows a schematic diagram of
the measurement setup. We transfer charges to the capacitor and operate the target de-
vice using these charges. By simply measuring the initial and the final voltage at the
capacitor, we can derive the exact energy consumed by the target device.

There are on-chip bypass capacitors for mitigating power supply fluctuation in most
modern devices, which make energy calculations complex. We will denote this capaci-
tance by Cp in Fig. 3: its value is determined by the charge-sharing rule [10]. In addition,
modern high-performance devices are not generally free from leakage current. We add
Rs into the device model to represent the leakage current. While most system-level en-
ergy simulators are primarily concerned about Cy, we use fairly realistic energy models
for both measurement and characterization.

Fig. 4 shows a waveform captured by a DSO for demonstration purposes, using
high-speed, pipelined analog-to-digital converters. Depending on the design, the volt-
age drop is variable. We minimize the quantization error of the analog-to-digital

48 Naehyuck Chang

On-chip bypass Load capacitance
capacitor (CMOS gates)

Fig. 3. Cycle-accurate energy measurement using switched capacitors.

[£003,07,05 16:45:149 |————F——1 1o« Normal
1332

stopped 5BEMS.S §oen
Clock
W, o il
: : : : : 10.0 Usdiv
SW, ; { : : s i : " : : . oc Full
Ver(i——)
CH4 16:1
16.0 Ursdiv
nc Full
Ve (i-)
Ve (i+)
Edge CH4 _f
Auto
Ver(i++) 1.7 U

F) Offset | Bandwidth

oR:L Full

Voltage drop Voltage drop Voltage drop
swii) (i) due to Cp +Rg due to Rg due to Cp

Fig. 4. Voltage across the two switched capacitors in Fig. 3.

converter by adjusting the capacitance of Cs; and Cs; to correspond to the full-scale
voltage swing of the analog-to-digital converters. This explains why the measurement
tool must be customized to a target device, which is one of the motivations for a web-
based tool.

Dynamic energy consumption causes the major voltage drop that appears on the
switched capacitors. The slope of the continuous voltage drop corresponds to the leak-
age power consumption. The voltage across the two capacitors, Cs; and Cs> in Fig. 3, is

In-House Tools for Low-Power Embedded Systems 49

denoted by V1 (+) and Vea () respectively. The argument, (-), denotes the four different
states of the capacitor supplying power (Cs;) to the target circuit. These are (——), (—),
(+) and (4++) which denote fully charged, connected to the on-chip bypass capaci-
tor Cp, discharged by leakage energy consumption, and discharged by dynamic energy
consumption. At the same time, Cs» is discharged during (——) and remains in a fully
charged state during (—), (4) and (++) [10].

The static or leakage energy consumption is denoted by the slope of the waveform
[11]. Let us denote the static energy of the i-th clock cycle by E(i):

Ve (i—)* — Vc1(i+)2.

1
E (i) = 2(Cs1 +Cs) Ar

ey
We eliminate Ar by converting the static power to energy consumption over the clock
period 1. The dynamic energy of i-th clock cycle, E,(i), is denoted by

L o1 +Co) (Ver ()2 = Ver i+ +)7). @

Eq(i) =)

Finally, the total energy consumption is given as

n

E =Y (Eq(i)+1Es(i)) = > Eq(i) + nE. 3)

i=0 i=0

It is not easy to determine the exact time that delimits the period for the dynamic
energy, i.e., Vc1(i + +). Improper division into dynamic and static energy may cause
severe errors if there are major changes in clock frequency. To avoid this, we measure
the cycle-accurate energy at various clock frequencies. We cross-check the dynamic
energy values measured at different clock frequencies and thus confirm the dynamic
energy values [10].

6 Energy Measurement and Characterization of Memory Devices

As an example of memory device energy characterization, we introduce an SDRAM
device, which are popular in everything from hand-held devices to desk-top computers.
There are various operation methods, but we choose two major operations: burst-mode
access and auto refresh (Fig. 5).

Table 2 shows Z of the SDRAM. Let fi(-) be the number of 1s in -. Among Z, the
CD is the most dominant component. Table 3 shows the CD energy of K4S5280832B-
TCIL which are from a major vendor, Samsung. This has 128Mbit capacity with 4M
address space (12 x 10) x 8bit data x 4 banks.

7 Energy Characterization of Off-Chip Buses

The energy consumption of synchronous off-chip buses is denoted by the energy state
machines shown in Fig. 6. The driver specification is an LVT (Low-voltage TTL or
BiCMOS, 3.3V) bus with 2.7pF transmission line capacitance. Low-voltage CMOS

50 Naehyuck Chang

bank active
& row address

precharge

read (write) &
column address

precharge active page
mode

€io &

read (write) &
column address

Fig. 5. Energy state machine of an SDRAM.

and other bus drivers such as SSTL (Stub-Series Termination Logic) will be provided
in future [12]. To prevent the data bus from floating during a high-impedance state,
bus-hold logic is selectable. Passive pull-up is not suitable for quality systems due to
excessive static current, but we plan to include it anyhow. Bus-invert coding by the
transition activities or by the logic-low state [12] can also be selected.

The set of states (sp,s1) in Fig. 6 (a) represents driven-low and driven-high states
respectively. Fig. 6 (b) includes s, and s3 to represent bus hold states. The power con-
sumption of LVT and GTL+ bus and bus drivers have already been studied [12]. We
compose an energy state machine for an LVT bus (these are commonly used high-
performance memory buses for embedded systems) by converting the power values to
cycle-accurate energy values. The bus hold logic acts like a small capacitance (typi-
cally 0.5pF) and consumes negligible DC current. We control the output enable no later
than the input change in order to keep the rise and fall time constants. Thus no state
change, such as so) — s3 — s1, is allowed. This guarantees that e4 = es = e = ¢7 = 0.
In addition, p» = p3 =0.

When we composed a 2-inch bi-directional bus using a Fairchild 74LVT245, with
eg = e; = 0.55, e = e3 =0, pg = 0.00537, and p; = O for Fig. 6 (a). The units are

In-House Tools for Low-Power Embedded Systems

Table 2. Dynamic energy consumption of SDRAM, = (nJ/bit).

) Energy Cost
&_,07 O +Crafi (Ar)
Ci=6=¢& CH

&_)3 _ ‘:8 read: Ocqar +Cyo f1 (DO) +cear f1 (Ac)
write: Ocqy + Cdifl (DO) + Ccawfl (Ac)

_ _ read: ecarb + Cdofl (D,)

“=8=% write: Ocqyp + cqif1(Di)
Eo=E&10 Opr
En=%&n ©;
<t:>l3‘F'-'“i><t:>ln G)rf

Table 3. Common Mode Dynamic Energy, © (nJ/bit).

Symbol Description Value
O row active 1.500
Ocar column active (read) 0.800

Ocqrp column active (read, burst) 0.186
Ocaw column active (write) 0.522
Ocawp column active (write, burst) 0.033
Opr precharge 0.515
O,r refresh 4941
0, active 0.021
CF idle 0.018

8 Energy Measurement Tool for FPGAs

Table 4. Coefficient of = (nJ/bit).

Coefficient Description Value
Cra row address input 0.192
Cdo data output (read) 0.097
Cdi data input (write) 0.103

Cear column address input to read 0.145
Ceaw column address input to write 0.161

51

nJ/bit, and 7 is the clock period of the synchronous bus in nS. These energy values are
applied to address and data buses by using bus models described previously [13].

As the gate counts of FPGAs increase, they become more widely used for complex SoC
design, of the final product as well as for rapid prototyping before taping out. As the
power consumption of FPGAs can represent a significant proportion of that of the whole
system, their power consumption behavior must be included in the primary characteris-
tics that are to be taken into account in system-wide power reduction. Chip vendors are

52 Naehyuck Chang

Table 5. Static energy consumption, ® (nJ/bit).

(o} Value
b0 = 03 = d9 = 010 = ¢, 0.00167
0 0.00517
[0)) 0.0049t
o read 0.0017t
3 write 0.00871
o read 0.01457
4=05=0 e 00073t
7 0.0016t
@ ° a e 0] e3
el a o a
(a) asynchronous bus (b) synchronous bus

(c) synchronous bus with bus hold

Fig. 6. Energy state machine of synchronous off-chip buses.

supposed to provide power consumption information for their products on the device
data sheets. However, it is not possible for vendors to specify the exact power consump-
tion of an FPGA design because of the dynamic power consumption. The device type,
operating temperature and process variations largely determine the static power, which
is fixed by the vendor during manufacture. In FPGAs, the main cause of static power
dissipation is leakage. On the other hand, dynamic power consumption is completely
design-dependent, and is determined by many factors including resource utilization and
low-level features such as logic partition, mapping, placement and routing. The dy-
namic power consumption is also affected by the system-level behavior of the FPGA as
it interacts with other devices, which is in turn determined by the microprocessor and
application programs. High-fidelity power estimation must take all these factors into
account.

The measurement circuit shown in Fig. 3 generates enormous data since it captures
the energy values every 20ns. Thus computer controlled measurement system is manda-
tory for practical use of the measurement circuit. We have developed an in-house energy
measurement tool for FPGAs. The tool is fully integrated with an automatic data acqui-
sition system consisting of pipelined A/D converters, a vector generator, a host interface

In-House Tools for Low-Power Embedded Systems 53

through USB 2.0 communication channel and PC-based control software. Table 6 sum-
marizes the specification of the in-house tool.

Table 6. Specification of the in-house measurement system.

Target FPGA: Xilinx Virtex-II XC2V1000FG456

and Spratan-II XC2S50TQ144

Target control FPGA: Xilinx Spartan-II XC2S150FG456
Data acquisition FPGA: Xilinx Spartan-II XC2S150FG456
Vector and configuration memory: Samsung SRAM 1MByte
Data acquisition memory: Samsung SRAM 1MByte

ADC resolution: 10 Bit ADC @50MS/s

Data transfer method: USB 2.0 communication

Fig.7. SECF (SNU Energy Characterizer for FPGAs).

We have developed two different versions of tools. The first version is equipped
with a Spartan-1I device of small capacity (50K gates). Recently, we upgraded the target
FPGA to a high-density Virtex-II device (1M gates). This requires replacement of the
switch device to accommodate high power supply current. Fig. 7 shows a photograph
of the tool. The tool has many convenient features such as bit-stream download without
the Xilinx XChecker or JTAG cables, which simplifies the measurement process and
enhances to ability to handle complex and repetitive measurements.

54 Naehyuck Chang

Table 7. Energy consumption for FIR filters (4 taps, dynamic: nJ/clock, static: mW,
device: XC2V1000FG456).

XPower Multimeter Our tool
Architecture Dynamic . Dynamic . Dynamic .
Ave. Max. SUC Ave Max, SUC Aye Max, Static
Directform 8.61 NA 150 2.39 NA 14.44 2.88 3.73 14.63
Transposed form 5.47 NA 150 1.63 NA 14.59 1.67 2.83 14.82
Direct form 14.53 NA 150 440 NA 15.32 4.29 5.67 15.55
Transposed form 11.58 NA 150 3.91 NA 15.46 3.94 5.08 15.50

Digital filters such as the IIR and FIR filters are widely used in signal processing.
Various architectures have been proposed to achieve high performance, small size and
low power. We measured and compared the energy consumption for FIR filters with
different architectures. Table 7 shows energy consumption of 4 types of FIR filters.
We targeted TCS (Two’s Complement System) as a traditional architecture and RNS
(Residue Number System) as an advanced architecture. Generally, an RNS architecture
is known to consume less power when the number of taps is greater than n, due to
the extra logic needed for binary to RNS converters and vice versa. Since the energy
consumption is linearly proportional to the number of taps, we could estimate the energy
consumption of an FIR filter with larger n through repeated experiments, and on this
basis the minimum number of taps turned out to be 18. We were also able to confirm that
transposed forms are superior to directed forms, both for TCS and RNS architectures.
As described in the previous experiment, XPower produces higher estimates, for similar
reasons.

9 Energy Measurement Tool for a RISC Processor

The Seoul National University energy scanner (SES) is a highly integrated, energy mon-
itoring tool for ARM7TDMI RISC processors that collects power consumption data in
a cycle-by-cycle resolution and associates the collected power data with C program
and assembly language source code. SES does not require any additional measurement
equipment because the power measurement circuitry is embedded in its board. By pre-
senting energy-monitoring results at the C source or assembly language levels using
the GNU project debugger (GDB)-like user interface, SES helps users identify poten-
tial energy hot spots in embedded programs. The current version of SES works for
ARMT7TDMI-processor-based embedded systems. However, the proposed power mea-
surement technique and its overall energy-monitoring methodology are both platform
independent.

SES has three logical modules: energy estimation, energy analysis, and user in-
terface. The energy estimation module consists of the energy measurement board and
the memory energy estimator. The board is a peripheral component interconnect (PCI)
bus expansion card that uses a real-time profile acquisition module to collect a tar-
get application’s cycle-accurate system traces. The PCI local-bus interface transfers the
collected system traces to the host PC, which runs a Linux operating system. The en-

In-House Tools for Low-Power Embedded Systems 55

Program ARM7TDMI ARM7TDMI Measurement ~ Profile
memory controller core circuit acquisition
module

PCI Profile Acquisition
controller controller memory

Fig.8. SES (SNU Energy Scanner).

ergy measurement board includes the ARM7TDMI processor core with its controller,
profile acquisition module, program memory, and PCI controller, as Fig. 8 shows. The
profile acquisition module consists of the cycle-accurate energy measurement circuit,
acquisition memory, and profile controller. The energy measurement board works as
an ARM7TDMI emulator equipped with the cycle-accurate energy measurement cir-
cuit. A system trace collected from the board includes a cycle-level energy trace of the
processor core and a cycle-level memory trace. The memory energy estimator running
on the host PC is a software memory simulator with cycle-accurate energy models for
various caches, memory buses, and memory devices. The measurement board transfers
the memory traces as inputs to the memory energy estimator and the estimator produces
the cycle-level energy profile of the off-chip memory system and cache memory. The
energy analysis module matches the cycle-level energy profile of the target processor
and memory system to the program’s source code. The module associates the energy
profile with the source code at three different levels: C source, assembly language, and
C function.

10 Integrated Energy Estimation Tool

SNU Energy Explorer (SEE) is an in-house system-level energy exploration tool that
executes real application software on a testbench based on SES [14] With the increasing
trend towards low-power design, a higher-fidelity, system-level energy estimation envi-
ronment is demanded. In this paper, we propose a web-based energy exploration tool,
SEE Web [15], which overcomes limitations of existing tools. For cycle-accurate energy

56 Naehyuck Chang

estimation, a FSM (Finite-State Machine) model that isolates dynamic and leakage en-
ergy consumption has been developed with the aid of a cycle-accurate measurement
technique [13], [11]. Additionally, the ISS (Instruction Set Simulator) is built in hard-
ware to increase the simulation speed, and the tool is now available to the public on
the Web. To achieve a wider design space, SEE Web leaves many things available to be
configured by users. Some of the configurable parameters are the processor clock fre-
quency, cache organization, and the SDRAM control policy. Although SEE is a useful
tool, it has serious limitations for open use because it includes custom hardware. SEE
Web has overcome this limitation through web technology, providing a high-fidelity
energy estimation environment to any Internet user.

Switched
capacitor

User
profiles

Architecture
configuration

SDRAM/
Flash
controller Program
upload

Off-chip
memory

bus Trace

formatter

Fig. 9. SEE Web (SNU Energy Explorer Web).

SEE Web is expandable, and a new IP can be added in the form of a behavioral-
level C code function. Such a function will include an energy consumption model at the
clock-cycle level, in the form of an energy FSM; this is a distinct feature of our tool and

In-House Tools for Low-Power Embedded Systems 57

enables design space exploration with complete freedom. Fig. 9 shows the architecture
of SEE Web. A typical embedded system composed of a CPU, cache, off-chip bus,
SDRAM controller and SDRAM is connected to a web server through the simulation
manager. Users can configure the system architecture, upload a program to simulate,
and see the simulation result through the web interface.

11 Conclusions

We have presented a high-fidelity energy exploration tool aimed at over-layer energy
optimization of embedded systems. System components are modeled as finite-state ma-
chines, associating transitions with dynamic energy and states with leakage power. The
superior modeling ability of the energy state machine enables precise energy estimation
while providing a fast and user-friendly environment for system designers who are not
familiar with device technologies. The series of energy measurement and estimation
tools are easy and free energy exploration environment which encourages users without
detailed knowledge to perform a system-level energy optimization. Among them, SEE
Web is the publicly promoted version of our accurate in-house energy estimation tool
SEE and is now available on the web at http://see.snu.ac.kr. Our tool development is an
active project and will be regularly maintained and upgraded.

References

1. C. X. Huang, B. Zhang, A.-C. Deng, and B. Swirski, “The design and implementation of
powermill,” in Proceedings of International Workshop on Low Power Design, pp. 105-110,
Apr. 1995.

2. J. Flinn and M. Satyanarayanan, “Powerscope: a tool for profiling the energy usage of mobile
applications,” in Proceedings of the Second IEEE Workshop on Mobile Computing Systems
and Applications, pp. 2-10, Feb. 1999.

3. W. R. Hamburgen, D. A. Wallach, M. A. Viredaz, L. S. Brakmo, C. A. Waldspurger, J. F.
Bartlett, T. Mann, and K. I. Farkas, “Itsy: Stretching the bounds of mobile computing,” IEEE
Computer, vol. 34, pp. 28-37, Apr. 2001.

4. V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded software: A first step to-
wards software power minimization,” IEEE Tranactions on Very Large Scale Integration
(VLSI) Systems, vol. 2, pp. 437-445, Dec. 1994.

5. A.Sinha and A. Chandrakasan, “Jouletrack - a web based tool for software energy profiling,”
in Proceedings of ACM/IEEE Design Automation Conference, pp. 220-225, June 2001.

6. W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, “The design and use of simplepower:
a cycle-accurate energy estimation tool,” in Proceedings of ACM/IEEE Design Automation
Conference, pp. 340-345, June 2000.

7. D.Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for architectural-level power
analysis and optimizations,” in Proceedings of International Symposium on Computer Archi-
tecture, pp. 83-94, June 2000.

8. T. Simunic, L. Benini, and G. de Micheli, “Energy-efficient design of battery-powered em-
bedded systems,” IEEE Tranactions on Very Large Scale Integration (VLSI) Systems, vol. 9,
pp. 15-28, Feb. 2001.

9. N. Chang, K.-H. Kim, and H. G. Lee, “Cycle-accurate energy measurement and charac-
terization with a case study of the ARM7TDML,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 10, pp. 146-154, Apr. 2000.

58

Naehyuck Chang

H. G. Lee, S. Nam, and N. Chang, “Cycle-accurate energy measurement and high-level en-
ergy characterization of FPGAs,” in Proceedings of 4th International Symposium on Quality
Electronic Design (ISOED 2003), pp. 267-272, Mar. 2003.

. A. Sinha and A. Chandrakasan, “Energy aware software,” in Proceedings of the 13th Inter-

national Conference on VLSI Design, pp. 50-55, Jan. 2000.

. N. Chang, K.-H. Kim, J. Cho, and H. Shin, “Bus encoding for low-power high-performance

memory systems,” in Proceedings of ACM/IEEE Design Automation Conference, pp. 800—
805, June 2000.

. H. Shim, Y. Joo, Y. Choi, H. G. Lee, and N. Chang, “Low-energy off-chip sdram memory

systems for embedded applications,” ACM Transactions on Embedded Computing Systems,
vol. 2, pp. 98-130, Feb. 2003.

. D. Shin, H. Shim, Y. Joo, H.-S. Yun, J. Kim, and N. Chang, “Energy monitoring tool for

low-power embedded programs,” IEEE Design and Test of Computers, vol. 19, pp. 7-17,
July-Aug. 2002.

. L. Lee, Y. Choi, Y. Cho, Y. Joo, H. Lim, H. G. Lee, H. Shim, and N. Chang, “Web-based

energy exploration tool for embedded systems,” IEEE Design and Test of Computers, vol. 21,
pp- 572 — 586, November — December 2004.

CODACS Project: A Development Tool for
Embedded System Prototyping

Lorenzo Verdoscia

Institute for High Performance Computing and Networking (ICAR) - CNR
Via Castellino, 111 - 80131 Napoli, Italy
lorenzo.verdoscia@na.icar.cnr.it

Abstract. The advent of FPGAs and Intellectual Property core avail-
ability allow great freedom in the customization of platform processors
for embedded systems. One of the new challenges that such technolo-
gies present is how to implement a high performance application on
devices with hundreds coarse-grained computing units running at 200
MHz, rather than on one processor running at 20 GHz. Consequently,
to profit by spatial parallelism that such devices offer becomes a non
marginal issue. From the architectural point of view, at least two ques-
tions arise: how to exploit such spatial parallelism; how to program such
platforms. The first one brings us to seriously reconsider the dataflow
paradigm, given the fine grain nature of its operations. The second one
brings us to seriously reconsider the functional programming style, given
its inherent simplicity in writing parallel programs. In this paper we will
discuss our experience in combining these two approaches inside CO-
DACS (COnfigurable DAtaflow Computing System) demonstrator. The
resulting architecture offers interesting properties not only as stand-alone
computing system but also as development tool for Application Specific
Processor (ASPs) prototyping activities.

Key words: FPGA, dataflow computing, functional programming, Ap-
plication Specific Processor (ASP), embedded system.

1 Introduction

In several real-time applications, custom processors based on application-specific
or domain-specific instruction sets are gaining popularity to speed up the appli-
cation and are often used to implement critical architectural blocks in complex
system-on-chips (SoC). Improvements in semiconductor fabrication technologies
promise to make it feasible to replace logic gates or hardware macro-blocks with
microprocessors as building blocks for integrated circuit (IC) design. Such pro-
grammable solutions will provide the ability to meet short product cycles and
cope with changing application functionality (e.g., in areas with evolving stan-
dards). However, the rapid expansion in the market for embedded systems with
tight constraints on cost, performance, size, and power consumption implies that
the need to customize the architecture to the application or application domain
will continue to be a primary driving requirement in system-on-chip design.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 59-64, 2005.
© Springer-Verlag Berlin Heidelberg 2005

60 Lorenzo Verdoscia

While several advances have been made in custom processor architectures [6,3,8],
tools [13], and design methodologies [1], designers are still required to manually
perform some critical tasks, such as selection of the custom instructions best
suited to the given application and design constraints. This is a highly fallible
undertaking and may require formidable resources.

Even if development is completed on time, considerable consistency problems
may appear between hardware implementation and software development tools.
Furthermore, a small change in design requirements or a bug during later stages
can ensue in daunting amounts of labor. Consequently, the prototyping phase is
crucial in the development of such processors, and adequate hardware/software
development tools become often requires.

In this paper, we present our experience with CODACS demonstrator [10]
as prototyping tool for custom processor design. It combines the functional pro-
gramming paradigm [11] and the dataflow execution model [12] for reconfig-
urable computing that is decoupled from details of the underlying platform.
Application-level programmers should be liberated from reconfigurable hard-
ware accelerator details. Dually, hardware designers should not be exposed to
interfacing details. This is the way we believe reconfigurable computing must
take in order to become mainstream.

2 CODACS Demonstrator

. . <>
Processing Kernel Routing
Subsystem Subsystem Subsystem 1,

—»{0TTE Ly AN
(platform-processor) 4] ITTE Node
Packet
L <«—{aGcL Manager <>
< -
Tsync signals >

Fig.1. CODACS Architecture connected as WK-recursive with Ny = 5 and
Level = 1.

CODACS (COnfigurable DAtaflow Computing System) project goal is to
build up a high performance reconfigurable computing system demonstrator
able to efficiently execute dataflow processes obtained compiling programs writ-
ten in CHIARA language [11] (a Backus’FP [5] functional programming lan-
guage dialect) and oriented to make easier the Application Specific Processor de-
sign. Main features of CODACS are: highly scalable architecture, reconfigurable
dataflow computing environment (platform-processor), and functional assembly
language to program it. Figure 1 shows CODACS architecture. The prototype
is constituted by a Gidel PROC20KE board [7] with 5 Altera APEX20K15-3C
[4] FPGA components. Each node has been partitioned into three concurrently
operating subsystems:

CODACS Project: A Development Tool for Embedded System Prototyping 61

- Processing Subsystem (called Platform-Processor), devoted to execute the
dataflow graph assigned to the node on the basis of information received
from the Kernel Subsystem;

- Kernel Subsystem, devoted to unpack a message, manage processor config-
urations and related I/O data tokens, and prepare new messages for the
Routing Subsystem;

- Routing Subsystem, devoted to provide all routing functions for incoming
and outgoing messages. When a message reaches this module, its header is
processed to be routed towards either the appropriate output link or the
Kernel Subsystem.

2.1 Platform-Processor

The platform-processor is the reconfigurable core of CODACS prototype, and
it has been tailored to execute in hardware dataflow graphs obtained compiling
CHIARA programs. Its design process, schematized in Figure 2, has been based
on the language first approach in conjunction with the homogeneous High-Level
Dataflow System (hAHLDS) model [12]. As result, we implemented a platform-

Execution Model
dataflow

homogeneous High-Level
Dataflow System

Computational Model
functional
CHIARA language

Physical Model

reconfigurable

Platform-Processor
FPGA

Fig. 2. Platform-Processor design methodology.

processor (Figure 3) composed of: a) 64 identical MultiPurpose Functional Units
(MPFU); b) the MPFU Interconnect that allows to connect any MPFU output
to any other MPFU input and each register of the Token Ensemble Buffers to
the corresponding MPFU; ¢) the Control; d) three banks of I/O buffers for to-
ken transfer respectively named TOKEN IN A and B (to store, for each MPFU,
respectively the right and left token coming from the Kernel Subsystem) and
TOKEN OUT (to transfer results to the Kernel Subsystem); e) the Graph Set-
ter that stores the Graph Configuration table ready to be executed.

62 Lorenzo Verdoscia

As token loading can be overlapped to computation operations, a platform-
processor can, when different tokens are applied to the same configuration, exe-
cute pipeline activities simply checking data flow from/to the Kernel Subsystem.
MPFUs only compute binary operations belonging to the functionally complete
set of elementary CHIARA operators. Such operators include commonly used
arithmetic and logic operators and the new operators LST (loop start), SL (se-
lect left), and SR (select right). Furthermore, it executes dataflow graphs a)
without using memory to store intermediate tokens when they flow from a Com-
puting Unit to another, reducing thus continual LOAD and STORE operation
and memory latency problem; b) in a completely asynchronous manner, dispos-
ing of a straightforward data flow control and an operation firing mechanism
at a minimal hardware cost. We have augmented the token with the concept of
validity, coded by one bit, that denotes whether data is ready to be processed
or not.

MPFU MPFU fer——1f64 ,
° L] . L] . MPFU operating

1 T # 64 . codes
| Graph

il A —
GRAPH SETTER
Configuration

MPFU INTERCONNECT 788 Interconnect table
code
1 64 1 64

1 64

TOKEN_IN A TOKEN_IN B TOKEN OUT Control Section i+
ENSEMBLE BUFFERS ENSEMBLE BUFFERS ENSEMBLE BUFFERS f

Fig. 3. Platform-Processor block scheme.

F

I

2.2 CHIARA Compiler

CHIARA language peculiarity is that it defines a set of elemental operators that
is functionally complete, i.e. able to generate any other more complex function
of the language. This set constitutes the assembly language for the platform-
processor and is directly implementable in hardware. After compiled, a CHIARA
program is translated in the Dataflow Graph Description (DGD) table that rep-
resents the program dataflow graph. This table details, for each node of the
graph, the following information: the number assigned; the operation code; a
tag to identify if the right and left input data is an initial value or the output
data of another node, reporting in this case the number of the sender node; a tag
to identify if the output data is a final or intermediate value. In the second case,
the number of the receiver node is reported. Figure 4.a and b. respectively shows
a piece of a DGD table produced by the compiler for a matrix multiplication

CODACS Project: A Development Tool for Embedded System Prototyping 63

A(4,4) x B(4,4) and the corresponding dataflow produced by aiSee [2] a software
tool based on the graph layout tool VCG (Visualization of Compiler Graphs)
[9] and designed to explore huge graphs (containing hundreds, thousands, and
sometimes even hundreds of thousands of elements).

Node# Func Apply Constr Insert Left Right out |m

level level Level In In

0 0 %l %30 47
44 MUL 0 0 %2 %30 47
45 MUL 0 0 %3 %30 48

43 MUIL 1
1
1
46 MUL 1 0 0 %4 %30 48
0
0
0

47 ADD 0 1 43 44 49

48 ADD 0 1 45 46 49

49 ADD 0 2 47 48 out

(

[

[
50 MUL 1 0 0 %1 %40 54
51 MUL 1 0 0 %2 %40 54
52 MUL 1 0 0 %3 %40 55 ° °
53 MUL 1 0 0 %4 %40 55
54 ADD 0 0 1 50 51 56
E ADD 0 0 1 52 53 56
56 ADD 0 0 2 54 55 out

a.) .)) .

Fig. 4. Part of compiler outcome for a matrix multiplication A(4,4) x B(4,4):
a) DGD table; b) iSee visualization.

2.3 Program Running

A program execution takes place when the related dataflow graph is loaded onto
a platform-processor. To do this, the program dataflow graph is partitioned into
subgraphs wholly mappable onto a platform-processor, each subgraph is first
transformed into a Graph Configuration and Input Token Value table and then
stored in the GCL and ITTE of the Kernel Subsystem. Afterwards, these tables
are ready to be loaded into the platform-processor on the basis of the scheduling
policies. Since the Graph Configuration and Input Token tables of a subgraph
split the connection between data and related operations, subgraph run can
take place but the loading of the two tables can occur at a different time. An
immediate benefit is that we can overlap configuration loading activities and
processor execution.

3 Conclusions

Custom processor development is quite challenging for real-life applications be-
cause of tradeoffs involving during its design. The system described within this
paper represents an ambitious set of goals for a design tool. Our approach is
based on the usage of CHIARA functional language to describe the application
that the custom processor would execute, the homogeneous High Level Dataflow
System model to define the rules to obtain the application dataflow graph, and
finally CODACS platform-processor to validate the custom processor according
to application specifications.

64

Lorenzo Verdoscia

References

1.

10.

11.

12.

13.

A. Abbas, S. Khan, and M. Usman. Optimal application specific processor and
development tool design methodology. In Proc. IEEE Intl. Multi Topic Conference
(INMIC), Karachi, Pakistan, dec 2002. IEEE Press.

AbsInt. aisee. www.AbsInt.com/aisee.

O.T. Albahama, P. Cheung, and T.J. Clarke. On the viability of FPGA-based
integrated coprocessors. In Pocek K.L. and Arnold J., editors, Proc. IEEE Symp.
FPGAs for Custom Computing Machines, pages 206—215, April 1996.

ALTERA Corporation. APEX 20K devices: System on a programmable chip so-
lutions. http://www.altera.com/products/devices/apex/apx-index.html, 2001.
J.W. Backus. Reduction languges and variable free programming. Technical Report
RJ-1010, IBM, Yorktown Heights, NY, April 1972.

K. Compton and S. Hauck. Reconfigurable computing: A survey of systems and
software. ACM Computing Surveys, 34(2):171-210, June 2002.

GIDEL LTD. PROC20KE board. www.gidel.com, May 1999.

S.D. Haynes, J. Stone, P.Y.K. Cheung, and L. Wayne. Video image processing
with the sonic architecture. Computer, 33(4):50-57, April 2000.

G. Sander. VCG visualization of compiler graphs. Technical Report A01-95, Uni-
versitit des Saarlandes, FB 14 Informatik, 66041 Saarbriicken, Germany, February
1995.

L. Verdoscia. CODACS project: A demand-data driven reconfigurable architecture.
In Euro-Par 2002, volume 2400 of LNCS, pages 547550, Paderborn, Germany,
August 27-30, 2002. Euro-Par Conference Series, Springer-Verlag.

L. Verdoscia, M. Danelutto, and R. Esposito. CODACS prototype: CHIARA lan-
guage and its compiler. In Proceedings of the First International Workshop on
Embedded Computing, Tokyo University of Technology, Hachioji, Tokyo, Japan,
March 23-26, 2004. IEEE Computer Society Press.

L. Verdoscia and R. Vaccaro. A high-level dataflow system. Computing, 60(4):285—
305, 1998.

M. Vuletic, L. Pozzi, and P. Ienne. Development Environment for Dynamically
Reconfigurable Embedded Systems. In 15th IEEE Intl. Conference on Application-
Specific Systems, Architectures and Processors (ASAP’04), pages 339-351, Galve-
ston, Texas, September 27-29, 2004. IEEE Press.

A Study on Web Services Selection Method
Based on the Negotiation Through Quality
Broker: A MAUT-based Approach

Young-Jun Seo!, Hwa-Young Jeong?, and Young-Jae Song’

! Department of Computer Science, Kyung Hee University
1 Seocheon, Giheung, Yongin, Gyeonggi 449-701 KOREA
{yjseo, yjsong}@.khu.ac.kr
2 Department of Multimedia Design, Yewon Art University
271 Changinree Shinpyungmyun Eymshilgun JonrabukDo, KOREA
Jjhymichael@empal.com

Abstract. In web service area, which is growing fast recently, because
service discovery is restricted only by functional requirement, the opti-
mal web service selection method considering quality, a non-functional
element, is regarded as important. In this research, we suggested Web
Service Quality Broker Architecture including Quality Broker, which pro-
vides quality negotiation environment, and proposed web service selec-
tion method, which helps service requester find the service provider which
gives the maximum benefit and bind that service dynamically. We de-
scribed the internal negotiation procedure for quality attributes of user’s
point of view with Multi-Attribute Utility Theory (MAUT) and linear
programming.

1 Introduction

Recently the web service area providing lots of advantages like platform indepen-
dency, interoperability, easy service usability and so forth is rapidly burgeoning
as the next generation IT paradigm. Ovum estimates that the average growth of
the web service market will be at 118% per year and that the market, in 2006. It
will consist of 70% of Professional Service, web service consulting/construction
area, and 18% of Hosted Service, web service transfer area [1].

Web service consists of XML-based platform, component based distributed
computing technology independent of implementation language and three kinds
of roles performing publish-find-bind operations. Each role is performed by the
web service provider providing web service, the web service requester using web
service and UDDI registry helping service requester search the detailed specifica-
tions of public web services. In the existing web service model, the role of UDDI
registry is restricted as service finding for only functional requirement and there
is a defect that 48% of UDDI registry has a connection including lost, broken or
incorrect information [2]. Under these circumstances, optimal web service selec-
tion is a complicated problem to requester and lots of quality attributes must

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 65-73, 2005.
© Springer-Verlag Berlin Heidelberg 2005

66 Young-Jun Seo, Hwa-Young Jeong, and Young-Jae Song

be measured and evaluated simultaneously. Since many quality attributes are
related with each other, the improvement of one quality attribute may cause the
deterioration of the other quality attribute [3]. Patrick [4] presented the opti-
mal common gains between provider and requester using logrolling, negotiation
strategy about QoS and CoS attribute. But, in the negotiation stage, the only
quantity of QoS attribute was measured without consideration of sub-attributes
included in QoS attribute.

In this paper, we explain the concept about Web Service Quality Broker
Architecture with Quality Broker role, which provides the existing web service
architecture with negotiation environment, and proposes the web service se-
lection method, which, by calculating the maximum gains on the basis of the
utility function of mutual quality attributes between service requester and ser-
vice provider, finds the service provider with the optimal quality and helps bind
dynamically.

2 Related Works

2.1 WSLA (Web Service Level Agreement)

WSLA developed by IBM in 2001 is the framework to define and monitor obli-
gations to service providers and requesters [5,6]. It measures and monitors the
QoS parameters, checks the agreed-upon service levels, and reports violations to
the authorized parties involved in the SLA management process.

It comprises the Parties, Service Definitions, and Obligations sections. The
parties section, consisting of the signatory parties and supporting parties fields,
identifies all the contractual parties. The service definitions section specifies the
characteristics of the service and its observable parameters as follows. Examples
of such SLA Parameters are ”availability”, ”throughput”, and ”response time”.
Metrics describes the formula for the calculation about quality factors stated,
SLA Parameters are composed of (composite) Metrics, which, in turn, aggregates
one or more other (composite) metrics, according to a measurement directive or
a function. Obligations, consisting of the Validity Period, Predicate, Actions,
define various guarantees and constraints that may be imposed on the SLA
parameters.

2.2 Negotiation Strategy

Negotiation is a decision process in which two or more parties make individual
decisions and interact with each other for mutual gain [7]. Negotiation includes
a set of tasks, such as problem definition, generation of alternatives, evaluation
of alternatives, and preference modeling, that are executed by a set of parties.
In particular, each negotiation involves at least two parties. On the other hand,
negotiation involves a set of issues and every issue contains a set of alternatives.
Furthermore, the set of issues may also be constrained by a set of criteria.

A Study on Web Services Selection Method Based on the Negotiation 67

One of the strategies for achieving negotiation is called MAUT. MAUT
(Multi-Attribute Utility Theory) concretes utility function and attribute reflect-
ing individual stand for risks to the model and then identification for related
appropriate function’s form decides individual preference and utility function’s
form [8]. MAUT evaluates the gains, considering the multi-attribute for the sub-
ject of negotiation, and each attribute has a relative weight to other attributes.
In MAUT, utility function is represented using weight (w;) and evaluation func-
tion (vj(z[j;)) for each attribute. Utility function representing the gains of service
requester and provider can be described as equation (1) and (2).

RequesterUtility = Zw vi(z[ji]) 0 < RequesterUtility <1 . (1)
i=1

ProviderUtility = Zw (z[j:]) 0 < ProviderUtility <1 . (2)
i=1

In order to standardize the satisfaction of suggested value about each at-
tribute within the value from 0 to 1, we propose the evaluation function having
request value and allowable value as the boundary like equation (3) and (4).

x[ji] — allowable

v (2[i]) =

if t > allowable value . (3
request — allowable | CIuest = auowabie vatue (3)

vf(:c[jl]) _ allowable 2l if request < allowable value, (k=r,p) .
(4)
From equation (1) through (4), we set up the function maximizing the gains
of service requester and provider as the object function and the condition that a
difference between request and provider is in a certain aberration as a constraint,
and presented linear programming like equation (5) through (7). In this paper,
we refer to related work [9] in electronic commerce domain in order to set up the
linear programming model to obtain the optimal value and the utility function
for the suggested value between service requester and provider.

allowable — request

Object function: Max Z = RequesterUtility + ProviderUtility . (5)

Constraint : |RequesterUtility — ProviderUtility| < threshold(= 0.01) . (6)

Boundary : min.ofcommonrange < x[j;] < maz.ofcommonrange(i = 1,2,3) .
(7)
3 Web Services Selection Method

3.1 Web Service Quality Broker Architecture

Web Service Quality Broker Architecture proposed in this paper has different
characteristics from the architecture proposed in the related work [10]. Currently

68 Young-Jun Seo, Hwa-Young Jeong, and Young-Jae Song

there are two classes of Service Providers providing web services [11]. Services
from the first class are built with QoS support, referred to as QoS servers. They
have the ability to assign different amount of system resources to different clients
according to their QoS requirements. The QoS information supplied by QoS
servers includes service levels with corresponding costs, maximum service capac-
ities and currently available capacities at each service level. The other class of
Service Providers are not built with QoS support and called legacy servers. There
is no service quality level concept in legacy servers. In this paper, we considered
the Service Provider as the QoS server that supplies QoS service levels. Service
Requester can obtain the service providing the quality with requested level from
WSLA of Quality Broker created by pre-monitoring. Rough quality warranty
process including WSLA Service [6] in Web Service Quality Broker Architecture
is like follows.

Service @ Invoke service Service
>
Requester Provider
A WSLA
1. Parties
- Signatory Parties
- Supporting Parties
2. Service Description @ request service
- - fﬂ';/?riz’:famete's description
fé:sgleleﬁ 3. Obligations 5 send service
description D i
® request P (D publish
and consent
to WSLA
agreement of
best service
vv @ request a list of \ 4
new services uUDDI
. »
Quality Broker | [il :
Registry
@ get a list of services

D create ® monitor
WSLA of quality of

services registered

o rvi
©@ execute Services

negotiation
between QoS
attributes

Fig.1. Interactions between the four participating roles

A list of Service Providers registered newly in UDDI registry is sent to Qual-
ity Broker, and Quality Broker requests Service Provider’s service descriptions
(WSDL files) in the list. Quality Broker monitors quality attribute values of
registered service on the basis of the transferred service descriptions. The calcu-
lating result from monitoring and WSLA Metrics is stored in WLSA document,
and this step is repeated periodically. Service Requester requests the service to
Quality Broker with quality attribute value, and Quality Broker performs the
negotiation through investigating WSLA details of services with same function
and quality attributes of requester. When, from the result of negotiation, best

A Study on Web Services Selection Method Based on the Negotiation 69

service is decided, the fact is transmitted to Service Requester, and contract is
completed, if Requester agrees with WSLA of corresponding service. The out-
come of the negotiation process is a single SLA document comprising the rela-
tionship and obligations of all the involved signatory parties. The WSLA Service
distributes the SLA document available for deployment to the involved parties.
In last, Service Requester requests the service to selected Service Provider. The
WSLA Service measures SLA parameters such as availability or response time
either from inside or outside the service provider’s domain. It obtains measured
values of SLA parameters and compares them against the thresholds given in
the SLA. This can be done periodically. Once the result of comparison has been
violated, the WSLA Service will carry out the appropriate actions to correct the
problem as specified in the SLA.

3.2 Web Service Quality Model

In most of web service quality model [12,13], since the quality of requester’s point
of view in use about web service acts as the important decision factor due to
web service characteristics. The quality in use among software qualities defined

Table.1. Web Service Quality Specification

. L Service Level
Classification Description -
gold silver bronze
Response |The average time required to | 0.1 < RT 0.4 =< RT 0.8 = RT
Time(ms) |complete a service request =03 = 0.7 =09
Performance
evstp [The mamber ot conrieed. | ysi<m | jor < | s1<my
quests/s) | service requ S OV <200 < 150 < 100
time period
Availability a‘:g‘ifvgfeﬁ:’;r‘:;‘ig’z the] 6<av | 0a=av | 07<Av
P < < =
(probability) Ready for immediate use =03 =06 =1
Safety The ability of a service to
Reliability gif:;’;‘ngsizg:f:t‘;e a 0.7 < Re 0.4 < Re 0 < Re
i1s < < <
(probability) conditions for a specified ! 06 0.3
period of time
Cost Cost(€) Cost mv.olved in requesting 0.05 0.03 0.01
the service

by ISO 9126 is mostly dealt with. Web service quality in use is divided into
performance quality aspects, safety quality aspects, middleware service qual-
ity aspects, manageability quality aspects, and interoperability quality aspects.
However, in this paper, we consider only performance and safety quality aspects
among them and cost.

70 Young-Jun Seo, Hwa-Young Jeong, and Young-Jae Song

<Table 1> describes quality attributes and descriptions included in each web
service quality aspects, and, also, presents various service levels[13] which service
providers offer. The value of service level of availability and reliability belonging
to safety quality aspects was described with the value of ratio of usable time and
average time when failure occurs in total monitoring time according to three
level ranges.

3.3 Negotiation Model and Procedure

In this paper, we consider multi-party and multi-issue negotiation, which con-
tains service requester, several service providers and attributes. We focus on the
method, which finds the optimal compromise suggestion between both sides and
decides the service provider offering the maximum gains.

Service Service Service
Provider 1 Provider 2 Provider 3

RT=0.7/0.3(0.1), Th=51/150¢0.2), RT=0.9/0.4(0.1),|Th=60/150(0.2), RT=079/0.2(0.2), Th=100/200(0.1),
Av=0.6/0.2(0.1), Re=0.4/0.6(0% Av=0.6/0.3(0.2),|Re=0.2/0.7(0.1) Av#0.7/0.4(0.1), Re=0.3/0.8(0.3),
Cost=0.05/0.01(0.5) Cost=0.03/0.01(0.4) 0st=0.05/0.01(0.3)

X, =0.4,x,=70,x5=0.4 x,=0.5,x,370,x,= 0.5 X, =0.4,x,=110,x,=0.5
%, = 0.3, X5 = 0,02 Xq = 0.3, ks = 0.03 X, = 0.3, x5 = 0.01
[Z(Tota utility) = 1117264 | z(Total iility) = 0.7623099] | z(Total Utility) = 1.2321877]
Service
Requester

RT=0.4/0.6(0.2), Th=110/70(0.1),
Av=0.4/0.5(0.1), Re=0.6/0.3(0.1),
Cost=0.01/0.03(0.5)

Fig.2. Result of Web Services Selection

Here, we define the optimal compromise suggestion as the proposal that
warrants the maximum common gains to each other. In Negotiation model, we
assume that service providers have different attributes for web service providing
same function and service requester is a consumer who purchases web service
with specific function offered by service providers. As attributes for Negotiation,
response time, throughput, availability, reliability and cost are considered. Ser-
vice requester and service provider have the weight (values in the parentheses),
which is the relative preference value of specific attribute to other attributes.
Generally, qualities offered by service provider are divided into three service
levels (cf. Table 1), and requester has no choice but to select only one level

A Study on Web Services Selection Method Based on the Negotiation 71

according to proposed cost. This paper includes the desired request value for
specific quality attribute and the allowable value which can be permitted to the
opposite side through negotiation between both sides. Service requester has low
response time, high throughput, low availability, high reliability and low cost as
request values, and provider is set up in the reverse way.

Fig. 2 shows attributes, which are possessed by one service requester and
three service providers and the negotiation results. The value used in Fig. 2
as request (bold strokes) and allowable value (normal strokes) is represented
by composing values in each service level provided differentially per each quality
attribute. Supposing variable x; to x5 are response time, throughput, availability,
reliability, and cost, respectively. The gains of Requester and Providerl in Fig.
2 can be represented by utility function[9] as follows.

. 0.6—.%‘1 .1‘2—70 0.5—.’1)3
RequesterUtility = 0.2 0.1 01 (8
cquesterSiity = o6 _ 0.4 <" 11070 " T o504 " ®)
1’470.3 0.03*.%5
1 .
0.6-03 <% T 003001 X%
. . I —-0.3 15071’2 1’370.2
Provider1Utility — 1 2 1
roviderlUtility = o o X 014 o0 ¥ 024 0 g9 x 01 (9)
0.6 — x4 x5 — 0.01
1 .
o604 1T 005001 X0

The above problem can be transformed into linear programming form [9] as
follows.
Object function:

Max Z = —0.7521 — 0.000522 — 0.7523 + 0.167x4 — 12.525 + 2.028 (10)
Constraint:

— 1.25x1 + 0.0045x2 — 1.2523 + 0.833x4 — 37.525 < —1.112 (11)
—1.2521 + 0.004522 — 1.25x3 + 0.833x4 — 37.525 < —1.132 (12)

Boundary:

04 <z <0.6,70 <z9 <110,0.4 <23 <0.5,0.3 <24 <0.6,0.01 <25 <0.03

(13)

After we obtain the answer using equation (8) through (13), and then cal-

culate the solution having each maximum gains among requester, provider2 and

provider3, we present those results in Fig. 2 altogether. As a result, since To-

tal Utility of Requester+Provider3 is the biggest, the third Service Provider is
selected as the provider offering the optimal service.

72 Young-Jun Seo, Hwa-Young Jeong, and Young-Jae Song
4 Conclusions

In this paper, we start from web service selection problem through functional
requirement without consideration of quality. Then we propose Web Service
Quality Broker Architecture, which helps service requester find service provider
offering the maximum gains in the requester’s point of view and bind that dy-
namically. Negotiation process of Quality Broker is described by Multi-Attribute
Utility Theory (MAUT) on the basis of quality information of both sides par-
ticipating in negotiation.

The optimal web service selection method through negotiation of Quality
Broker proposed in this paper can give a solution to handle the calculation
complexity increment problem, which can be generated by the extension to mul-
tilateral negotiations and the reliability problem for the result value, and can be
extended and applied to the optimal service selection through other negotiation
strategies in the future.

References

1. Ovum, "Web Services Market Overview”, Ovum Research Report, Sept, (2002)

2. Mike Clark, ”UDDI weather report”, Nov, (2001), Available online:
http://www.webservicesarchitect.com/content /articles/clark04.asp

3. K.H.Bennett, and others, ” A Broker Architecture for Integrating Data Using a
Web Services Environment”, ICSOC, Vol.2910, (2003) 409-422

4. Hung, P.C.K, ”Web Services Discovery Based on the Trade-off between Quality
and Cost of Service: A Token-based Approach”, in the ACM SIGecom Exchanges,
Vol. 4.2, Sept, (2003), 20-26

5. Asit Dan, Heiko Ludwig, Giovanni Pacifici, ”Web Services Differentiation with
Service Level Agreements”, White Paper, IBM Corporation, May, (2003)

6. Keller, A., Ludwig, H., ”The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services”, Journal of Network and Systems Manage-
ment, Special Issue on E-Business Management, Vol.11, No.1, Plenum Publishing
Corporation, Mar, (2003)

7. Hung, P.C.K, ” A Primitive Study of Logrolling in e-Negotiation”, Proceedings of
the 36th Annual Hawaii International Conference on, Jan, (2003), 29-36

8. Keeney, R., ”Decision Analysis: An Overview”, Operations Research, Vol.30, No.5,
(1982), 803-838

9. Sanghyun Park, Sung-Bong Yang, ”"Mediator Agent System for Reciprocity and
Negotiation using Multi-Attributes”, Journal of KISS: Software and Applications,
Vol.31, No.3, Mar, (2004), 308-316

10. M. Tian, A. Gramm, T. Naumowicz, H. Ritter, J. Schiller, ” A Concept for QoS
Integration in Web Services”, Fourth International Conference on Web Information
Systems Engineering Workshops, Dec, (2003), 149-155

11. Tao Yu, Kwei-Jay Lin, ”The Design of QoS Broker Algorithms for QoS-Capable
Web Services”, IEEE International Conference on the e-Technology, e-Commerce
and e-Service, Mar, (2004), 17-24

12. Shuping Ran, ”A Model for Web Services Discovery With QoS”, ACM SIGecom
Exchanges, Vol.4, Issue.1, (2003) 1-10

A Study on Web Services Selection Method Based on the Negotiation 73

13. NCA, ”A Study on Technical Trends and Deployment Strategies of Web Service
Quality Management”, National Computerization Agency Research Report, Dec,
(2003), Available online: http://www.nca.or.kr/eindex.htm

CA-Ex: A Tuning-Incremental Methodology for
Communication Architectures in Embedded Systems:

Haili Wang, Jinian Bian, Yawen Niu, Kun Tong, Yunfeng Wang

Department of Computer Science and Technology, Tsinghua University,
Beijing, 10084, P.R.China
{whlo1, Nyw03, Tk02, Wangyf00}@mails.tsinghua.edu.cn,
Bianjnetsinghua.edu.cn

Abstract. The communication architecture (CA) problem is at the very heart of
system level design related to the development of distributed embedded sys-
tems. The design of efficient CAs is pivotal because communication is becom-
ing the most important source of on-chip desired performance numbers. In this
paper we focus on the aspects of CA design in heterogeneous systems consist-
ing of arbitrarily linked multi-components, and introduce a new design meth-
odology named CA-Ex which enables a tuning-incremental architecture explo-
ration. Unlike previous research efforts, CA-Ex employs three kinds of optimi-
zation strategies to implement topology, mapping and scheduling scheme, and
interface circuits. One of the major contributions is that we summarily present
four architecting scenarios and outline a unified framework to achieve a speci-
fication-modeling-exploration process. Finally, we evaluate CA-Ex through an
illustrative case study on JPEG decoder and describe its advantages.

1 Introduction

Designing distributed embedded systems is an error-prone and time-consuming proc-
ess because of complicated interactions during hardware/software codesign and strict
performance and cost requirements. The heterogeneous systems, such as digital tele-
vision, set-top boxes, mobile terminals, are usually composed of programmable proc-
essors, off-the-shelf application-specific components and various types of intercon-
nected communication architectures. With the rapidly increasing computation and
communication power in embedded systems owed to manufacturing technology,
designers rely more and more on automatic design tools and sound methodologies
that allow them to explore a large amount of design solutions at the system level [1].
One of the key problems in embedded systems is the architecting of communica-
tion infrastructure for quickly exploring alternative solutions. It serves as a middle
connecting link between the preceding algorithm-level and the following implementa-

! This work is supported in part by National Natural Science Foundation of China under grant
NSFC-90207017, NSFC-60236020, NSFC-60236011 and NSFC-60121120706, and Hi-Tech
Research & Development (863) Program of China under grant 2003AA115110.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 74-80, 2005.
© Springer-Verlag Berlin Heidelberg 2005

CA-Ex: A Tuning-Incremental Methodology for Communication Architectures 75

tion-level, as illustrated in Fig.1. The problem in CA design that designers want to
solve is to find the best system architecture, including automatic generation of inter-
connect topologies, appropriate mapping of functionality tasks and communication
channels, and optimal determination of communication protocols [2][3].

i T Embedded Systems
e (L X Spec.
) s
\ \
. Algorithm | |
. ’
~10x , /. /.
Transformation Refinement
Mappm\g? l__\iflodxﬂcmmn
= Evaluation =
= - (=}
- - ik i e
= <:> —J] Platform-based
i Refinement =t
(@)

(© (d
Fig. 1. Three design abstraction levels Fig. 2. Four scenarios of architecting

Generation

A large body of work focuses on CA design. There exist mostly two categories of
design approaches: one is based on dynamic simulation technique of the entire system
to increase the accuracy; the other is based on static analysis and evaluation for trade-
offs between design time and efficiency. Lahiri et al. presented an exploration tech-
nique called CAT (Communication Architecture Tuners) by utilizing two phases of
performance-analysis methodology to explore CA [3]. Renner and Glesner introduced
performance modeling, generation and optimization approach of communication
infrastructure for architecture-precise rapid prototyping of real-time embedded sys-
tems [4]. Eles et al. focused on the aspects related to the synthesis of distributed sys-
tems and carefully studied on the impact of scheduling with bus access optimization
[5]. Based on a specific hierarchical class library [6], Zhu developed a related model-
ing framework for on-chip architecture and integrate this into a simulation environ-
ment. In [7], Russell and Jacome addressed an architecture-level performance evalua-
tion, which adapts to component-based embedded systems by the use of a designer-
specified scenario to support early space exploration.

Compared to the existing approaches above, our contributions are as following: 1)
we summarily present four architecting scenarios and outline a unified framework to
achieve architecture exploration. 2) We utilize the advantages of static analysis and
dynamic simulation technique to trade-off accuracy and efficiency. 3) We propose a
tuning-incremental methodology to support communication architecting.

The remainder of the paper is organized as follows. Section II introduces four ar-
chitecting scenarios and our related methods. Section III describes our CA-Ex meth-
odology for communication architecture, followed by an illustrative case study on the
JPEG decoder in Section IV. The conclusion is given in Section V.

2 Architecting Scenarios and Our Methods

As mentioned previously, on-chip communication architecture has a major impact on
performance in the design of heterogeneous systems, which can accommodate differ-
ent components that communicate using an appropriate communication manner.

76 Haili Wang et al.

As shown in Fig.2 (which is an update of the similar figure shown in [8]), there are
generally four design scenarios for the system architecting that implement the desired
specification. The first one as shown in Fig.2 (a) is to satisfy the constraints on sys-
tem and find an optimal architecture by a few of defined transformation rules for a
given specification. The second one, as illustrated Fig.2 (b), is a reverse procedure
that gradually refines the system specification until adapting to a given architecture.
Fig.2 (c) and Fig.2 (d) show two popular approaches (platform- /component-based)
that adopt an implementation-independent idea between the specification and archi-
tecture. The way enables both of them to develop and design respectively, and reduce
design cycle time. In our methodology, we give more attention to both (b) and (c)
methods and combine their advantages to implement architecture design.

Building the system architecture based on on-chip communication will raise the
challenges of efficient mapping from algorithm to architecture due to the essential
distinction between the two-level models, as shown in Fig.3. The algorithm model is
an untimed and technology-independent description, while the architecture model is a
timed and implementation-ready representation. Therefore, the direct mapping is an
unclear and difficult task. Introducing an intermediate process called transaction-level
will be a preferable practice, which can deal with the existing problems resulting from
the representation style and behavior difference between them. Fig.3 illustrates basic
elements for creating a realistic functional and architectural model. For instance, there
are five types of components to generate a virtual prototype at transaction level. It is a
simple task to achieve the transformation of algorithm into transaction model, fol-
lowed by a smooth mapping from the transaction to architecture. Our methodology
adopts this method as the front-end of architecting design.

Algorithm Level Mapping 2 Architecture Level
EEEEEEEEEEEN _.B_, Processor/
P Gar Component
—DD—>]{:‘;ﬁi‘;‘:; Transaction Level @
Memor:
—ﬂ» Module/Port 4
——I—> Global Variable @ T >>> Event/Signal
.D> Comm./IF
—-I-» Global Variable Cireuit
— Control/Data »@v Comm. Network
E A L
> Event/Signal
T . Comm. Element .
ransformation I i, bl Mapping

Fig. 3. Mapping from algorithm to architecture

3 CA-Ex Methodology

In this section, we present our new architectural design methodology called CA-Ex
(Communication Architecture Exploration) that enables designers to easily explore
the architecture-level space and achieve a specification-modeling-exploration process.
CA-Ex provides a unified framework and divides the whole design flow into five
sub-processes, as depicted in Fig.4. One of the advantages by the use of this method-
ology is that it can directly and accurately reflect and inherit design constraints (such
as delay) during the mapping from function to architecture, as well as generate appli-
cation-specific communication architectures in an incremental manner.

CA-Ex: A Tuning-Incremental Methodology for Communication Architectures 77

[Embedded Systems H HCDFG H CG J Architecture Level PEs/IPs Lib.
——

’,

Initial Arch.
Graph (IAG)

Executable
Arch. Spec.

Arch. Topology
Generation

Configurable
Comm Perf.
Graph (CCPG)

Performance
Analysis

Implementation Cost

1
I
|
|
I
1 Comm.
I
I
I
[}
| N
1 Evaluation

CA-Ex Methodology @ Yes

Implementation Level

Fig. 4. CA-Ex system design flow diagram

3.1 Functional and Architectural Model

Before introducing CA-Ex Methodology, we first give the definition of communica-
tion graph (CG), which is used as the functional description of system in transaction
level. CG = {V, E, T, 10} is a directed cyclic graph, where v represents each task in
system behaviors. A relation edge e; = (vi, v;) €E indicates that data will be trans-
ferred from v; to vj. To each e, we assign t; € T to depict the times of data exchang-
ing between v; and v;. To separate computation from communication and enable reuse,
we have constructed a virtual-component communication model to describe data
transmission on a given architecture [8]. The model is denoted as a three-tuple set:
{VCI, VP, VC}, where VCI, VP, and VC represent virtual component interface, vir-
tual port, and virtual channel, respectively. The model encapsulates the implementa-
tion details of communication. Unlike previous work mentioned, we take the interface
mechanism into account and model it as IO = {VCI, VP, VC}. It is useful for multi-
component design because communication is a must to be considered.

The distributed architecture model of embedded systems is featured with multiple
heterogeneous processing elements (PE) connected through a network of communica-
tion channels (CH). In design flow, nodes in CAG are mapped to PEs, while edges to
CHs. In addition, a technology library is built to deposit the attributes of available PE
and Ch types. For example, the chip area and price are associated with each PE type,
while the attributes in each CH type include the chip area/price per port and transfer
speed in correspondence with interface types. Note that interface type represents the
communication protocol and port arrangement of a CH, which should be compatible
with PEs it wants to connect. If it is not, an interface transducer will be inserted to
smooth the communication. Based on the component and technology libraries, het-
erogeneous systems can be composed of arbitrarily linked programmable processors
and off-the-shelf application specific components.

3.2 Design Flow

As mentioned above, the architecting is an activity embedded in a system develop-
ment process. The activity in our CA-Ex methodology requires two types of inputs: 1)

78 Haili Wang et al.

A partitioned golden HCDFG (Hierarchical CDFG), which is a representation model
for the specification of embedded systems after HW/SW partitioning; 2) A template-
based platform; 3) Functional description of system at the transaction-level.

To efficiently find an optimal application-specific architecture, it is required that
the derived architecture model can be analyzed and evaluated in a quick time from a
large number of possible solutions. In CA-Ex, the first step has to start with an ab-
stract architecture model that captures the required system resources. A template-
based technique is used to generate an initial architecture graph (IAG). By obtaining
the results after partitioning, and based on CG, the mapping of system behaviors to
the TAG will be executed, followed by a configurable communication performance
graph (CCPG) which can be generated. The requirements of communication behavior
can be planned to the CCPG according to the result of executable transaction-level
model. One of key features is to adopt the combination method of static analysis and
dynamic simulation to tradeoff accuracy and efficiency. And then, the CCPG model
is analyzed to evaluate and determine candidate communication architectures. Our
goal is to derive a worst case delay and cost by which the system completes its execu-
tion, such that this delay is as small as possible and the cost is guaranteed to generate
the sound architecture topology by optimizing protocol parameters of the communica-
tion between processes, or changing local mapping solution.

PEAP) |wii 8x 8 || Compressed
% Conf. Comm. Component Block Bit stream
SystemC o < ” 8x8 Qr sxs || HT
Block Block /
S 2 /
' I

MOdl.IlC <€ Port
<
Behaviors |~ Read L Interface '\ ,/Channel

pori =~ S ic H . JPEG
Transaction Level ot ‘ ’ DCT M Quantization L_L.‘ Encoding ‘
Fig. 5. SystemC-based architecture model Fig. 6. JPEG image compression

In order to support efficient architecture exploration, CA-Ex introduces a popular
method using an idea of the platform-based design. The architecture model has been
constructed by SystemC 2.0 [9]. As shown in Fig.5, the models are defined and pa-
rameterized using performance metrics. Thus, performance analysis based on the
CCPG model can be incorporated with SystemC 2.0 simulation kernel, and the analy-
sis results will be back-annotated to the CCPG. An important characteristic in archi-
tecture exploration is that an incremental process has been introduced. We employ
three tuning strategies on performance critical paths instead of globally replacing one
candidate from the architecture library. These strategies include: a) Alter partial to-
pologies; b) Change local mapping solutions; ¢) Configure or modify communication
protocol parameters. In addition, considering the application-specific characteristics,
the design space can be pruned to generate an optimal architecture.

4 Case Study: JPEG Decoder Application

To implement an efficient exploration and evaluate CA-Ex methodology, we choose a
JPEG application as a testbench. Fig.6 shows a basic design flow of JPEG encoder

CA-Ex: A Tuning-Incremental Methodology for Communication Architectures 79

algorithm. In JPEG compression algorithm, there are mainly three processes: Discrete
Cosine Transform (DCT), Quantization and Huffman code. In the succeeding case
study, we focus on the JPEG decoder that is a reverse transformation process.

DM DP ov GM

(FIFO) | Width: 324 Speed: 64

us Vigith: 32; Spded:
Interface Interface
Transducer Transducer
oldFire
Wil p‘cd 32 Width: 32{ Speed: 2
su m \w u. MB “

Fig. 7. Transaction-level modeling Fig. 8. Topology exploration

As discussed previously, we introduce the transaction-level modeling to smooth
the mapping process between algorithm and architecture. The left of Fig.7 illustrates
an example of JPEG decoder modeled as a corresponding CG in transaction level
discussed above. Each node represents a set of tasks to implement a given behavior,
such as IDCT that reverts to a real image from an equivalent in the frequency domain.
The communication among nodes can be achieved by encapsulated read and write
functions using SystemC master/slave library. The right of Fig.7 illustrates an archi-
tecture model with six modules, which are all connected by custom bus but only the
IDCT is connected with the mainProc module by the point-to-point manner. The
modeling results are summarized in Table 1. It can be seen from the table that two
types of communication manner are used in this architecture. The Cfifo is viewed as
channel FIFO and the number followed by it is the depth of FIFO.

Table 1. Results of communication architecture exploration

Source Link Comm. Source Link Comm.
Node Node Manner Node Node Manner
IDCT Cfifo(64) iHuff Cfifo(256)
iQuant iHuff Signal(1) | mainProc iQuant table | Cfifo(256)
iQuant table = Signal(1) iHuff table | Cfifo(1024)

mainProc | Signal(1) | iQuant table iQuant Signal(1)
iHuff iQuant Cfifo(64) | iHuff table iHuff Signal(1)
iHuff table | Signal(1) IDCT mainProc Cfifo(64)

The outputs of architectural exploration by using CA-Ex include: golden topology,
mapping and scheduling scheme, performance statistics, and interface circuits. Until
now, we have achieved the automatic generation of interconnect topology. The other
three parts of results are not implemented completely and under investigation.

Taking the CG above as input, we apply the channel mapping process to generate
the fine-granularity architecture for JPEG decoder (for exploring more space in archi-
tecture level, we recombine different tasks in JPEG decoder), shown in figure 8. The
diamonds in the final CA represent interface transducers for smoothing communica-
tion between PEs with incompatible protocols. The results of topology exploration
can be also seen from the figure that four different types (such as width, speed, and
communication protocol) of CA mechanism (buses) are used in this architecture.

80 Haili Wang et al.

5 Conclusions

In this paper, we have presented a novel architecting design methodology called CA-
Ex, to assist designers to explore early architecture space for distributed embedded
systems. We also illustrate design scenarios and related issues in the architecture-
level for achieving a specification-modeling-exploration process, and propose an
overall design flow to solve them. We have used the CA-Ex methodology for a case
study of JPEG decoder application. Experimental results conducted to evaluate the
effectiveness of the unified framework indicate that the methodology can perform
well and implement space exploration.

Future work will focus on investigating the intrinsic relation between algorithm
development and architecture design, and smoothing the integration of architecting
and low-level layout.

References

1. V. D. Zivkovic, P. Lieverse: An Overview of Methodologies and Tools in the Field of Sys-
tem-level Design. Lecture Notes in Computer Science, Vol. 2268. Springer-Verlag, Berlin
Heidelberg New York (2002) 74-89

2. J-P. Calvez, V. Perrier: SOC Architecting and Design with CoFluent Studio, Concepts and
Methodology -Part I-. available at: http://www.cofluent.com

3. K. Lahiri, A. Raghunathan, S. Dey: Design Space Exploration for Optimizing On-Chip
Communication Architecture. In IEEE Trans. on Computer-Aided Design of Integrated Cir-
cuits and Systems, Vol. 23, No. 6, pp. 952-961, June 2004.

4. F-M. Renner, J. Becker, M. Glesner: Automated Communication Synthesis for Architecture-
precise Rapid Prototyping of Real-Time Embedded Systems. In IEEE International Work-
shop on Rapid System Prototyping, pp. 154-159, 2000.

5. P. Eles, A. Doboli, P. Pop, Z. B. Peng: Scheduling with Bus Access Optimization for Dis-
tributed Embedded Systems. In IEEE Trans. on Very Large Scale Integration (VLSI) Sys-
tems, Vol.8, No.5, pp. 472-491, Oct. 2000.

6. X. P. Zhu, S. Malik: A Hierarchical Modeling Framework for On-Chip Communication
Architecture. In IEEE/ACM International Conference on Computer Aided Design, pp. 663-
670, Nov. 2002.

7. J. T. Russell, M. F. Jacome: Architecture-Level Performance Evaluation of Component-
Based Embedded Systems. In Proc. of the 40th Design Automation Conference, pp. 394-
401, 2003.

8. Haili Wang, Qiang Wu, Jinian Bian et al.: A Novel Virtual-Real Component Synthesis Ap-
proach in SoC Design. In the 8th International Conference on CAD/Graphics03, Macau, pp.
151-156, Oct. 2003.

9. Open SystemC Initiative (OSCI). available at: http://www.systemc.org

Efficient Parallel Spatial Join Processing Method in a
Shared-Nothing Database Cluster System

Warnill Chung!, Soon-Young Park?, and Hae-Young Bae?

Electronics and Telecommunications Research Institute,

161 Gajeong-dong, Yuseong-gu, Daejeon, 305-350, Korea
wnchung@etri.re.kr

2Dept. of Computer Science & Information Engineering, INHA University,
253 YongHyun-3Dong, Nam-Gu, Inchon, 402-751, Korea
{sypark, hybae}@dblab.inha.ac.kr

Abstract. Spatial database cluster consisted of several single nodes on high-
speed network to offer high-performance is raised. But, research about spatial
join operation that can reduce the performance of whole system in case process
at single node is not achieved. Therefore, we propose efficient parallel spatial
join processing method in a spatial database cluster system that uses data parti-
tions and replications method that considers the characteristics of spatial data.
Since proposed method does not need the creation step and the assignment step
of tasks, and additional message transmission between cluster nodes that appear
in existent parallel spatial join method, it shows performance improvement of
23% than the conventional parallel R-tree spatial join for a shared-nothing ar-
chitecture about expensive spatial join queries.

1 Introduction

Cluster systems have been studied widely. However, researches about cluster system
for spatial data are insufficient. But, it is very inefficient that division method of data
and redundancy method that is used in existing spatial database cluster system apply
to spatial data of bulk that expensive CPU operation that regional adjacency is high
[3,8,9,11]. Spatial database cluster manages spatial data at each cluster node by divid-
ing spatial data into spatial relations, and uses partial replication method that repli-
cates regional relation [1,7]. Spatial join query is achieved with parallel at all cluster
nodes that manage redundancies of join relation and each node executes spatial join
operation about space objects of logical division area allocated to own node. Result
tuples of spatial join operation performed at each node are transmitted to query proc-
essing node by pipelining. Query processing node transmits query results that are
transmitted from other nodes to user without removing redundancy result separately.
In proposed spatial database cluster system, parallel spatial join method does not need
work generation and assign step between each node those are need to achieve parallel

“This research was supported by University IT Research Center Project.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 81-87, 2005.
© Springer-Verlag Berlin Heidelberg 2005

82 Warnill Chung, Soon-Young Park, and Hae-Young Bae

spatial join [10]. In the midst of parallel spatial join operation, it processes expensive
spatial join query rapidly because there is no message transmission cost for work
division between cluster nodes. Assignment of logical division area shortens the
query processing time because redundancy of disk I/O for equal object between nodes
is no need. Also, several nodes do not achieve expensive refinement operation repeat-
edly at filter step of spatial join operation by filtering method that uses central point
of MBR of object in the logical division area border. And response time is fast be-
cause relevant results are transmitted to user who demands query immediately with-
out achieving additional work of union and so on to remove duplicate results about
parallel space join results. Hardware platform of spatial database cluster for our re-
search is based on a shared-nothing structure that is consisted of several independent
workstations and services stably large data [5].

2 Related Works

Spatial join operation is to seek a set of object pair that satisfied specification spatial
condition that is contain, cross, and overlap etc for two set of spatial data. And it has
characteristic that operation time increases rapidly according as the number of object
increases by requiring multiplex injection for two sets of data [3]. Previous research
about these spatial join was spatial join that uses mostly single processor, and actual-
ity spatial join's performance was progressed rather. But, in spite of this research,
spatial join at single processor is not satisfying users who require fast response time.
The reason is that the numbers of object to be spatial join's target is much and opera-
tion of each object is complicated and it takes much unit operation time [2]. Many
researches for parallel spatial join [2,3,4,6] have been studied to overcome limit in
this single processor by using multi processor. Among them, there is a research about
distributed parallel spatial join that makes two nodes participate spatial join parallel
under distributed spatial database system environment [8]. Spatial join characteristic
is that target object is a lot and expense of refinement step in operation of object pair
costs much. This separates and runs operation for each object pair [6]. Also, it pro-
vides advantage on performance to divide into filter step and refinement step [3].
Both a point that it is no relativity in operation of this object pair and a point that can
perform by multistage are very profitable characteristic inside parallel.

3 Parallel Spatial Join Scheme

3.1 Determination of Cluster Node to Achieve Join

Cluster node that must process spatial query gets list of cluster nodes to run spatial
join query parallel through position information of local relation managed in global
meta-information. These nodes transmit query of parse tree form and own node ID to
each nodes without special data transmission and request spatial join operation be-
cause those stores relevant relation already. Each cluster nodes that are required spa-

Efficient Parallel Spatial Join Processing Method 83

tial join operation achievement run spatial join operation about spatial objects in
relevant area after those find out spatial join's area to perform by oneself by referring
logical partition area of join target relations in own local meta information. For ex-
ample, let's suppose that replicated spatial relation R and S in node 1, node 2 and
node 3 join as following condition. Following join query is separated to following
three queries by LPA that is LPA Nodel, LPA Node2 and LPA_Node3.
SELECT * FROM R, S WHERE CONTAINS(R.Obj, S.0bj);
Each cluster node that is requested spatial join operation achievement runs spatial
join operation about spatial objects that overlapped in own logical partition area.
After that, it transmits result records to node that requests spatial join operation.

LocalA_r %ﬁ‘f\-m Final result
iver d

partition area

Allocated logieal << = 'J;
’:]
+

Transmission of results

Fig. 1 Parallel spatial join achievement by using logical partition area

Fig. 1 is an example of parallel spatial join achievement that uses logical partition
area about spatial join query for the river and road layer in local area A. Query proc-
essing node that receives query from user transmits user query to relevant nodes and
achieves parallel join operation after it searches nodes that store join target relations
repeatedly by referring global meta information. Nodes that obtain spatial join opera-
tion achievement achieve spatial join operation about spatial objects that are included
in logical partition area that is established to own local meta information. Spatial
join's results outputted parallel at each node are passed to query processing node and
the query processing node transmits final results to user.

3.2 Replicated Candidate Object Elimination Method at Filtering Step

By performing filtering step using CPM(center point of MBRs) of object, our method
prevents achieving expensive refinement operations that occur repeatedly about spa-
tial objects in partition area boundary. Local node that processes query achieves spa-
tial join operation about objects overlapped with logical division area of own local
meta-information. However, if parallel spatial join operation is based on space parti-
tioning, expensive spatial join operation is executed repeatedly like Fig. 2. By taking
advantage of filtering technique which uses center point of spatial object’s MBR,
expensive replicated join operation which occurs due to objects in partition area

84 Warnill Chung, Soon-Young Park, and Hae-Young Bae

boundary is removed. All tuples of spatial relation have spatial header information to
approach spatial object fast. This header information has MBRs and CPM. By filter-
ing spatial objects that exist in logical partition area boundary line according to CPM,
replicated expensive refinement operation is prevented in several nodes.

Objects that cause
replicated spatial join
] Object MBR of >
relation R
[] ObieetMBR o L/
relation S j @
= s
Nodel [
. 0O T o
e L)
Node3] FI l:l @ Node2

Fig. 2 Spatial objects by replicated join

Fig. 3 shows spatial join operation about spatial relation A and B stored replica in
cluster nodes. Spatial object A1 and B1 exist on boundary line of NODE1 LPA and
NODE2 LPA. Filtering step determines standard relation and then produces final
candidate object pair according to standard relation and CPM of candidate object. As
doing like this, replicated refinement operation that is caused due to replicated candi-
date object pairs is prevented.

NODEI_LPA - NODE2_LPA
I

- %
[] 1]

NODE4_LPA NODE3_LPA

Fig. 3 Spatial join operation of spatial relation A and B

Fig. 4 shows these cases. LPA is logical partition area and A is MBR of spatial ob-
ject within standard relation.

1) 2) 3) 4)
LPA LPA LPA LPA
A B A B [
A

A
B L s

Fig. 4 The case being candidate object pair on LPA boundary

Efficient Parallel Spatial Join Processing Method 85

Like 1) and 2) in Fig. 4, in case CPM of spatial object in standard relation is in
own logical partition area, refinement operation is achieved as outputting final candi-
date object pair. In case of 3) and 4), Node which manages logical partition area un-
der relevant area is achieved. However, like Fig. 5(3), spatial objects that are included
perfectly in other logical partition area can be omitted in filtering step.

LPA LPA LPA
A B A 4@
B A
1) A.cente LPA and 2) A.cente LPA and 3) A.rectn LPA and
B.cente LPA A .rectn LPA and B.recte LPA

B.rectn LPA

Fig. 5 The case being candidate objects on LPA boundary

Fig. 5 shows the case that outputs final candidate object pair in cluster node that
has LPA’s logical partition area and conditional expression. Filtering operation uses
R tree that is constructed in all spatial relations. Filtering algorithm is based on R-tree
that uses replicated candidate object elimination method.

4 Performance Evaluations

The proposed method and conventional method [4] were implemented in shared-
nothing spatial database cluster system [7]. R-tree index constructed in all relations
that are used in estimation and filtering step is achieved by using R trees in spatial
join. Also, transmission time that was spent to transmit relevant results to user was
except in this performance estimation because that time is equal in all methods.

Table 1 is information about spatial relations that are used in this experiment. Spa-
tial join achievement used crossing operation, and the number of cluster node to take
part in parallel spatial join operation is four.

Table 1. Detail inforamtion of realtions for evaluations

Relation name Relation size(Kb) No. of Tuples
CASE 1 Hangj?llrllzvlgi}lllgGae gé }ég
CASE2 Dongl-{ll(‘;iinGae 233 1324270
S E— 79

Firstly, we analyze the query processing time according to size of spatial join tar-
get relation. Fig. 6(a) shows that proposed method achieves faster query processing
than existing method according to size increment of relation. This shows that pro-
posed method is more efficient. The reason is because this method achieves spatial

86 Warnill Chung, Soon-Young Park, and Hae-Young Bae

join operation parallel at all nodes by using logical partition area assigned in each
node without process of work creation and so on.

—4— Conventional Method —#——Proposed Method —&— Conventional Method —l— Proposed Method

2500 1000
% 2000 - 7 st
£ 1500 £ 600
o0 =
£ 1000 2400 +
s Z
8 2

500 1
E g 200

0 - + + A 0 + + + + + t t t
CASE 1 CASE 2 CASE 3 2 3 4 5 6 7 8 9 10
No. of Tuples No. of Cluster Node
(a) Size of Relation (b) Number of Cluster Nodes

Fig. 6 Variations of parallel spatial join performance

Secondly, we analyze the query processing time according to increment of the
number of cluster node. Spatial relation that is used in estimation is the river of CASE
2 and Dong-KyungGae and spatial join operation is crossing operation. Fig. 6(b)
shows that processing time of proposed method are decreased greatly than existing
techniques according to increment of cluster node’s number. According to increment
of cluster node, this method has no transmission of message between nodes and equal
Disk 1/0O frequency by using logical partition area based on MBR that considers area
adjacency of spatial data.

5 Conclusions

With the rapid growth of the Internet, significant numbers of web-based information
systems have come to rely on database cluster technology to serve large user commu-
nities and to deal with peak loads. Therefore, we proposed a parallel spatial join
method to process expensive spatial join operation efficiently by using partition
method and replication method of spatial data in spatial database cluster system in
terms of high throughputs, fast response time, data consistency, linear scalability and
fault-tolerance. In our method, there is no need task creation and allocation of con-
ventional method because each cluster node achieves spatial join operation about
spatial objects in LPA allocated to oneself. So, expensive spatial join queries can be
processed rapidly because there is not necessary message transmission cost for task
distribution between cluster nodes.

References

1. B. Kemme, Database Replication for Clusters of Workstations, Ph.D. thesis, Department of
Computer Science, ETH Zurich, Switzerland, 2000.

2. J.D. Kim, and et. al, A Study on Task Allocation of Parallel Spatial Joins using Fixed Grids,
KIPS Journal Vol.8-D NO.04 pp.347~360, 2001.

Efficient Parallel Spatial Join Processing Method 87

3. T. Brinkhoff and H.P. Kriegel, Parallel Processing of Spatial Joins Using R-trees, Proceed-
ings of 12th Int’l Conf. on Data Eng.(ICDE’96), New Orleans, LA, 1996.

4. L. Mutenda, et. al, Parallel R-tree Spatial Join for a Shared-Nothing Architecture, 1999 Int’l
Symposium on Database Applications, pp. 429-436, 1999.

5. Y.I Jang, et. al, Web GIS Cluster Design with Extended Workload-Aware Request Distribu-
tion Strategy, Proc. of KISS, VOL. 28, NO.02, pp.304 ~306, 2001.

6. Y.D. Seo, Implementation and Performance Evaluation of Parallel Spatial Join Algorithm
using R-tree, Master Thesis, Pusan National Univ., 1999.

7. Chung-Ho Lee, A Partial Replication Protocol and a Dynamically Scaling Method for Data-
base Cluster Systems, Ph.D Thesis, Inha Univ., 2003.

8. H.J. Lee, Parallel Pipelined Spatial Join Method for Efficient Query Processing In Distrib-
uted Spatial Database Systems, Master Thesis, Inha Univ., 2002.

9. C.G. Li, Load Balancing Method using Proximity of Query Region in Web GIS Clustering
System, Master Thesis, Inha Univ., 2001.

10. Jignesh M. Patel and David J. Dewitt, Partition Based Spatial-Merge Join, Proc. of ACM
SIGMOD, Vol.25, Issue 2, pp. 259-270, 1996.

11. K. Tamura, and et. al, The Parallel Processing of Spatial Selection for Very Large Geo-
Spatial Databases, ICPADS 2001, pp. 26-30, 2001.

Maximizing Parallelism for Non-uniform Dependence
Loops Using Two Parallel Region Partitioning Method

Sam Jin Jeong

Division of Information and Communication Engineering, Cheonan University
Anseo-dong 115, Cheonan City, Korea 330-704
sjjeong@cheonan.ac.kr

Abstract The existing parallelizing compilers can parallelize most of the loops
with uniform dependences, but they do not satisfactorily handle loops with
non-uniform dependences. Most of the time, the compiler leaves such loops
running sequentially. Unfortunately, loops with non-uniform dependences are
not so uncommon in the real world. This paper presents the two parallel region
partitioning method of nested loops with non-uniform dependences for maxi-
mizing parallelism. By parallelizing anti dependence region using variable re-
naming, we will divide the iteration space into two parallel regions by a line in
case that FDT (Flow Dependence Tail set) does not overlap FDH (Flow De-
pendence Head set). Comparison with some related works shows more parallel-
ism than other existing methods.

1 Introduction

Given a sequential program, a challenging problem for parallelizing compilers is to
detect maximum parallelism. It is generally agreed upon, and shown in the study by
Kuck and et al. [1] that most of the computation time is spent in loops. Therefore,
current parallelizing compilers pay much of their attention to loop parallelization. A
loop can be easily parallelized if there are no cross-iteration dependences. But loops
with cross-iteration dependences are very common in normal programs.

Some techniques, based on Convex Hull theory [5] that has been proven to have
enough information to handle non-uniform dependences, are the minimum depend-
ence distance tiling method [4], the unique set oriented partitioning method [3], and
the three region partitioning method [7].

Fig. 1(a) shows the dependence patterns of Example 1 in the iteration space.

Example 1.
doi=1,10
doj=1,10
AQ*i+3,j+1)=...
o= A3, 112%+])
enddo
enddo

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 88-93, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Maximizing Parallelism for Non-uniform Dependence Loops 89

This paper will focus on parallelization of flow and anti dependence loops with
non-uniform dependences. Especially, it shows us a case that the iteration space is di-
vided into two parallel regions by a line.

(@) (b)
Fig. 1. (a) Iteration Spaces (b) CDCH of Example 1

The rest of this paper is organized as follows. Chapter two describes our loop
model, and introduces the concept of Complete Dependence Convex Hull (CDCH). In
chapter three, we define the properties of FDT (Flow Dependence Tail set) and FDH
(Flow Dependence Head set). We show how to find FDT and FDH and to divide it-
eration space into two parallel regions by a line. Chapter four shows comparison with
related works. Finally, we conclude in chapter five with the direction to enhance this
work.

2 Program Model and Dependence Analysis

We consider doubly nested loop program of the form shown in Fig. 2. For the given
loop, /; (/) and u; (u,) indicate the lower and upper bounds respectively, and should
be known at compile time. We also assume that the program statements inside these
nested loops are simple assignment statements of arrays. The dimensionality of these
arrays is assumed to be equal to the nested loop depth. To characterize the coupled
array subscripts, the array subscripts, f;(1, J), f>(1, J), f3(L, J), and fy(I, J), are linear
functions of the loop index variables.

dO[:lj, U
dOJ:lg, 175
AL I L) = . .
L = AL DAL D)
enddo
enddo

Fig. 2. A doubly nested loop model
The loop in Fig. 2 carries cross iteration dependences if and only if there exist four

integers (i, j;. is, j,) satisfying the system of Linear Diophantine Equations given by
(1) and the system of inequalities given by (2). The general solution to these equations

90 Sam Jin Jeong
can be computed by the extended GCD or the power test algorithm [6] and forms a
DCH (Dependence Convex Hull).
Jii1 j1) = f3(i2,72) and f2(is, /1) = fu(i>, J2) (1
I} < dni; = uyandl, = j1,j2 < u (2)

From (1), (i;.j,, i, />) can be represented as

(i1,]1,12,J2) = (€102, J2), 82(12, J2). &3(11,J1). &4(i1,] 1))
where g; are linear functions.

From (2), two sets of inequalities can be written as
;< i< uandls € j; < urand 3)
I = g(inj) = wandl, = gfi; j) = u
l; iy <uand/l; £ j, < upand 4)

I = giizj2) = wrand b, = go(is jo) = us

And, (3) and (4) form DCHs denoted by DCH1 and DCH2, respectively. Clearly, if
we have a solution (7;,_j;) in DCH1, we must have a solution (i, j,) in DCH2, because
they are derived from the same set of equations (1). The union of DCH1 and DCH2 is
called Complete DCH (CDCH), and all dependences lie within the CDCH. Fig. 1(a)
shows the CDCH of Example 1, which is given in [3].

If iteration (7, j,) is dependent on iteration (i; j;), then we have a dependence vec-

tor d(iy, ji) = (di(is, j1), di(is, j1) = (it 2 1)
So, for DCH1, we have
di(is, j1) = gs(irj1) - ir= (an - Di;+ Gy + yuand (5)
diis, ji) = gdirj1) -ji= anii+(Ln-1)i+ vz
For DCH2, we have
d(iz j2) = i2-gi(i2 j2) = (1- @iz~ Bz~ yarand (6)
dis, j2) = j2-goiz, j2) = -Gl + (1 - Bn)o- ¥
The properties of DCH1 and DCH2 can be found in [3].

3 Two Parallel Region Partitioning Method

We define the flow dependence tail set (FDT) and the flow dependence head set
(FDH) as follows. We can form two regions, FDT and FDH, by the algorithm, which
is similar to the algorithm presented in [S]. Fig. 3(a) shows the head and tail sets of
flow dependence, anti dependence in Example 1.

Maximizing Parallelism for Non-uniform Dependence Loops 91

Definition 1 Let L be a doubly nested loop with the form in Fig. 2. If line di(i;, j;) = 0
intersects DCHI, the flow dependence tail set of the DCHI, namely FDT(L), is the
region H, where H is equal to

DCHI 0 {(i1j1) | dfirj)) = Oordfisj) = 0} (7)

Definition 2 Let L be a doubly nested loop with the form in Fig. 2. If line di(i, j;) = 0
intersects DCH2, the flow dependence head set of the DCH2, namely FDH(L), is the
region H, where H is equal to

DCH2 N {(i2j2) | di(iz,j2) = 0ordizj,) = 0} (8)

Property 1 Suppose line d(i, j) = p*i+q*j+r passes through CDCH. If q¢ > 0,
FDT(FDH) is on the side of di(i;, j;) = 0 (di(is, j;) = 0), otherwise, FDT(FDH) is
on the side of di(i;, j;) = 0 (di(i5 j;) = 0).

Anti Dep. Head

}F_— difinsy) }f_ difinji)
Flow Dep. Tail FDT, :"
Anti Dep. Tail //

dfin/2) dfinis)

Flow Dep. Head FDH

(@ (b)

Fig. 3. (a) The head and tail sets of flow dependence, anti dependence, (b) FDT and FDH in
Example 1.

By Property 1, we can know the area of the flow dependence head set (FDH) of
DCHI1 and the flow dependence tail set (FDT) of DCH2 in Example 1 as shown in
Fig. 3(b).

Because the intersection of FDT and FDH is empty, FDT does not overlap FDH
and the iteration space is divided into two parallel regions by the line di(i,, j,) = 0.
From equation (6), we can get d,(i, j,) = i2/2 - j,/2, and the equation is j = i. So, the it-
eration space is divided into two parallel regions, AREA1 and AREAZ2, by the line j =
i. The execution order is AREA1 — AREA2.

Transformed loops are given as follows.

/* AREA1 */
doi= Iy, u;

do j = max(l,, [i1), u,
AQ*+3, 7+ =. ..
c = A3, 2%+
enddo
enddo

92 Sam Jin Jeong

/* AREA2 ¥/
doi= 11, U;

do j = I, min(u,, [1)
AQ%i+3,j+1) = ..
o= A3, 12%+])
enddo
enddo

4 Performance Analysis

Theoretical speedup for performance analysis can be computed as follows. Ignoring
the synchronization, scheduling and variable renaming overheads, and assuming an
unlimited number of processors, each partition can be executed in one time step.
Hence, the total time of execution is equal to the number of parallel regions, N, plus
the number of sequential iterations, N,. Generally, speedup is represented by the ratio
of total sequential execution time to the execution time on parallel computer system
as follows:

Speedup = (N, * N)/(N, + N ©

where N, N, are the size of loop i, j, respectively.

f— dfisfs) : [_ difinJi)

diinjs) dHiz)2)
AREA3) AREA2
..... i i
(@) (b)

Fig. 4. Regions of the loop partitioned by (a) the three region partitioning; (b) the unique sets
oriented partitioning in Example 1

In Example 1, the three region partitioning method [2], [7] divides the iteration
space into one parallel region, AREA3, and one serial region, AREAT1, as shown in
Fig. 4(a). So, the speedup is (10*10)/(1+45) =2.2.

The unique set oriented partitioning method [3] divides the iteration space into one
parallel region, AREA2, and one serial region, AREA1, as shown in Fig. 4(b). So, the
speedup is the same as the three region partitioning method.

Maximizing Parallelism for Non-uniform Dependence Loops 93

Applying the minimum dependence distance tiling [4], dj,.;,, = 2. The space can be
tiled with width = 1 and height = 2, thus 50 tiles are obtained. The speedup for this
method is (10¥10)/(50) = 2.

Our proposed method divides the iteration space into two parallel areas as shown
in Fig. 3(b). The speedup for this method is (10¥10)/2 = 50.

5 Conclusions

In this paper, we have studied the parallelization of nested loops with non-uniform
dependences to maximize parallelism, and proposed Two Parallel Region Partitioning
Method.

When there are both flow and anti dependence sets, we eliminate anti dependence
from the doubly nested loop by variable renaming. After variable renaming, there re-
mains only flow dependence in the nested loop. We then divide the iteration space
into the flow dependence head and tail sets.

If FDT does not overlap FDH, a line between two sets divides the iteration space
into two parallel areas by our proposed method.

In comparison with some previous partitioning methods, our proposed methods
give much better speedup than other methods.

References

1. D. Kuck, A. Sameh, R. Cytron, A. Polychronopoulos, G. Lee, T. McDaniel, B. Leasure, C.
Beckman, J. Davies, and C. Kruskal, "The effects of program restructuring, algorithm
change and architecture choice on program performance," in Proceedings of the 1984 In-
ternational Conference on Parallel Processing, August 1984.

2. C. K. Cho and M. H. Lee, "A loop parallization method for nested loops with non-uniform
dependences", in Proceedings of the International Conference on Parallel and Distributed
Systems, pp. 314-321, December 10-13, 1997.

3. J. Ju and V. Chaudhary, "Unique sets oriented partitioning of nested loops with non-uniform
dependences," in Proceedings of International Conference on Parallel Processing, vol. 111,
pp. 45-52, 1996.

4. S. Punyamurtula and V. Chaudhary, "Minimum dependence distance tiling of nested loops
with non-uniform dependences," in Proceedings of Symposium on Parallel and Distributed
Processing, pp. 74-81, 1994.

5. T. Tzen and L. Ni, "Dependence uniformization: A loop parallelization technique," /IEEE
Transactions on Parallel and Distributed Systems, vol. 4, no. 5, pp. 547-558. May 1993.

6. M. Wolfe and C. W. Tseng, "The power test for data dependence," IEEE Transactions on
Parallel and Distributed Systems, vol. 3, no. 5, pp. 591-601, September 1992.

7. A. Zaafrani and M. R. Ito, "Parallel region execution of loops with irregular dependences," in
Proceedings of the International Conference on Parallel Processing, vol. 1I, pp. 11-19,
1994.

The KODAMA Methodology:
An Agent-Based Distributed Approach

Guogiang Zhong, Satoshi Amamiya, Kenichi Takahashi, and Makoto Amamiya

Graduate School of Information Science and Electrical Engineering,
Kyushu University, 6-1, Kasuga-Koen, Kasuga, 816-8580 Japan
{zhong, roger, tkenichi, amamiya}@al.is.kyushu-u.ac.jp

Abstract. The KODAMA methodology is our endeavour to explore
new analysis and design methodologies, as well as new tools, for de-
veloping ubiquitous applications around autonomous, interacting soft-
ware agents. To concrete and detail the well-known multiagent system
paradigm, KODAMA introduces a plug-and-play agent model, an agent
community model and an on-demand interaction model. At the top level,
a whole system is decomposed into various agent communities. Working
one level down, communities are broken down into independent agents.
At the lowest level, agent roles are the basic entities for specifying agent
activities in online interactions. In this article, we first present how these
new models are exploited in the analysis and design phases; then discuss
some details of how they are implemented in a practical shopping-support
system.

1 Introduction

In an era of ubiquitous computing that Mark Weiser foresaw in [1], the new
software engineering challenges that must be faced are characterised by three key
features. First, most systems are now de facto concurrent and distributed, and
are expected to interact in flexible ways to dynamically exploit services and make
context-dependent decisions that can not be foreseen at design time. Second,
more and more systems are moving towards a customer-centred paradigm, in
which many aspects of customer behaviour should be facilitated. Third, and as
a natural consequence of the first two features, systems have to be designed as
open systems so that new components may join (and existing components may
leave) the system constantly, and interactions may occur at unpredictable times,
for unpredictable reasons, between unpredictable components [2].

Against this background, the KODAMA (Kyushu University Open & Dis-
tributed Autonomous Multiagent) methodology exploits the multiagent system
(MAS) paradigm to provide a set of new analysis and design models for develop-
ing ubiquitous applications. From the micro level to the macro level, KODAMA
introduces a plug-and-play agent model, an agent community model and an
on-demand interaction model. When taken together, these new models form a
complete mapping between the characteristics of complex systems and the key

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 94-102, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The KODAMA Methodology: An Agent-Based Distributed Approach 95

abstractions necessary for modelling agents, agent organisations and agent inter-
actions. These abstractions in turn serve as clear guidelines for the full system
development and maintenance cycle.

Different from other methodologies such as Gaia [3] and ARCHON [4], our
approach offers a holistic methodology and software engineering guidance on (i)
how to conceptualise and structure applications as agent-based systems, (ii) how
to explicitly represent agent social relationships to dynamically form, maintain,
and disband organisations, (iii) how to distribute different tasks throughout the
community. The emphasis of KODAMA therefore is on the smooth integration
of analysis, design, development and maintenance of multiagent systems.

The remainder of this article is organised as follows. Section 2 details the
KODAMA methodology as it pertains to agent-oriented software engineering
(AOSE). Section 3 examines a case study of a shopping-support system to show
some details of its implementation. We then outline, in Section 4, some conclud-
ing remarks.

2 The KODAMA Methodology

The core concepts behind agent-oriented software engineering, in effect, are
agent-oriented decomposition, agent-oriented abstraction and agent-oriented or-
ganisation [5,6].

Agent-oriented decomposition: the problem-solving space of a system is
naturally partitioned into self-contained agents.

Agent-oriented abstraction: agents, either cooperating or competing with
each other, are the right metaphor for both analysing and modelling subsys-
tems, subsystem components, interactions, and organisation relationships.

Agent-oriented organisation: by their very nature, agents are social entities
not only in the sense that they need to interact, but in the sense that they
rely on others according to protocols determined by their roles.

In the following two subsections and Section 3, we detail how these three con-
cepts are exploited in KODAMA for the analysis, design and implementation of
multiagent systems.

2.1 The Analysis Phase

The main goal of the analysis phase is to collect and specify the requirements of
the system-to-be and to identify some generic characteristics of the system that
are likely to remain the same regardless of the actual applications.

Just as the real world can be viewed as a set of autonomous agents that col-
laborate to perform some higher-level function [7], agent-oriented decompositions
based on functions/actions/processes are more intuitive and closer to the way
people might think about a problem [8]. Accordingly, the KODAMA approach
defines a set of preliminary models of agents, interactions and organisations as
follows:

96 Guogiang Zhong et al.

The preliminary agent model. Basically, agents have full control over
their behaviour and states. An agent, for example, can only ask other agents to
help it by sending them messages. The operating engine of an agent is message-
driven. Furthermore, an agent’s social knowledge is clearly separated from its
domain-level knowledge so that the application designer can reuse many common
facilities provided by the former and focus on the latter.

The preliminary interaction model. This model distinguishes agent in-
teraction activities into message exchanging, message interpretation and inter-
role interaction. It is worth noting that data exchange activities are application
independent and can be insulated from agent-related issues. Meanwhile, the
format and syntax of messages are system-neutral and specified by declarative
agent communication languages (ACL), while the semantics of messages are de-
termined by agent roles in applications and specified by interaction protocols.
Situated in an environment which is subject to ongoing change, it is more real-
istic for agents to have the ability to initiate (and respond to) interactions in a
flexible manner so that they can respond to unanticipated difficulty by sending
requests for assistance at runtime.

The preliminary organisation model. This model captures the depen-
dencies and interrelationships between various agents in the system in terms
of organisation rules and organisation structures. On the one hand, organisa-
tion rules allow designers to explicitly define how new groups of agents can be
formed, how unwanted groups of agents can be disbanded. On the other hand,
organisations of different sizes may require different organisational structures
from a simple collection of peers to a relatively complex multilevel hierarchy.
When an agent interacts with others in the system, the notion of which agents
are primitive can be varied according to its aims and objectives. From a different
level of abstraction, a collection of agents may be viewed as a single conceptual
unit. Agent-based systems always involve ever-changing interrelationships among
their members that are explicitly represented by organisational structures, and
organisation rules that are explicitly defined by interaction protocols.

2.2 The Design Phase

Starting with the three preliminary models outlined in the analysis phase, the
design phase is responsible for eventually elaborating them into real models,
which in turn act as guidelines for actual system implementations.

The plug-and-play agent model. This plug-and-play standard mandates
that an agent is made up of a kernel unit, which encapsulates the common mod-
ules, and an application unit, which encapsulates application-dependent mod-
ules. In practice, the kernel unit is composed of a set of common data and
modules, such as agent ID, registers, control module, communication module,
etc; the application unit is composed of one or more plug-in modules, which can
be seamlessly plugged into the kernel unit.

As mentioned above, agents are inherently message-driven. When a new mes-
sage reaches an agent, it is first checked and interpreted by the kernel unit. Then
the application-dependent part of the message is forwarded to and processed in

The KODAMA Methodology: An Agent-Based Distributed Approach 97

Message Input

1

. Social
Kernel Unit Knowledge

Reply/Request
Messages Y

e —
Plug-in Modules Domain-level
Knowledge

Action Output

Fig. 1. The message flow in an agent

the application unit, which may result some action being performed, replying
to the message or sending a new request message(s) (see Figure 1). Typically, a
plug-in module consists of invocation condition, which is checked with incoming
messages, and plug-in program, which is called if the condition is satisfied.

To install a plug-in module, either during development or runtime, an agent
simply adds the invocation condition to the kernel unit and loads the plug-
in program to the application unit. Similarly, an agent can uninstall a plug-in
module by removing its invocation condition and plug-in program. Like class
libraries in object-oriented programming, plug-in libraries in our agent-oriented
approach are modular and reusable.

The agent community model. All agents in KODAMA are categorised
into various agent communities (or communities for short), which in turn are
linked together to form organisation structures. It seems appropriate to divide
complex systems into smaller more manageable sub-systems, each of which can
be represented and handled by one or more agent communities. Social rela-
tionships between agents therefore are specified through their positions within
communities. Determined by the size and needs of applications, organisation
structures can be peer-centred or hierarchical, and can even change dynamically
in an evolutionary fashion.

Our model for communities, namely the portal agent model, is based on
three inter-related concepts: role, interaction and organisation. At the micro
level, roles are the basic building blocks representing generic agent behaviours
that can interact mutually. At the macro level, an organisation is composed of
a set of role-playing agents and their interactions. Agents, on the one hand, are
specified as active communicative entities which play roles. The behaviour of a
multiagent system as a whole, on the other hand, is the result of roles played by
agents.

A portal agent acts only on behalf of a single community and allows all agents
in the community to be treated as one single normal agent, the portal agent itself,
outside the community. In general, an agent’s address in a community, we call

98 Guogiang Zhong et al.

it logical address, is given by the community name and its unique identifier as
follows:

<logical-address> ::= <community-name> ¢‘.’’ <UID>
<community-name> = <logical-address> | ‘‘root’’
<UID> = <string>

A community name actually is the logical address of the portal agent that is given
by the higher community. Note that the portal agent of the top community is
called root.

The on-demand interaction model. The KODAMA methodology defines
a push and pull model for online interaction and cooperation between agents.
With this model, agent attributes are divided into those belonging to a pub-
lic profile, which is open and can be made public, and those belonging to a
private profile, which is restricted and cannot be exposed. Agent roles are of-
fered through online interaction between agents by pushing their public profiles
to service agents and pulling available roles and rules back. Those roles are in
turn evaluated locally according to private profiles and corresponding rules. It is
worth noting that the notion of agent roles here is consistent with the notion of
plug-in modules mentioned earlier. While the plug-in model focuses on abstrac-
tion mechanisms for individual agents, the role model captures agent activities
in interactions.

Policy packages are used to pack together roles (representing agent services),
assignment rules of roles (which are described in a rule base), and service con-
tents [9]. The structure of policy packages is as follows:

<policy package> ::= <rules> <roles> <contents>

<rules> 1= <rule> | <rule> <rules>

<rule> ::= <condition> <role names>

<role names> ::= <role name> | <role name> <role names>
<condition> ¢ “TRUE’’

| ‘“and’’ <condition> <condition>
| “‘not’’ <condition>

| “‘eq’’ <attribute>

| ¢‘<?’ <attribute>

| ¢¢>’? <attribute>

<attribute> <variable name> <value>

<roles> ::= <role> | <role> <roles>

<role> ::= <role name> <programme name> <init description>
<contents> ::= <content> | <content> <contents>

<content> ::= <programme name> <programme path>

Public and private profiles are stored as pairs of variable and value, or as digital
certificates with Public Key Infrastructure (PKI). They can only be accessed by
a specific profile manager. Meanwhile, policy packages are evaluated by a specific
policy evaluator. Once an agent gets a policy package, its policy evaluator gets
roles by evaluating rules in the policy package. In this way, agent roles are
described and delivered as policy packages; agent attributes are managed as
public and private profiles; appropriate roles are extracted through a two-step

The KODAMA Methodology: An Agent-Based Distributed Approach

agents

portal agent

creator agent

Table 1. Agents, roles and functions

application independent roles

application dependent roles

portal

agent list delivery

create agent
delete agent
join community

information registration

join community

leave community

functions

(de-)register agents, filter messages

send shop agent list

create new agents
delete agents
join an agent community

register visitor & shop information

join an agent community

leave an agent community

shop agent
information registration register shop information
policy package delivery send shop policy packages
join community join an agent community
leave community leave an agent community
location update location, join community
user agent

profile management
package evaluation

advertising

manage public/private profiles
evaluate shop policy packages

send advertising email to visitors

99

matching process: first matching against the public profile on the service provider
agent side, then matching against the private profile on the service consumer
agent side.

3 A Case Study

As a part of an academe-industry joint research project, we were able to build a
shopping-support system and perform a large-scale experiment [10] in the Osu
shopping mall in Nagoya, Japan. Through this case study, we demonstrate how
our approach can be used to build a location- and context-aware application in
which participants, activities and transactions are treated as agents, agent roles
and agent interactions respectively.

The actual system is developed in Java language and its implementation
proceeds from two different perspectives simultaneously. One is a top-down ap-
proach, looking at the application’s overall structure, and the other is a bottom-
up approach, deciding the granularity of the agents and determining each agent’s
roles in the community. In particular, we chose a single-level hierarchical struc-
ture for the agent organisation with four kinds of agents, two kinds of agent
communities (see Figure 2). Furthermore, agents’ roles are decomposed, in ac-
cordance with the plug-and-play agent model and on-demand interaction model,
into application-independent roles, and application-dependent roles, as sum-
marised in Table 1.

100 Guogiang Zhong et al.

Shopping-mall Community

User Agent Community

—> (Create Agent = ==> Agent Move <—> Agent Interaction

O User Agent [:::] Portal Agent Q Creator Agent C] Shop Agent

Fig. 2. An overview of the agent society

Table 2. Definition of the location role

role name: location

protocol name: shopping-support system

description: update location

initiator: location sensing subsystem

interaction with: join community role/local portal agent

input: position information

parameters: shopping-mall name

output: invoke join community role/shop agent list enquiry
parameters: portal agent name/position information

To demonstrate the working mechanism of agent roles, here we present one
specific application-dependent role, the location role. As shown in Table 2, the
location role is initiated externally by a location-sensing subsystem (refer [10]
for details). Depending on its position information, the agent has two choices:
either to move to another shopping-mall community or to update the shop agent
list. In the former case, the location role will initiate the join community role in
the agent. In the latter case, the location role will interact with the local portal
agent to get a new shop agent list.

This experimental system development was divided into three steps: common
facilities development, kernel unit development and application unit develop-
ment. The greatest effort was devoted to the application unit part and required
six person-months to fix the specification and three person-months to program.
The development of both the common facility part and the kernel unit part,
however, was based on our previous work and required approximately another
two person-months. As illustrated in Table 3, the common facility part and the
kernel unit part make up 47% of the source code, while the application unit
part makes up 53% of the source code. It means that the KODAMA approach
promotes speedy development cycle and high reusability.

The KODAMA Methodology: An Agent-Based Distributed Approach 101

Table 3. Source code constitution of the experimental system

number of classes lines of code percent
common facility 50 3,756 21%
kernel unit 63 4,646 26%
application unit 153 9,547 53%
total 266 17,949 100%

4 Conclusions

This paper has given a general introduction to the KODAMA methodology for
agent-oriented software engineering. In sum, our approach affords four bene-
fits. First, the role-agent-community metaphors provide the underlying ratio-
nale for the system under analysis and guide subsequent design, development
and deployment. Second, KODAMA is naturally distributed and capable of self-
configuration and self-adaptation. Both service providers and consumers are en-
capsulated as relatively independent agents. Third, the agent community model
and portal agent model are suitable not only for partitioning a complex sys-
tem into smaller sub-systems, but also for integrating the agent level and the
macro level seamlessly. Fourth, the public profile and private profile manage-
ment model, together with the push and pull ad hoc interaction model, enables
on-demand interaction and extracts customised services among agents.

References

1. Weiser, M.: The computer for the 21st Century. Scientific American 265 (1991)
94-104

2. Papazoglou, M.P.: Agent-oriented technology in support of e-business. Communi-
cations of the ACM 44 (2001) 71-77

3. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
the Gaia methodology. ACM Transactions on Software Engineering and Method-
ology 12 (2003) 317-370

4. Jennings, N.R., Mamdani, E.H., Corera, J.M., Laresgoiti, 1., Perriollat, F., Skarek,
P., Varga, L.Z.: Using Archon to Develop Real-World DAI Applications. IEEE
Expert 11 (1996) 64-70

5. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley & Sons,
Chichester England (2002)

6. Luck, M., McBurney, P., Preist, C.: Agent Technology: Enabling Next Gener-
ation Computing (A Roadmap for Agent Based Computing). Technical report,
AgentLink (2003)

7. Jennings, N.R.: Agent-based control systems. IEEE Control Systems Magazine 23
(2003) 61-73

8. Booch, G.: Object-Oriented Analysis and Design with Applications. Addison
Wesley (1994)

102

9.

10.

Guogiang Zhong et al.

Iwao, T., Okada, M., Kawashima, K., Matsumura, S., Kanda, H., Sakamoto, S.,
Kainuma, T., Amamiya, M.: Large Scale Peer-to-Peer Experiments with Virtual
Private Community (VPC) Framework. In: Proceedings of Cooperative Informa-
tion Agents. LNAI 2442, Springer Verlag (2002) 66-81

Zhong, G., Amamiya, S., Takahashi, K., Iwao, T., Kawashima, K., Ishiguro, T.,
Kainuma, T., Amamiya, M.: You’ve Got Mail From Your Agent. In: Engineering
Societies in the AgentsWorld IV. LNAI 3071, Springer Verlag (2004) 392-409

A New Iris Recognition Approach for Embedded
System

Hongying Gu!, Yueting Zhuang!, Yunhe Pan!, and Bo Chen?

! Institute of Artificial Intelligence, Zhejiang University,
Hangzhou 310027, P.R.China
{guhy,yzhuang}@cs.zju.edu.cn
2 Software College, Zhejiang University of Technology,
Hangzhou 310032, P.R.China
cb@zjut.edu.cn

Abstract. Iris recognition is a prosperous biometric method, but some
technical difficulties still exist especially when applied in embedded sys-
tems. Support Vector Machine (SVM) has drawn great interests recently
as one of the best classifiers in machine learning. In this paper, we develop
an iris recognition system using SVM to classify the acquired features
series. Even though the SVM outperforms most of other classifiers, it
works slowly, which may hinder its application in embedded systems,
where resources are usually limited. To make the SVM more applicable
in embedded systems, we make several optimizations, including Active
Learning, Kernel Selection and Negative Samples Reuse Strategy. Exper-
imental data show that the method presented is amenable: the speed is
5 times faster and the correct recognition rate is almost the same as the
basic SVM. This work makes iris recognition more feasible in embedded
systems. Also, the optimized SVM can be widely applied in other similar
fields.

1 Introduction

Embedded systems have limited resources, including power, communications
bandwidth, time and memory. All of the above will require new ways of think-
ing, not just at the input and output ends, but about the very fundamentals of
computing and communications. Ways will be needed to ensure such systems to
operate reliably, safely, and efficiently. Support Vector Machine (SVM) has been
a promising method for classification because of its solid mathematical founda-
tions [1]. In classifying the same features series, it works better than most of other
classifiers, such as Euclidean distance and Hamming distance. Nevertheless, due
to its nature of the computational complexity, under certain circumstances, it
may not be applicable in embedded systems.

Iris recognition is one of the best biometrics recognition methods in the world
[2]. The combination of the iris recognition and embedded systems would surely
create great possibilities. An embedded iris recognition system can be used in cell
phones, automobiles, e-business systems and so on. Recently, health researchers

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 103-109, 2005.
© Springer-Verlag Berlin Heidelberg 2005

104 Hongying Gu et al.

are investigating microscopic sensors that could traverse the bloodstream, mon-
itor health conditions and report them tirelessly. Consumer electronics and in-
formation technology companies envision homes filled with intelligent devices
that can interact with each other. They also envision homeowners and appliance
manufacturers to improve the quality of daily life. In these embedded applica-
tions, it is necessary that the identification be recognized. Since the cameras
are already embedded into cell phones and other places for other purposes, iris
recognition is firstly considered to recognize a person.

There are several companies developing iris recognition products: Iridian
Technologies, LG and Panasonic. Among the products provided by different
companies, the BM-ET300 from Panasonic is unique in that it is partly embed-
ded iris recognition product. All of these companies use Daugman’s iris recog-
nition algorithm and most of their products run on PC or similar platform. In
Daugman’s algorithm [3], multi-scale Gabor filters are used to demodulate tex-
ture phase structure information of the iris to get an IrisCode. The difference
between a pair of IrisCode is measured by their distance.

In this study, we choose variation fractal dimension as the feature of irises
according to the self-similarity of the rich texture variation details in irises. To be
more suitable in embedded applications, we improve the efficiency of SVM for iris
recognition and maintain its high classification performance at the same time.
The experimental data show that our iris recognition system with an optimized
SVM is 5 times faster than the system with the normal SVM while the accuracy
is almost the same.

2 Iris Recognition

As a typical pattern recognition method, iris recognition is done in 2 steps. First,
extract features to present iris pattern. Then, choose a classifier to do the pattern
recognition. In the features extraction, we choose variation fractal dimensions as
features because of the self-similarity of irises textures. Later, we will discuss two
different classifiers and compare their performance in the section of Experiments
and Results.

2.1 Features Extraction

By analyzing local intensity variations of an iris image, we can see the self-
similarity of the local variations of the two-dimensional iris image. So we take
it as a typical fractal phenomenon. The mathematical way to measure fractals
is by fractal dimension. Mandelbrot [4] studied the use of some effective fractal
dimensions. The most well known and the most widely used one is box-counting
fractal dimension. Inspired by Mandelbrot, A special box-counting dimension
was proposed for texture images like irises in [5]:

log N5 (IsChange(Fy))

DimpF = lim
5—0 —logd

, (1)

A New Iris Recognition Approach for Embedded System 105

where N5 (IsChange (Fs)) is the smallest number of square boxes of side ¢ nec-
essary to cover F. Fj is the image, which covered by square boxes of side 4,
IsChange(Fy) is 1 if the gray scale in Fs changes, and 0 otherwise.

In order not to leave out any variation details, we use a moving window
(la, lp) which moves by (Step). The overlap is allowed when covering the image.
We now calculate the variation fractal dimension for every sub-image.

Feature(I) = (D1 -+ D), (2)

where D; is it" sub-image’s corresponding variation fractal dimension. These
features are sent to the classifier for recognition.

2.2 Match by Euclidean Distance

After extracting the features, we are apt to go straight forward to measure the
distance between different people’s feature series. Both of [2] and [3] use distance
as their classifier to do iris recognition. One is Hamming Distance and the other is
Euclidean Distance. Hamming distance is 1-D distance, and Euclidean distance
is 2-D.They are both linear classifiers and time-saving algorithms. Here we use
Euclidean Distance to do the comparison experiment. Suppose we have two
feature vectors: x and y, in Euclidean space, the distance is defined as:

n

dlay) = | (@ —). (3)

i=1

Euclidean distance works fast and performances well when comparing linear
features. But iris textures are highly nonlinear, and the variation fractal dimen-
sion features are nonlinear too. Therefore, the conventional Euclidean Distance
is not suitable to differentiate people represented by variation fractal dimension.
The possible solution is to construct a nonlinear classifier so that the two classes
can be correctly classified.

2.3 SVM Classifier

Based on the minimization of structural risk of statistical learning theory, SVM
works like this [6]: it maps the input vector z to a higher dimension feature space
Z, and constructs a classification-hyperplane in this space. The hyperplane H is
w-x+b=0.

The following is the general equation of the SVM decision function for clas-
sification:

f(z,a) =sgn Z yiaik (zi,) +b], (4)
SupportVectors
where y;a; = w; are the networks weights, x; are the support vectors of the
solution, b is the threshold of the function and k (x;,) is the kernel function.
As we can see, the solution is the sign of the addition, so this is the general-
ization function for two-class’s classification. In our case, the kernel function is
then the polynomial function of degree d: k(z,y) = (z -y + ¢)%.

106 Hongying Gu et al.

3 Performances and Optimizations

How to build an effective learning system plays a crucial role in the performance
of classifiers. Support Vector Machine (SVM) is a promising method for classifi-
cation because of its solid mathematical foundations which convey several salient
properties that other methods hardly provide. However, the efficiency of training
support vector machines is still a bottleneck, especially for a large-scale learning
problem [7]. Therefore, it is important to develop a fast training algorithm for
SVM in order to solve various engineering problems. The main task of this paper
is to improve its efficiency.

3.1 Active Learning

Support Vector Machine has got significant success in numerous real-world learn-
ing tasks. However, like most machine learning algorithms, it is generally applied
using a randomly selected training set classified in advance.

Since iris recognition system can have a database before test, we try a dif-
ferent strategy: choosing the training samples beforehand. Pre-setting training
samples is a kind of active learning [8].

Given an unlabelled pool U, an active learner [has three components: (f, g, X).
The first component is a classifier, f : X — {—1,1}, trained on the current set of
labelled data X (and possibly unlabelled instances in U too). The second compo-
nent ¢(X) is the querying function that, given a current labelled set X, decides
which instance in U to query next. The active learner can return a classifier f
after each query (online learning) or after some fixed number of queries.

Usually the total training set is much larger than the number of final support
vectors. Active learning can remove most non-support vectors quickly so that
the computational cost for sequential optimization can be dramatically reduced.
Further, another fact is that the result is changed little if some non-support
vectors are removed from the training set. So we can limit the training set size,
and remove the non-support feature vectors.

3.2 Kernel Selection

To get a better performance, we choose polynomial kernel function from the
three kernel functions of the SVM method: Polynomial, RBF and sigmoid neu-
ral networks. The sigmoid neural network kernel function and the RBF kernel
function work fine, but cost more time.

The principal parameter of the polynomial kernel function is the degree of
the polynomial. It is always possible to implement with a variable degree. The
polynomial degree would be between 1 and 4. Basically, we will choose the poly-
nomial degree as 2.

Let us suppose that the iris images have a size t,, X t,, and that t; x ¢, is
the block size. tf is thus the number of pixels to be processed by window of
classification. If we take again the decision function of SVM with a polynomial
kernel of degree d and C' = 1:

A New Iris Recognition Approach for Embedded System 107

f(z,a) =sgn Z yioy [(zi, @) + l]d +b]. (5)

SupportVectors

So the complexity of this algorithm is: 7 + d + 1 operations by support vector.

3.3 Negative Samples Reuse Strategy

In an application of SVM, the positive samples and negative samples are non-
symmetrical. Most of the cases are: negative samples are much more than positive
ones and are much easier to get. Usually, when different people are tested, the
negative sample set can be similar. So we reuse the negative samples when they
support vectors. It improves the performance.

3.4 Other Small Optimizations

We also make some small optimizations: 1. Storing features in a dense format.
The SVM must read in the training set and then perform a quadratic optimiza-
tion. It takes the time to do some I/O so as to get features into the memory and
process them. If we store the feature vector in a contiguous memory address, and
in a dense format, it saves systems run time. 2. Saving training results. We save
training results into two files. One is used to store kernel parameters, support
vectors and the corresponding. The other (index file) is to store the sequential
number of support vectors on the training set in order to merge them during the
testing stage and reduce unnecessary kernel re-evaluations.

4 Experiments and Results

To evaluate the performance of the proposed method, we provide evidence of our
analysis on SVM-based iris recognition using CASIA Iris Image Database from
National Laboratory of Pattern Recognition (NLPR), Institute of Automation
(TA), Chinese Academy of Sciences (CAS). The database includes 756 iris images
from 108 different eyes of 80 subjects. The images are acquired during different
sessions and the time interval between two collections is one month, which is a
real-world application case simulation. All these experiments are done in a Pocket
PC with Windows CE. The algorithms are developed in Embedded Visual C++
3.0.

According the algorithms discussed above, we implement the iris recognition
system as Figure 1:

In some real world applications, such as biometrics recognition, the reliabil-
ity rate is more important than the raw error rate. So it is necessary to eval-
uate SVM’s rejection performance. The reliability is defined by Reliability =

Recognition rate Now we list the experimental result as the widely-used form

100%— Rejection rate”
shown in Table 1:

108 Hongying Gu et al.

Pre-
processed SEY
Lis Iris Sample | Iris Samples| Feature | Features | 20 Output
Samples Pre-processin Extracting Classifying| | 1
s B e N R —

Fig. 1. Iris recognition system structure

Table 1. Comparison of CRR, FAR and FRR
Matching Methods Recognition False accept False reject Reliability
rate (%) rate (%) rate (%) (%)

Euclidean Distance 72.2 17.1 10.7 80.85
SVM 98.4 0.35 1.25 99.65

Table 2. Comparison of CRR and Computational Complexity

Matching Methods Recognition rate (%) Average run time(s)

Euclidean Distance 72.2 0.13
SVM 98.4 4.59
Optimized SVM 98.27 0.88

As shown in Table 2, Computational Complexity comparison is done among
the three different algorithms. The average run time of SVM and optimized SVM
include training time and matching time.

From Table 2, we can see the optimized SVM-based iris recognition runs
much faster than the original one. And its correct recognition rate is still satis-
fying. With this improved performance, iris recognition can be implemented in
embedded systems.

5 Conclusions

The increasingly important role of embedded iris recognition system in the wide
variety applications has opened an array of challenging problems centered on the
computation efficiency. In this paper, we have presented an efficient approach
for SVM-based iris recognition. To make the SVM more applicable in embedded
systems, we make several optimizations, including active learning, kernel selec-
tion and negative samples reuse strategy. By the optimizations, the performance
is improved by more than 5 times, which makes embedded iris recognition more
feasible.

Support vector machine is a widely used and promising method for classifi-
cation. The optimizations of the SVM we make here can be applied in a wide
variety of application fields.

A New Iris Recognition Approach for Embedded System 109

References

&

. DeCoste, D., Scholkopf, B.: Training invariant support vector machines. Machine

Learning, 46 (2002) 161-190.

Ma, L., Wang, Y., Tan, T.: Iris recognition based on multichannel Gabor filtering,
In Proc.5th Asian Conf. Computer Vision, I (2002) 279-283.

Daugman J.G., High confidence visual recognition of persons by a test of statistical
independence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36
(1993) 1148 1161.

Mandelbrot B. B., The Fractal Geometry of Nature, San Francisco, CA: Freeman
(ed.), 1982.

Gu, H., Pan, H., Wu, F., Zhuang, Y., Pan, Y.: The research of iris recognition
based on self-similarity. Journal of Computer-Aided Design and Computer Graphics,
16(2004) 973-977 (in Chinese).

Vapnik V N.: Statistical Learning Theory, J. Wiley, New York(1998).

Collobert, R., Bengio, S.: SVMTorch: Support vector machines for large-scale re-
gression problems. Journal of Machine Learning Research, 1 (2001) 143-160.

Tong, S., Koller, D.: Support vector machine active learning with applications to
text classification, Journal of Machine Learning Research (2001) 45-66.

A RAID Controller: Software, Hardware and
Embedded Platform Based on Intel IOP321

Xiao-Ming Dong, Ji-Guang Wan, Rui-Fang Liu, and Zhi-Hu Tan

Key Laboratory of Data Storage System, School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R.China
xmdong@mail . whut.edu.cn

Abstract. While demand for large-scale storage services is growing very
rapidly, RAID is still today’s standard solution for enterprise class stor-
age systems. The software and hardware designing of a RAID controller
based on Intel IQ80321 platform is introduced, in which embedded Linux
is setup on the board, and a prototype system is implemented on x86
platform with Fibre Channel interface to host. The benchmark test
presents throughput of 186MB/s and 184MB/s for RAID 5 reading and
writing respectively.

1 Introduction

Storage demands are growing rapidly with the increasing usages of multimedia,
stream casting, and large scale database. To satisfy the capacity and availability
requirements of these applications, storage systems typically contain large disk
arrays that are capable of storing terabytes of data and have high availability.
High-performance RAID (Redundant Array of Independent Disks, [1] and [2])
storage is a critical component for many large-scale data-intensive applications.

The principle behind RAID-style architecture is simple: using a high-speed
interconnection medium to aggregate arbitrarily many (slow) storage devices
into a faster logical storage service, and making all applications unaware of this
aggregation. RAID level 0 (stripe), 1 (mirror) and 5 (stripe and block parity
check) are most commonly used.

RAID is divided into two camps: software and hardware. Software RAID uses
the computer’s CPU to perform RAID operations, while hardware RAID uses
specialized processors. The goal of our project is to implement high performance
external RAID controller based on Intel IOP80321. We also deploy our design
and prototype implementation on x86 platform. With our new algorithm, the
benchmark test results present throughput of 186 and 184MB/s for sequential
RAID 5 read and write operations. The performance evaluation seems incredible
by approaching the full bandwidth of fiber channel connection.

In the following chapters, section 2 and 3 introduce the software and hard-
ware design. Section 4 introduces the embedded development environment. The
prototype implementation is discussed in section 5, and evaluation results are
also shown there. The last two sections are related works and conclusions.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 110-117, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A RAID Controller 111

2 Software Design

The RAID controller’s software is divided into six modules, as shown in Figure
1. SCSI Target module will receive I/O requests sent from host servers passing
through some type of connection, such as SCSI or Fibre Channel. In general,
codes of SCSI subsystem in most operating systems (Linux, for example) are
only for initiator mode operation. Thus, we must implement target SCSI drivers
ourselves. On the other end, there is also a SCSI initiator module connecting to
low level disk drivers and disk hardware. It must support hot plug of disks, and
do detections of disk status periodically.

Global Configuration Server

Disks

(") HBA

Joleniu SOS
@ Npayos O
auley A vy
JWB ayoen
Jebiel SOS

RAID Controller

Fig. 1. This is the functional block diagram of the RAID controller software. A
whole disk array consists of the RAID controller plus a group of disks (maybe
FC, SCSI, or SATA type disk)

Cache Management module has a center position in the whole software sys-
tem. All memory buffers are allocated at CM in size of a stripe unit, according
to buddy algorithm. And the design has a ”zero-copy” memory allocation fea-
ture, which means each stripe unit has only one copy in the system, avoiding the
cost to copy buffers between software modules. There are two parts of cache in
system for read and write respectively. We need a method to deal with all these
stripe units efficiently, since operations for each I/O request are required.

Several commonly used RAID levels have been implemented in RAID Kernel
module, including level 0, 1, 5, and etc. RAID algorithms transform read and
write requests to a visual disk to requests to physical disks. I/O requests passed
by RK will be sent into queues. I/O Schedule module is always checking the
queue aiming to combine two contiguous requests into one, or do other reor-
ganizations to enable maximum I/O throughput. Global Configuration enables

112 Xjao-Ming Dong et al.

administrators to setup disk array through several approaches, such as serial
consoles and custom GUI applications.

3 Hardware Scheme

The Intel IOP321 I/O processor [3], featuring an Intel XScale core (which is
compliant with ARM version 5TE.) at 600 MHz, delivers a combination of high
performance, PCI-X data throughput, low-power consumption, small package
size, and outstanding price/performance.

Memory DDR Memory
Battery (DIMM)
[a
_____________ ~JTAG 17 FLASH| | UART | i Hex !

| JTAGPort _le— T T iE
GPIO Intel 80321 % iI
< S
1/0 Processor

12C Peripheral Bus (16 bit)

i 1
i Ethernet !
Primary PCI X Bus 64 bits d H
11 : Controller !
______________ 1
PCI X < >
Secondary PCI X Bus 64 bits
Bridge

11 11

Fibre Channel
Controller

SATA
Controller

Fig. 2. This is the functional block diagram of the RAID controller hardware.
Its components mainly include IOP321 processor, SATA disk controller (such as
Intel 31244) and FC controller (such as Agilent Tachyon DX2 or Qlogic ISP2312)

We have designed a RAID controller based on Intel 80321 processor, as shown
in Figure 2. This is a FC-to-SATA controller, with Fibre Channel interface to
the host and Serial ATA interface to disks. There are many choices for SATA
controller vendors, such as Silicon Image, VITESSE and Intel. Intel 31244, for
example, is a 4-port PCI-X to Serial ATA Controller. We need two such chips
to support at least 8 disks, providing about 2 TB of storage. It seems that
there are no more choices for FC controllers other than Agilent and Qlogic, such

A RAID Controller 113

as Tachyon DX2 and ISP2312, respectively. Both of these are dual-port 2Gb
bandwidth Fibre Channel controllers.

4 Embedded Development Platform

The target platform of the RAID controller in the system is a customized board
based on Intel IOP321 that runs embedded Linux kernel. Currently, the software
is developed with IQ80321 evaluation board. Features of 1Q80321 board include
one PCI-X expansion card slot, 8 Mbytes flash ROM, one serial console port
based on the 16C550 UART, and one Intel 82544 Gbit Ethernet device [4].

i Cross-tool| | Software Remote i i Custom Apps Root FS i
E chain Debugger| |Console i E i
E . | Debug Monitor| | BSP, Drivers, |
' . i | (RedBoot) and Kernel i
: Host OS (Redhat Linux) E ! E
: Lo :
i Host System (PC or ! ; Target Board (1Q80321) i
i Workstation) i E
:--------------------!T! _______ S "_"1_._____________-__-__-___'

JTAG

Ethernet
Serial Port (ttyS) I Network Connector

Fig. 3. The common Host/Target style cross-development environment for em-
bedded system is shown in this figure. There are usually three types of connection
between host and target platform: serial-UART, Ethernet network and JTAG
debug (via an Emulator, not showed in the figure). And the above blocks show
software functions

We choose Linux as the target operating system. It’s a fundamental task to
bring Linux startup on target board when building an embedded Linux system
[5]. Based on the host/target development environment as shown in Figure 3,
an embedded ARM Linux system is setup by the following 4 steps.

1. Prepare Cross-development Toolchain: The toolchain actually consists
of a number of components, such as gcc, binutils and glibc. The first step is
to compile toolchain from source packages on host side.

114 Xjao-Ming Dong et al.

2. Compile ARM-Linux Kernel: To compile a Linux kernel for IOP321
processor, several patches should be applied to the official Linux kernel.
For example, we patched rmkl, dsO, and dj9 revision packages to linux-
2.4.21 kernel source tree, then compiled kernel using arm-linux toolchain,
and finally delivered the kernel image file — zImage.

3. Make Root Filesystem: One of the last operations conducted by the
Linux kernel during system startup is mounting the root filesystem. The
content of a root filesystem include the system libraries (/lib), the kernel
modules (/lib/modules), kernel images (/boot), device nodes (/dev), main
system applications (/bin and /sbin), and custom applications (/local), with
configuration files and system initialization scripts (/etc). We have made a
root filesystem with size less than 2 Megabytes using BusyBox [6] utilities
package.

4. Boot the Board: Another very important system component, bootloader,
is needed in our system, which is responsible for loading the kernel dur-
ing system’s startup. RedBoot [7] is the standard embedded system de-
bug/bootstrap environment from Red Hat.

5 Prototype Evaluation Results

A PC architecture RAID controller has been implemented to test algorithms and
evaluate performances. It consists of an Agilent HHBA-5221A PCI-FC controller
(2Gb bandwidth) acting as SCSI target, an LSI 21320-R ULTRA320 SCSI con-
troller, and an Intel Xeon 1.80GHz CPU. The software is implemented as Linux
kernel modules, including a SCSI target mode device driver for the FC card. We
run Iometer [8] to do following tests.

Most tests have been done on the prototype implementation with 4 Seagate
Cheetah Ultra320 (MODEL ST373307LC) disks. The machine running Iometer
benchmark is a Xeon 2.4GHz PC server with an Agilent FC HBA card. We
also evaluate the performance of an nSTOR disk array with FC interface disks
under similar conditions for comparing. As shown in Figure 4, our prototype
implementation is even better than nSTOR in most cases.

In order to evaluate the RAID algorithm performance on target board and
compare the processing capacity, we have done a set of tests on both PC and
1Q80321 platform. As shown in Figure 5(a), the platform A can do about 4 times
more I/O per second than X. The source code is the same for the two platforms,
which means we have not utilized AAU on 1Q80321 board now.

The evaluation results in Figure 5(b) indicate the effects of AAU and zero-
copy. We can see that the performance get considerable enhancement when we
offload IOP321 by AAU doing XOR processing in RAID 5. The memory through-
put is 617MB/s with AAU, it’s much greater than computing XOR by IOP (only
77TMB/s, with 64KB block size). The zero-copy feature also has much contribu-
tion to the enhancement by avoiding memory copy overhead.

A RAID Controller 115

200 00 200 00
Seq/Read/e ake
— — Seq/Read/nstor
Rand/Read/e ake
-----Rand/Read/nstor

Seq/Wrte/e ake
6000 — — Seq/Wrte/nstor
Rand/Wrte/e ake
------ Rand/W' te/nstor

60 00

20 00 2000

80 00 8000

Throughput (MB/s)
Throughput (MB/s)

40 00 4000

05 2 4 8 6 32 b4 28 256 52 024 05 2 4 8 6 32 64 28 256 52 024
Request s ze (KB) Request s ze (KB)

(a) Read throughput (b) Wr te throughput

Fig. 4. This figure compares RAID 5 performance of our implementation (elake)
with a medium level disk array from nSTOR. (Random or Sequential/Read or
Write/elake or nstor). (a)Read throughput results; (b)Write throughput results

800
3000
2500 £ 600
2000 |- =
® = e ——— =~
S 1500 3 400 | - - AAU zero copy
1000 _§7 - — — AAU copy once
o
500 S0 T IOP zero copy
0 [R EREEEE IOP copy once
Al 0 A6 . I I
HE 2 4 8 16 32 64
Block size (KB)

(@) (b)

Fig. 5. (a) The test results compare processing capacity between general proces-
sors and XScale embedded processors. Each value is an average of data collected
through about 1 hour. A’ means PC platform with an AMD Athlon(tm) MP
2600+ CPU (2GHz) and 512MB memory; "X’ means 1Q80321 board with IOP321
(600MHz) and 128MB memory. The 0 and 5 following platform sign represent
RAID level 0 and 5 respectively. (b) The evaluation results compare effects on
memory throughput by AAU engine and zero-copy policy with different block
sizes

6 Related Works

RAID was declared at Berkeley in 1988 by D. A. Patterson, G. A. Gibson,
and R. H. Katz in [1]. Challenging the well-known gap between I/O subsystem
and processor, systems can alleviate the gap by distributing the controllers’ and
buses’ loads across multiple, identical parts. RAIDs suffer from some limitations,
such as bad performance for small writes, and limitation of scalability. There are
considerable researches devoted to RAID-derived storage systems. Also some

116 Xiao-Ming Dong et al.

new controller architectures have been developed, including AutoRAID [9] and
TickerTAIP [10].

Several manufacturers provide hardware RAID array products, including LSI
Logic, Mylex, Adaptec, Infortrend, Promise and 3ware, etc. [11] introduces man-
aging issues of RAID on Linux systems.

7 Conclusions

RAID is today’s standard solution for enterprise class storage systems. This
project tries to develop a high performance RAID controller with our efforts.
We have done these works:

o Selected IOP321 as hardware platform and setup an embedded Linux oper-
ating system.

o Designed RAID software and implemented a prototype system.

o Evaluated prototype performance and did some comparisons between x86
and IOP321 platforms.

The performance evaluation seems incredible by approaching the full band-
width of Fibre Channel connection, and we are planning to port the software to
our customized IOP321 board for RAID controller in the near future.

8 Acknowledgments

This project is supported by the National Natural Science Foundation of China
(No. 60273073) and National Key Project of Fundamental R & D of China (973
project, No. 2004CB318203). It is partially supported by Wuhan Elake Storage
Technology Co., Ltd.

References

1. Patterson, D. A., Gibson, G. A., Katz, R. H.: A Case for Redundant Arrays of In-
expensive Disks (RAID). In Proceedings of the International Conference on Man-
agement of Data (SIGMOD) (June 1988)

2. Chen, P. M., Lee, E. K., Gibson, G. A., et al.: RAID: High-Performance, Reliable

Secondary Storage. ACM Computing Surveys, Vol. 26(2) (1994) 145-188

http://www.intel.com/design/I10/ (December 2004)

4. Intel IQ80321 I/O Processor Evaluation Platform Board Manual. Document Num-
ber: 273521-006, November 7, 2002.

5. Yaghmour, K.: Building Embedded Linux Systems. O’Reilly & Associates (May
2003)

6. http://www.busybox.net/ (December 2004)

http://sources.redhat.com/redboot/ (December 2004)

8. http://www.iometer.org/ (December 2004)

w

=

A RAID Controller 117

9. Wilkes, J., Golding, R., Staelin, C., and Sullivan, T.: The HP AutoRAID Hier-
archical Storage System. ACM Transactions on Computer Systems, Vol. 14(1)
(February 1996) 108-136

10. Cao, P., Lim, S. B., Venkataraman, S., and Wilkes J.: The TickerTAIP Parallel
RAID Architecture. ACM Transactions on Computer Systems, Vol 12(3) (August
1994)

11. Vadala, D.: Managin RAID on LINUX. O’Reilly & Associates (2003)

Component-Based Integration Towards a
Frequency-Regulating Home Appliance Control System*

Weiqin Tong', Qinghui Luo', Zhijie Yin', Xiaoli Zhi', and Yuwei Zong®

' School of Computer Engineering and Science, Shanghai University, Shanghai, China
wgtong@mail.shu.edu.cn, luoginghui@graduate.shu.edu.cn
2 Shanghai Software Technology Development Center, Shanghai, China

Abstract. Conventional approaches to embedded software development are
very costly, mainly because of their close reliance on application-dependant
design, ad-hoc implementation, time-consuming performance tuning and
verification. The resulting software is often hard to maintain, upgrade and
customize. Component-based integration is an effective method to address the
problem. As the result of our effort, an embedded software developing platform
is constructed while developing an embedded control system for frequency-
regulating home appliances. In this paper, the control system is described, and
the developing platform is presented in detail, including an Application
Component Library and a Fast Developing Tool. Component-based embedded
software design and implementation are also put forward.

1 Introduction

There has been a great challenge, and a great opportunity as well, confronting the
home appliances industry, namely to move toward the trend of home appliances
informatization and frequency regulation. Informatization can attach new functions to
home appliances, while frequency regulation technology can save 10%~30% of the
energy used by home appliances.

This motivates an embedded control system for frequency-regulating home
appliances. To reduce design time and development cost, and enable software
customizing and tailoring, the reusable design concept is incorporated into the design
of this system. Much attention is paid to one of the key technical problems and
challenges—platforms and tools. An embedded system developing platform is built
up, together with an Application Component Library and a Fast Developing Tool for
frequency-regulating control software.

This paper is organized as follows. Section 2 gives an overview of the control
system. Section 3 introduces the system developing platform and tool. Section 4
expatiates on the embedded software design and implementation based on software

* This work is supported in part by Science and Technology Commission of Shanghai
Municipality under grant number 04dz15003.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 118-123, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Component-Based Integration 119

component. Finally, section 5 identifies directions for further research and concludes
this paper.

2

System Overview

The embedded control system consists of the following parts:

Central control module. 1t is the kernel of the embedded control system, with the
task of processing the information generated by other modules and coordinating
their executions.

Data acquisition and processing module. This module is in charge of collecting
the status of the running system and environment, and doing preliminary analysis
as well.

Frequency regulating module. Frequency regulation technology is employed for
carrying out the stepless speed variation to the alternating current motor. As the
rotating speed of the alternating current motor is proportional to the frequency of
electric current, the rotating speed of the motor can be adjusted by regulating the
power frequency. This module implements the control algorithms.

Frequency regulating algorithms remote update module. This module receives
the program codes transferred through network interface and writes them into the
FLASH ROM or EEPROM, in order to upgrade the driver routines, revise the
software defects and achieve function extension.

Communication module. This module enables the short distance communication
with home appliances through serial port or infrared interface.

Human-machine interface module. This module displays the running status of the
home appliance on the LCD/LED installed on the control panel, and offers facility
to control and adjust the appliance by touch screen or buttons on it, also provides
means to gather the running information and control the appliance through remote
controller.

Remote monitoring and maintenance module. This module provides remote
control and monitoring functions, and supports remote maintenance as well.
Remote manipulator can control and monitor the appliance via a computer
connected to the network, while maintenance staffs can do runtime maintenance
and fault diagnosis according to the result by analyzing the running status that the
appliance feeds back.

Self-adjusting and individualization configuring module. The operating
environments of home appliances may vary geographically and climatically; for
instance, there are differences in temperature and humidity between the north and
the south. This has great influence on the use and maintenance of home appliances.
Self-adjusting module helps adjust appliances to ideal temperature and humidity
according to different geographic and climatic conditions. Moreover,
individualization configuring module keeps record of user's commands and
preferences, and responds promptly later when the user issues a similar command
or needs specific preferences.

The system is modeled based on software component, as an effort to support

extensibility, and additional function modules can be incorporated easily.

120 Weiqin Tong et al.

3 System Developing Platform

The control system consists of hardware and software. A microcontroller based on
ARM7TDMI" is used for the target system. The embedded operating system
Reworks [4] is adopted for our purpose. It supports hard real-time operation and is
suitable for the control of electronic equipments, also provides an integrated
development environment (IDE) named ReDe, supporting ARM processors with
facilities like cross-compiling, linking, emulation debugging and downloading.
The OS running on the host machine is Windows 2000/NT/XP. The developing
platform includes the following parts:
o Application Component Library
e Fast Developing Tool for frequency regulating control software
e Supporting tools like cross-compiling, linking, emulation debugging and
downloading: Generate the binary code that can run on the target system and the
debugging information.
o System design tools: Provide designers with a graphic interface for component-
based software development, also interfaces and/or methods to invoke other tools.

1 System design tools

| I
_ Emulation debugging
Fast Developing Tool and downloading tools
for Frequency-

r
i
i
i
i
i
i
i
i
i
i
i Regulating Software
i
i
i
i
i
i
i
i
i
i
i
i
i

Emulator I— T:l_rget
system

Cross-compiling
[and linking tools

!Applicaticm Component Library |

System Developing Platform

Host machine

Fig. 1. Structure of the developing platform

3.1 Application Component Library

The component library is a repertory of components source codes and associated
information, including component insertion or deletion, component search,
components attributes table maintenance [1][2]. The component attributes include the
types of target processors, locating and linking requirements, hardware requirements,
related component information, etc. Some attributes can be adjusted according to
specific operating environments.

To develop the software based on components, the software functionality is
decomposed into different components. The principles and the methodologies of the
decomposition, and the definitions of the components function field, may be different
under specific situations [2]. In our system, necessary components are decomposed

Component-Based Integration 121

out according to the principle of function independence, integrity, and functional
cohesion. These components include but are not limited to:
Data acquisition and processing component
Frequency regulating component
Communication component
Downloading component: writing code into FLASH ROM or EEPROM.
Embedded operating system component: providing kernel modules of Reworks
running on some typical ARM MCU, and the BOOTLOADER module.

Also, there are human-machine interface component and remote monitoring and
maintenance component. These components can be decomposed into sub-
components, if necessary.

3.2 Fast Developing Tool for Frequency-Regulating Control Software

The Fast Developing Tool (FDT) is based on the Application Component Library. It
provides a Graphic User Interface (GUI) for users to configure typical static data and
control parameters of the frequency regulating software. The Component Develop
Module of FDT accesses the Application Component Library and fetches necessary
components according to user’s configuration. Furthermore, it unpacks the
components to obtain the source code encapsulated in them. Then the Code
Generating Module synthesizes static data and the source code of components to
generate the program code of target software. Fig.2 describes the work model of FDT.

= Main GUI = Code
&I:{} |:{> Cenerating ::} ﬁ
Module
User % f Program Code

Component m
Develop <————— Component
Module

Libra

Fig. 2. FDT work model

4 Embedded Software Design Based on Component

Component-based software development means building an application system on the
basis of the existing reusable components. When the Application Component Library
is built up, or a component set of certain scale is collected, fast customization of the
embedded software can be realized [3]. Now the developer's task is not to build a
system from scratch, but to determine what components are needed according to the
application system architecture, to adjust the components according to special
requirements of the system, to add application-specific components where necessary,

122 Weiqin Tong et al.

and then to assemble these components into a complete system. Fig.3 shows the
development flow chart.

h}'!itl.‘r.l'l Analyse requirements Adjust
Requiremenis . - COmponent
Analysis

Application 9
[Mr 7

L)

-

Submirt

COmpanents |

Component
Library

COmpanents

.

Special
requirements

Snbmit
COMPOTEnts

Architecture |

L) instantiation
Development of Application
special = Component . S}st_(lm system
eomponent assembly testing

Fig. 3. Component-based software development flowchart

Communication i "‘“-"F:"‘-"_“:l'
regeelating
Initialization H = .!’
 — Initialization
[SeTf-adusting am AC/DC switching
individuation Receive wency adiustin
Draia analysis 1 =

Preferences Record
Preferences Set

Centtral comirol Davwrrloading

Task status Initialization

T
|

Task scheduling e AN
Data acguisition EEPROM B
o "Ex -
ne proceswng Remote
Initialization mrositoring and 5.
Indoor Temp. maintenarice Frequeency regulaling !
Owtdoor Temp. HTTP Send il zorithms remote update
e I_ITTP ‘R"""""""“ Code downloading
Fault dizgnosis In-system update 11 |

Fig. 4. Components and their relationships (The solid arrow represents relationship between
central control component and other components, while the hollow arrow represents
relationship among other components)

Components can be implemented either in the form of class in C++ or in the form
of structure in C. Each component may consist of one or more classes (or structures).
Functions of a component are implemented by different methods and interfaces
provided by these classes. For example, CDataAcquisition, a class of the data
acquisition and processing component, includes the following methods and interfaces:

Component-Based Integration 123

void Init () ;

float getTempInside() ;
float getTempOutside() ;
float getHumidityInside() ;

The Init() method is responsible for the initialization of related hardware (I/O
ports, for example), the other three "get" methods obtain the indoor temperature, the
outdoor temperature and the indoor humidity, respectively.

Similarly, a structure named Sdisplay can be implemented to take over the role
of LCD initialization and display in human-machine interface component. Its primary
methods include:

void Init () ;

void setDisplayMode (TdisplayMode mode) ;
void D_printf (const char *format,...);
void clearScreen() ;

After the establishment of Application Component Library, what developers need
to do is to outline the software architecture and choose the proper components to
assemble a system. Fig.4 illustrates the cooperation relationships of the main
components used in this system.

In practice, the relationships between components can be easily established by
using some commercial Unified Modeling Language (UML) tools [5]. Hence the
implementation part, i.e. coding, is greatly simplified.

5 Conclusions

A developing platform is established to assist the development of embedded control
system for frequency-regulating electrical home appliances. Based on the platform, a
prototype system is developed. Component-based approach is adopted to enhance
software reusability and reduce system development time as different components can
be developed and tested in parallel. Our future effort will be devoted to enrich the
Application Component Library and improve the quality of components and the
performance of our Fast Developing Tool as well.

References

1. Thomas GenBler, Oscar Nierstrasz, Bastiaan Schonhage, Components for Embedded
Software [J]. CASE 2002 October 8-11, 2002, Grenoble, France.

2. Yang Fuqing, Mei Hong, Li Keqin, Software Reuse and Software Component Technology,
ACTA ELECTRONICA SINICA, 27(2):68-75, Feb 1999.

3. M.Jenko, N.Medjeral, P.Butala, Component-based software as a framework for concurrent
design of programs and platforms —an industrial kitchen appliance embedded system,
Microprocessors and Microsystems 25 (2001) 287-296.

4. Reworks Reference Manual, East China Institute of Computing Technology, May 2004.

5. G. Booch, I. Jacobson, and J. Rumbaugh. Unified Modeling Language User Guide. Addison
Wesley, 1997

Design and Implementation of the System for Remote
Voltage Harmonic Monitor

Kejin Bao "?, Huanchuen Zhang ', and Hao Shentu*

'Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
%Jiangsu University, Zhenjiang 212013, China
bkjlujs.edu.cn

Abstract. Take 8-bit microcontroller (C8051F005) as the nucleus and study a
kind of voltage harmonic monitor device that satisfies the long-range monitor.
The harmonic analysis algorithm adopts Fast Fourier Transform (FFT). This
device has two work modes: “native” and “remote”. It also can communicate
with monitor center through telephone line, serial port, IC card, PDA (Personal
Digital Assistant), etc.

Key Words: Harmonic test; remote-monitor; C8051F005 Microcontroller

1 Introduction

With the technical development of modern electronics and electrics, non-linear
electric load in power grid increases considerably. This non-linear load causes
aberration in the power grid and produces power grid harmonic. The power grid
harmonic has become a social effect of pollution, and it is becoming more and more
serious now. To eliminate the pollution, we must monitor and analyze the harmonic
effectively in harmonic pollution area, then adopt valid measures. With the starting of
power grid reforms, large number of unmanned transformer substations is rushing out
now. Compared with the monitor device used in normal environment, the monitor
device used in unmanned environment requires more reliability and remote
communication capability. The wide usage of the monitor devices also makes cost an
even more important issue. This paper introduces a new voltage harmonic monitor
device that is based on an 8-bit microcontroller (C8051F005). This monitor device
can monitor 1 - 31 power harmonic voltage in power lines in real time. It can record
how long and how big voltage has been over the limit, and record the time of power
going on and off. Both of the works are done in real time.

2 Hardware Constitution of Monitor Device

Real time volt and harmonic data are measured, analyzed and stored in monitor
device. Over value time, power lost time and other information are calculated from
previous data and are also stored in monitor device. These data can send back to
monitor center by telephone line, serial port, IC card and PDA when they are needed.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 124-129, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Design and Implementation of the System for Remote Voltage Harmonic Monitor 125

In monitor center, these data are processed by certain software that runs on a personal
computer and report documents can then be generated. The diagram of this system is
shown in Fig.1.

| MMODER
\éf @ 1€ temer
wireless connection

:
oo

- Transport by man . -

| hand | | 1C device
device

monitor
dewice

Fig. 1. Diagram of the system

Normal 8-bit MPU runs at a relative low speed which can not afford for harmonic
process, so most of such monitor systems are based on 16-bit microcontrollers or are
multi-CPU systems combined with DSP. But the C8051F005 produced by Cyganl
Company, an 8-bit microcontroller, is fast enough to do such a work. It can run at a
speed of 25MIPS which is fast enough for harmonic calculating. It is also integrated
witch A/D adapter, RAM, FLASH ROM, voltage compare and a lot of I/O ports in
the single chip and is suitable for unmanned environments.

The circuit architecture of Voltage Harmonic Monitor Device is shown in Fig.2.

Serial Flash IC Card

Mutual Amplifier/ Phone

inductor f— filter SMBus - line
Light
—I_AD —— isolator {— Modem

C8051F005
IM—I Keyboard/
l_' —W— display
Quartz
Oscillator

Fig. 2. The circuit architecture of Voltage Harmonic Monitor Device

~220V

3 Measuring Voltage Virtual Value and Voltage Harmonic

The key problem of voltage harmonic monitor device is that the virtual value of
voltage and voltage harmonic must be accurately measured. From the architecture of
the monitor device (Fig.2), it can be seen that measuring voltage need following steps:
first, sample the 50Hz alternating currents voltage through mutual inductor; then

126 Kejin Bao, Huanchuen Zhang, and Hao Shentu

amplify and filter the sampled value and send the value into CPU; finally, the CPU
samples and calculates virtual value of voltage and every power harmonic value.

3.1 Measuring the Virtual Value of Voltage

Measuring the virtual value of voltage adopts rectangle algorithm. Uniformly divide
one period into N interval. Suppose Vn is instantaneous value on the n-th point.
Because the interval is very short, we can assume that the voltage in this whole
interval is Va. Thus we can obtain the virtual value of voltage as follows:

Vs = 2V (1)

To increase the accuracy of voltage virtual value that we calculate, we sample the
voltage many times within a second, and calculate the voltage virtual value according
to every sampled data. All voltage virtual values we have calculated in one second are
processed as follows: first, sort those values according to value size. After removing
the maximum and the minimum ones, calculate the average value, and take this
average as voltage virtual value in this second. Voltage harmonic monitor device
refurbishes the voltage virtual value and displays it every second.

3.2 Measuring Voltage Harmonic

We calculate the harmonic component of alternating signals using DFT. Discrete
Fourier transform and discrete inverse-Fourier transform are as follows:

N-1
X(k)=DFT[x(n)]= Y x(mW™ (0<K<N-1) (2)
n=0
N-1
x(n) = IDFT[X (K)] %Z X(kyw™™ (0<n<N-1) 3)

k=0
2z
—Jj(=")
where: W=e N .
Because imaginary number cannot appear in harmonic detecting, we can further
adopt real-sequence FFT algorithm. It utilizes one FFT calculation to obtain two real-

sequence FFT transforms, and reduces the computational complexity by about 1/2.
In this way, we can calculate X (k) and X (N —k) at the same time, then through

conjugating X (N —k) we also obtain X (N —k) . In other words, we make one DFT and
obtain two DFTs of two sequences, because FFT simplifies the computational
complexity by dividing one DFT into two sub-DFTs which can be created in one DFT
transforming by using real FFT. After Fourier transforming of sampled data, we
obtain corresponding 1 to 31 power harmonic virtual values. Every harmonic
component is saved in two bytes, thus saving the result of one FFT needs at least 62
bytes of memory. According to the speed of CPU adopted by us, it can calculate 1-31

Design and Implementation of the System for Remote Voltage Harmonic Monitor 127

power harmonic 10 times per second. However, if we save all these harmonic
calculation results in one second, the RAM in CPU cannot provide enough space. For
simple reasons, the last calculated result is used as current result and is shown on 7-
Segments LEDS. Because only total harmonic distortion (THD), total odd order
harmonic distortion, total even order harmonic distortion are stored for statistic, only
the max three THD data measured in one second is saved in memory, the third max
THD is used as THD in this second. (Same as quality of electric energy supply
standard of PRC). Both high respond speed and measure accuracy can be achieved by
this method.

4 Improve the Precision of Measuring

Measuring accuracy is a very important issue in the design of 8-bit CPU based
harmonic monitor device. To improve the measuring accuracy, we use 12-bit A/D for
sampling voltage analog value. Every sampled data are expressed by two bytes.
Moreover, several other new measures are also adopted for choosing sampling period,
designing hardware and software filter wave.

4.1 Sample Time Determination

In order to reduce the leakage error in FFT transformation, the signal value should be
sampled at exact time which divides the signal period by the same time span. This
method is also called synchronic sampling. 20ms is used as a standard period in
power grid, but it can not stay at the value. The normal implementation of synchronic
method is to use PLL circuit. For the simplification of hardware, voltage compare,
timer and software are used to measure the period time, compare the signal voltage
value with the average volt value and record the time when the signal voltage is
raising just above the average volt value. The time span between the record times is
the signal period. Actual the compare voltage is not important. The period time should
not be bigger or less than 5% of the standard period time; otherwise the result should
be discarded, the average result of the period should be used for a better and more
precise result.

The timer value is obtained by dividing the period of detected voltage by sample
times. When the division is aliquant, there will be some errors. The maximum in these
errors is smaller than the minimal timer resolution, and the maximal error value in the
whole sampled sequence is smaller than the minimal value multiplying sampling
times. As adopt C8051F005 (24 MHz) and 256 sampling points, the error is less than
12.8us. In order to further improve the sampling accuracy, the difference between the
timer setting value and the actual value is recorded and accumulated. When the
accumulated error exceeds minimal timer resolution, the sampling time is adjusted
such that the maximal error value in the whole sampled sequences will be no more
than the minimal timer resolution. For C8051F005 (24 MHz), the maximal error in
one sampling sequence is only 0.05us.

128 Kejin Bao, Huanchuen Zhang, and Hao Shentu

4.2 Filtering the Sampling Signal

By using voltage mutual inductor, the input voltage can be reduced to the range
suitable for sampling. In order to reduce disturbance of high frequency noise, active
filter network is used to filter the voltage before it is sampled. The filter network is a
low-pass network whose cutoff frequency must be lager than the concerned highest
harmonic frequency. Its frequency response must be kept flat in the range where the
frequency is less than the cutoff frequency; otherwise it may affect the result of
harmonic measuring. The cutoff frequency of the active filter network is 1600Hz.

The signal passes an active filter hardware before sampling, the arithmetic mean of
the voltage values measured in one second except the max and min value is calculated
and is used as voltage value of this second. In practice, this voltage value is not very
stable for Electro Magnetic interference, so we make a second filter: use the
arithmetic mean of the values of this second and previous two seconds as current
voltage value. After such process, the value is the same as the value measured by a
voltage meter with accuracy of +0.5% in the most of the time.

4.3 Minimize Quantization Noise

Over-sampling and averaging can be used to achieve higher ADC resolution
measurements and SNR (signal-to-noise ratio) of analog-to-digital conversions.
Over-sampling and averaging will improve the SNR and measurement resolution at
the cost of increased CPU utilization and reduced throughput.

For each additional bit of resolution, the signal must be over-sampled by a factor of
four.

Los=4"1,)

where w is the number of additional bits of resolution desired, f; is the original
sampling frequency requirement, and f is the oversampling frequency.

Each doubling of the sampling frequency will lower the in-band noise by 3 dB, and
increase the resolution of the measurement by 1/2 bit.

Use the f,, as sampling frequency, we accumulate (add 4" consecutive samples
together) then divide the total by 2V (or right shift the total by W-bits). And this data
is used as normal sample data. In practice, w=2 is used and obvious throughput
reduction can be found.

5 Monitor Center Software Design

The software used on PC is programmed in VC++® 6.0 develop environment; PDF
and CHM file are used as software help document. The html file of the CHM
document is created by DREAMWARE® 3.0, and CHM document is generated by
HTMLHELP® 1.3. PDF document is created by WORD® and ACROBAT®.

Report document is crated by WORD® and EXCEL®), so it can be opened on any
PC with WORD® or EXCEL® installed on it. Because WORD® and EXCEL®

Design and Implementation of the System for Remote Voltage Harmonic Monitor 129

document is a kind of compound document, so it can not be created by simple use
WINDOWS API such as ReadFile or WriteFile. The OFFICE® objects and VBA®
(VB® Script of Application) function is used to generate these documents.

For simple reasons, ACCESS® is used as database management system. In
consider of transportation reasons, only ODBC functions are used in the software.
Special functions which can be run in ACCESS® only, such as fast data exchange in
OFFICE software, are not used. So the software can be run under other DBMS with
litter changes.

6 Conclusion

The voltage harmonic monitor device based on microcontroller C8051F005 can in
real time monitor the 1 to 31 power harmonic voltage virtual values, total aberration
rate, time and number of times of power cut, and the value of the voltage exceeding
the limit. The device also has functions such as alarm, programming for detecting
subsection time, and remote data transmitting.

This remote voltage harmonic monitor device has passed the test of Jiangsu
Institute of Measurement & Testing Technology in May, 2003. This research has also
passed the technology achievements identification from Department of Science and
Technology of Jiangsu, China in Dec 28, 2003. Now, it has been in volume
production. It provides low cost monitor instrument for power supply departments
and let them master the state of power usage and analyze the quality of power grid.

Reference

1. Stefan Kunis, Daniel Potts, Fast spherical Fourier algorithms, Journal of Computational and
Applied Mathematics 161 (2003) 75 - 98

2. Tian Xiaolin, Wang Jianhua, Liu Hongjun, Method of power harmonics analysis based on
single chip processor and FPGA, Electrical Measurement & Instrumentation, 2004.2

3. Xiao Jian-hua, Wu Jin-pei, The Design of the Power Harmonics Detection System, Journal
of Jishou University (Natural Science Edition), Vol . 21 No. 3, 2000.9

4. http://www.xhl.com.cn

Guaranteed Cost Control of Networked Control
Systems: An LMI Approach

Shanbin Li, Zhi Wang, and Youxian Sun

National Laboratory of Industrial Control Technology
Institute of Modern Control Engineering
Zhejiang University, Hangzhou 310027, P.R.China
sbli@iipc.zju.edu.cn

Abstract. In this paper, networked control systems (NCS) is modeled
as a discrete-time linear state-delayed system with norm-bounded un-
certainty. Inspired by the so-called descriptor model transformation, a
delay-dependent sufficient condition for the existence of a guaranteed
cost controller for NCS is presented by a set of linear matrix inequalities
(LMIs). The resulting controller can not only asymptotically stabilize the
system but also guarantee an adequate level of performance. Theoretical
analysis and illustrative results show that the control strategy presented
in this paper is effective and feasible.

1 Introduction

Guaranteed cost control was firstly presented by Chang and Peng [1]. Its objec-
tive is to design a control system, which is not only stable but also guarantees
an adequate level of performance. It is obviously a useful method in industrial
control system. However, guaranteed cost control for networked control systems
(NCS) wherein the control loops are closed through communication networks
has not been studied extensively.

Up to now, the NCS has been an emerging research topic, which attracts
increasing attention. The existence of networks in control systems brings about
many problems including network-induced delays, jitter, packet losses as well
as limited bandwidth [2]. It’s well known that the network-induced delays intro-
duced into the control loop can deteriorate the dynamic performance of systems.
In worse case, these delays may be a main cause of potential system instability.
Consequently, the basic focus in NCS involves the control of network-induced
delays [3].

The network-induced delay issue of NCS is discussed using the guaranteed
cost control approach in this paper. There are numerous stability results of
guaranteed cost control for uncertain systems with time-delay, see e.g. [4]. In
[4], a delay-dependent guaranteed cost control was developed for discrete-time
state-delayed system by the so-called descriptor model transformation, which
was firstly presented in [5]. Motivated by the transformation, this paper pro-
poses a delay-dependent guaranteed cost control for NCS by modeling it into

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 130-136, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Guaranteed Cost Control of Networked Control Systems: An LMI Approach 131

an uncertain discrete-time system with state-delay. The state feedback problem
for NCS is formulated as a convex optimization over a set of LMIs, which can
be very efficiently solved by interior-point methods [6]. At the same time, the
optimal performance index sufficing that control law is given and the efficiency
of guaranteed cost control strategy is demonstrated by an illustrative example.

2 Model Description

Assume that the uncertain discrete-time plant model is:
z(k+1)=(A+ DA(k)E,)x(k) + (B + DA(k)Ey)u(k), (1)

where x(k) is the state, u(k) is the control input, A, B, D, E, and E, are
real constant matrices. A(k) is an uncertain time-varying matrix stratifying the
bound AT'(k)A(k) < I. All matrices are assumed to have compatible dimensions.

There are time-varying but bounded delays 7;;¢ and 7. in the control loops.
Here 75¢ (77%) is the communication delay between sensor and controller (con-
troller and actuator) at time k respectively. If a static feedback controller is
adopted, then 72¢ and 7% can be equivalently lumped together as a single delay
7(k) = 73+ 7. Furthermore, the bounds of network-induced delay can be ob-
tained by the best and worst case analysis as [7]. Hence, the assumption 7 < 7 <
T is reasonable, where 7 and 7 are positive integers corresponding to minimum

and maximum of 7(k). Then the controlled state information is given as:
u(k) = Ka(k —7(k)), (2)

where K is the state-delayed feedback gain.

Given positive definite symmetric matrices (1 and @2, the cost function is
considered as:

J =302 [2T (k)Qua(k) + uT (k)Qau(k)]. (3)

Associated with the cost function (3), the guaranteed cost controller (2) is defined
as following:

Definition 1: Consider the uncertain system (1) and the cost function (3).
If there exists a control law u(k) and a positive scalar J* such that, for all
admissible uncertainties, the closed-loop is stable and the closed-loop value of
the cost function (3) satisfies J < J*. Then J* is said to be a guaranteed cost
and u(k) is said to be a guaranteed cost controller for the uncertain system (1).

This paper aims to develop a controller as (2) which achieves value J* as small
as possible for uncertain systems in the networked setup.

132 Shanbin Li, Zhi Wang, and Youxian Sun

3 Guaranteed Cost Control over Network

3.1 Analysis of Robust Performance

Applying a new Lyapunov-Krasovskii function, a new sufficient condition for the
existence of the guaranteed cost controller for uncertain plant (1) and cost (5)
in the networked setting will be established in this subsection.

Applying the controller (2) to plant (1), we will have the following system:

ok +1) = Aya(k) + Bia(k — 7(k)), (4)

where A1 = A+ DA(k)E,, B1 = (B+ DA(k)Ey) K. Associated with the system
(4) is the cost function:

J =300 xl (k)Que(k), (5)
where 27 (k) = [2T(k), 27 (k — 7(k))], Q = diag{Q1, KTQ.K}.

(&

Theorem 1. Consider the system (4) with the cost function (5) and time-
varying but bounded delay 7(k) € [, 7). The system (4) is asymptotically stable
if there exists a scalar € > 0 and symmetric positive-definite matrices P, € R™*™,
R € R™™ and S € R™", matrices Py € R™*", Py € R™", W € R?>"*2" gnd
M € R*™™ such that the following matriz inequalities are satisfied:

0 ET

T _ a
ro [5]
<0,

9(7—7 7_): % —R+KTQ2K KTEb (6)
* * —el
W M]
R ™)

where the x represents block that is readily inferred by symmetry and:

T
FPT[O I]+{O I] p+yep” |0 OT}P

AT —1| T a1 -1 0DD
R+Q 0 T
+[u ' 1P1+TS]+TW+[MO]+[MO] : ®)

p=1+(1—-1), P:[P1 0}

Py Py
Furthermore, the cost function (5) satisfies the following bound:
J <2t (0)Pra(0) + 2 T (O Re() + -y Xim_1py” (DSY(D)
+ Z;:Tiriﬂ Zl_:lafl a® ()R (1), (10)
where y(1) = (I + 1) — z(1).

Proof. Because of the limit of pages, the detail proof procedure is omitted here.
Q.E.D.

Guaranteed Cost Control of Networked Control Systems: An LMI Approach 133

3.2 Controller Design

A parameterized representation of the guaranteed cost control laws in terms of
the feasible solutions to a set of LMIs will be presented in this subsection.

It’s noted that the upper bound (10) depends on the initial condition of
system (4), which will bring some difficulties in the solution to Theorem 1.
In order to remove the dependence on the initial condition, we suppose that
the initial state of system (4) is arbitrary but belongs to the set S = {z(l) €

R : x(l) = Uv;, vlv; <1, l=—7,—7+1, ..., 1, 0}, where U is a given
matrix. Then the cost bound (10) leads to:
J < Amax(UTPLU) 4 p1dmax(UT RU) 4 podmax (UL SU). (11)

where Apax(-) denotes the maximum eigenvalue of matrix (-), p1 = pu(r +7)/2
and py = 27(7 + 1). Based on (11), the controller design theorem is given as
following:

Theorem 2. Consider the system (4) with the cost function (5) and time-
varying but bounded delay 7(k) € [T, T]. Suppose that for a prescribed scalar
0, there exists a state feedback gain K such that the control law (2) with state-
delay is a guaranteed cost controller if there exists a scalar € > 0, matrices
X>0,Y, Z F, L>0,8>0, Wi, Wa, Ws, such that the following matriz
inequalities are satisfied:

[U, 0 XET 777 X Z77
¥ U3 (1-0)BF 0 7Y7T 0o Y7
* « —L F'gl' 0o FT 0 0
* % * —el 0 0 0 0
* % * x —75 0 0 0 <0, (12)
* % * * * —Qz_l 0 0
* ok * * * * 7Q1_1 0
RS * * * * * =X |
WiWe 0]
x* Wy 6BF | >0, (13)
* % XSTIX
where
U =Z+Z7 + uL + W, (14)
U =Y +X(A-1)"' —Z7 + 7Wy + §FT BT, (15)
Uy =-Y - YT 4 7W5 +eDD?T. (16)

Furthermore, a guaranteed cost control law is given by (2) with K = FX~! and
the corresponding cost function satisfies:

J < Amax(UTX7U) 4 prdmax (U X PLX 7MU) 4 podmax(UTSTU). (17)

134 Shanbin Li, Zhi Wang, and Youxian Sun

Proof. By Sherman-Morrison matrix inversion formula, we have:

Pt 0

Pt =
N N Y A

(18)

Let X = Py, Y = Py ' and Z = —P; ' P, Pt Similar to [4], we have to restrict
M to §PT [BOK} in order to obtain an LMI, where ¢ is a scalar parameter
determined by designer.

Pre- and post-multiplying diag{P~', P *,I} and its transpose to (6), re-
spectively. Pre- and post-multiplying dzag{P L P 'Y and its transpose to (7),
respectively. We further denote L = P 1RP 1, F = KP; 18§ =51 and

Wy W-

—INT -1 _ 1 72
(pyTwpst=| T
of the block matrices, the theorem is proved. Q.E.D.

From (17), we establish the following inequalities:

[_:‘I UT} <0, {_fl U } <0, [_ZI Uq <0, (19)

. Applying the Schur complement and by expansion

-X -XL7'X -5

where «, 3 and ~ are scalars to be determined. However, it is noted that the
condition (13) and (19) are no more LMI conditions because of the terms X L='X
and X S~1X, respectively. Note that for any matrix X > 0, we have XS~1X >
2X - S, XL 'X >2X — L.

Given a prescribed scalar §, 7 and 7, the design problem of the optimal
guaranteed cost controller can be formulated as the following LMI eigenvalue
problem:

OP: min__(a+pi1fB+p2)
e, XY, Z,F,L,S,W1,Wy, W3

(i) Equation(12),
W Wy 0|
(ii) x Wi 0BF | >0, (20)
s.t. * ok 2X — 5|
(iid) [al UT] <o, | U } <0, {“ UT_} <0
x —X | * —2X+1L * —S

It is clear that the above optimization problem (20) is a convex optimization
problem and can be effectively solved by existing LMI software [8]. Using this
solution, we can calculate the upper bound of (11). This bound will be considered
as a function of 4, 7 and 7. We select its minimum as a suboptimal value for the
corresponding upper bound of the cost function (10).

Guaranteed Cost Control of Networked Control Systems: An LMI Approach 135

4 TIllustrative Example

In this section, a numerical example is presented to illustrate how to solve the
optimization problem proposed in this paper and realize the networked control
law. The plant is given as follows:

o [EE] o< [25) o< [2)

0.16 0.478 0 —0.1 0.10
0.1 0 0 0.1 @)
Ba = [0.1 0.1} » B = [0.1 0 } ’

and the simulation parameters are given as:)1 = {1(')5 105] , Q2=01, U=

[(1) (ﬂ . The eigenvalues of A are obtained as A\ = 0.478 and Ay = 1.13, which

means the plant (21) is open-loop unstable.
We first choose 6 = 1 and 7 = 1, 7 = 3. By Theorem 2 and using Mat-
lab command mincx of LMI-toolbox [8], we have J.,s = 1.1357 x 103, K =

—1.1303 —0.2577 .) o L
. On the premise of assuring the feasibility to optimization
—0.3535 —0.0897

problem (20), we increase d from 0.7 to 1 by step 0.01, and 7 from 7 to 4 by step
0.1. Then a three-dimensional graph of cost, § and 7 is obtained as Figure 1,
where J(1,1) is the cost obtained when § = 0.96, 7 = 7 = 1. As shown, increas-
ing 7 results in an increase of cost, namely deteriorates the system performance.
This validates the aforementioned analysis.

$ 100
80
60

Cost J (in times of J(1
NN
o o

0.98

1.5

0.9
Tuning Parameter delta 0.96 1 Maximum Delay (in times of sampling time)

Fig. 1. The cost as a function of ¢ and delay 7 € [r, 7]

136 Shanbin Li, Zhi Wang, and Youxian Sun

5 Conclusions

Network-induced delays in the networked control system are inevitable and have
a significant effect on system performance. This paper addresses networked con-
trol systems (NCS) within the framework of a discrete-time linear state-delayed
system with norm-bounded uncertainty. Based on the model, a delay-dependent
sufficient condition for the existence of a guaranteed cost controller for NCS is
presented by a set of linear matrix inequalities (LMIs). The resulting controller
can not only asymptotically stabilize the system but also guarantee an adequate
level of performance. It should be noted that the proposed results can be appli-
cable to NCS, wherein the network-induced delay is random and bounded. It’s
also noted that the results can be extended to the case where the delay is not
only shorter than one sampling time but also longer than one sampling time.

References

1. Chang, S., Peng, T.: Adaptive guaranteed cost control of systems with uncertain
parameters. IEEE Trans. On Automat. Contr. 17 (1972) 474-483

2. Tipsuwan, Y., Chow, M.Y.: Control Methodologies in Networked Control Systems.
Control Engineering Practice 11 (2003) 1099-1111

3. Krtolica, R., (jzgiiner, U., Chan, H., Goktas, H., Winkelman, J., Liubakka, M.:
Stability of linear feedback systems with random communication delays. Int. J.
Control 59 (1994) 925-953

4. Chen, W.H., Guan, Z.H., Lu, X.: Delay-dependent guaranteed cost control for
uncertain discrete-time systems with delay. IEE Proc.-Control Theory Appl. 150
(2003) 412-416

5. Fridman, E., Shaked, U.: A descriptor system approach to he control of linear
time-delay systems. IEEE Trans. Automat. Contr. 47 (2002) 253-270

6. Boyd, S., Ghaoui, L.E., Balakrishnan, E.F.V.: Linear Matrix Inequalities in System
and Control Theory. SIAM, Philadelphia (1995)

7. Castelpietra, P., Song, Y.Q., Francoise, S.L., Attia, M.: Analysis and simulation
methods for performance evaluation of a multiple networked embedded architecture.
IEEE Transactions on Industrial Electronics 49 (2002) 1251-1264

8. Ghainet, P., Nemirovski, A., Laub, A.J., Chilali, M.: LMI Control Toolbox-for Use
with Matlab. The Math Works Inc. (1995)

Robust Tuning of Embedded Intelligent PID Controller
for Induction Motor Using Bacterial Foraging Based
Optimization

Dong Hwa Kim

Department of Instrumentation and Control Eng., Hanbat National University,
16-1 San Duckmyong-Dong Yuseong-Gu, Dagjon City, Korea, 305-719.
kimdh@hanbat.ac.kr

Abstract. In this paper, design approach of PID controller with rejection
function against external disturbance in motor control system is proposed
using bacterial foraging based optimal algorithm. To design disturbance
rejection tuning, disturbance rejection conditions based on H, are

illustrated and the performance of response based on the bacterial foraging is
computed for the designed PID controller as ITSE (Integral of time weighted
squared error). Hence, parameters of PID controller are selected by bacterial
foraging based optimal algorithm to obtain the required response.

1 Introduction

A Proportional — Integral — Derivative (PID) controller has been widely used in the
most industrial processes despite continual advances in control theory. Most of the
PID tuning rules developed in the past years use the conventional method such as
frequency-response methods [1]. This method needs a highly technical experience to
apply since they provide simple tuning formulae to determine the PID controller
parameters. In case of the Ziegler-Nichols rule tuning technique, it often leads to a
rather oscillatory response to set-point changes. Despite the fact that many PID tuning
methods are available for achieving the specified GPM, they can be divided into two
categories. On the other hand, since natural selection of bacterial foraging tends to
eliminate animals with poor foraging strategies for locating, handling, and ingesting
food, optimization models can be provided for social foraging where groups of
parameters communicate to cooperatively forage in engineering. In this paper, an
intelligent tuning method of PID controller by bacterial foraging based optimal
algorithm is suggested for robust control with disturbance rejection function on
control system of motor control loop.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 137-142, 2005.
© Springer-Verlag Berlin Heidelberg 2005

138 Dong Hwa Kim

2 PID Controller Tuning with Disturbance Rejection Function

2.1 Condition for Disturbance Rejection

In Fig. 1, the disturbance rejection constraint can be given by [7,8]

M w | s
max
d(t)eD |d|| ”1 + K(s, C)G(S)”

(1)

Here, O(l is constant defining by the desired rejection level and ”0”0O denotes

the H_ -norm, which is defined as ”G(S)” = mglx)|G(]a))|

The disturbance rejection constraint becomes

v |
|1+ K(s,0)G(s)|,

W(j@)w(—jo)
oHlo0) 1+ K(jo,c)G(jo,c)K(—jw,c)G(—jo,c)
= max (0(0), c)) ‘ (2)

we0.0)

L c
The controller K (s, ¢) is written as K (s, ¢) =¢, + 2+ ¢,s and the vector ¢ of
S

L r .
the controller parameter is given by ¢ = [cl, Cy, 03] . Hence, the condition for

. o 05
disturbance rejection is given as max (O'(a), C)) (0.
we[0.00)

2.2 Performance Index for Disturbance Rejection Controller Design

The performance index defined as ITSE (Integral of the Time-Weighted Square of the

ib .Sm—l
J
Error) is written by PI = fl‘(E(t))Zdt , E(s)= B(s) = jzo : 3)

A(S) Z a[Sn_l
i=0

Because E(s) contains the parameters of the controller (c) and plant, the value of
performance index, P/ for a system of nth order can be minimized by adjusting the

vector ¢ as min P/(c). The optimal tuning proposed in this paper is to find the

vector ¢, so that the ITSE performance index P/ (c¢) is a minimum using bacterial

algorithm and the constraint max (O'(a), c))0'5(5 is satisfied through real coded
we[0.00)

bacterial algorithms.

Robust Tuning of Embedded Intelligent PID Controller for Induction Motor 139

3 Behavior Characteristics and Modeling of Bacteria Foraging

3.1 Overview of Chemotactic Behavior of E. coli.

This paper considers the foraging behavior of E. coli, which is a common type of
bacteria as in reference 4-5. Its behavior to move comes from a set of up to six rigid
100-200 rps spinning flagella, each driven as a biological motor. An E. coli bacterium
alternates between running and tumbling. Running speed is 10-20 wm/sec, but they
cannot swim straight. Mutations in E. coli affect the reproductive efficiency at
different temperatures, and occur at a rate of about 10~/ per gene and per generation.
E. coli occasionally engages in a conjugation that affects the characteristics of a
population of bacteria. Since there are many types of taxes that are used by bacteria
such as aerotaxis (it are attracted to oxygen), light (phototaxis), temperature
(thermotaxis) and magnetotaxis, it can be affected by magnetic lines of flux. Some
bacteria can change their shape and number of flagella which is based on the medium
to reconfigure in order to ensure efficient foraging in a variety of media.

3.2 Optimization Function of Bacterial Swarm Foraging

The main goal based on bacterial foraging is to apply in order to find the minimum
of P(¢), 4 € R" , not in the gradient VP(¢) . Here, when ¢ is the position of a bacterium,
and J(¢) is an attractant-repellant profile. A neutral medium, and the presence of
noxious substances, respectively can be shown by

H(j kD) =" (. kDli =12,..,N}. (4)

Equation represents the positions of each member in the population of the N
bacteria at the jth chemotactic step, kth reproduction step, and /th
elimination-dispersal event. Let P(i, j, k, /) denote the cost at the location of the ith

bacterium ¢'(j,k,/) e R" . Reference [20, 21] let

¢' = +LkD=¢'(.kD+C(e() , ()
so that C(i)>0 is the size of the step taken in the random direction specified by the
tumble. If at ¢'(j+1,k,1) the cost J(i, j+1, k, I) is better (lower) than at ¢'(j.k,0),

then another chemotactic step of size C(i) in this same direction will be taken and
repeated up to a maximum number of steps Ns. Nsis the length of the lifetime of the

bacteria measured by the number of chemotactic steps. Functions P! (¢), i=1, 2, .
S, to model the cell-to-cell signaling via an attractant and a repellant is represented by

P (¢) z Z attract €xXp §attractz(¢] ¢j
i=1

J=1

N
+ Z - Krepellam exp| — altract z (¢j ¢j >

=1

(6)

140 Dong Hwa Kim

When we where ¢ = [¢1,._.,¢p]T is a point on the optimization domain, Latractis the
depth of the attractant released by the cell and &,,,,., is a measure of the width of the

attractant signal. K amace 18 the height of the repellant effect magnitude),

repeliant =L
and S, 15 @ measure of the width of the repellant. The expression of P.(¢)
means that its value does not depend on the nutrient concentration at position ¢ .
Model use the function P,.(¢) to represent the environment-dependent cell-to-cell
signaling as Pa,(¢):exp(T —P(¢))Pc(¢), where T is a tunable parameter. Model

considers minimization of P(i, j, k, [)+ P, (¢i(j,k,l)), so that the cells will try to find
nutrients, avoid noxious substances, and at the same time try to move toward other
cells, but not too close to them. The function Par(qﬁi (j,k,l)) implies that, with M
being constant, the smaller P(g), the larger Pu-(4) and thus the stronger attraction,
which is intuitively reasonable. In tuning the parameter M, it is normally found that,
when M is very large, Par(¢) is much larger thanJ(¢), and thus the profile of the
search space is dominated by the chemical attractant secreted by E. coli. This paper
describes the method in the form of an algorithm to search optimal value of PID
parameter.

[step 1] Initialize parameters n, N, N¢, Ng, Ny, Ney Py C(i)(i=1,2,..,N), ¢', and
random values of PID parameter. Where, n: Dimension of the search space (Each
Parameter of PID controller), N: The number of bacteria in the population, N :
chemotactic steps, N,. : The number of reproduction steps, N4 : the number of
elimination-dispersal events, P4 : elimination-dispersal with probability, C(i): the size
of the step taken in the random direction specified by the tumble. The controller
parameter is searched in the range of Kp=[0 30], Ti=[0 30], and Td=[0 30].

[step 2] Elimination-dispersal loop: /=/+1

[step 3] Reproduction loop: k=k+1

[step 4]Chemotaxis loop: j=j+1

[step 5] Ifj < N, go to step 3. In this case, continue chemotaxis, since the life of
the bacteria is not over.

[step 6] Reproduction:

[step 7] Ifk < N,,, go to [step 3]. In this case, we have not reached the number of
specified reproduction steps, so we start the next generation in the chemotactic loop.
[step 8] Elimination-dispersal: For i=12..,N, with probability P,;, eliminate and
disperse each bacterium. To do this, if you eliminate a bacterium, simply disperse one
to a random location on the optimization domain. If /< N,;, then go to [step 2];
otherwise end.

4 Simulations and Discussions

Fig. 1 shows the step response to variation of chemotactic size. When step size is 0.15,
response is best response. Fig. 2 is comparison of results by GA (genetic algorithm),
immune algorithm, and bacterial foraging. Fig. 3 is representing search process of

Robust Tuning of Embedded Intelligent PID Controller for Induction Motor 141

performance index (ITSE) by bacteria foraging and Fig. 4 is search process to have
optimal PID parameters by bacteria foraging.

1.4 14 T T T T T T
e ——y H : H : L Bactena
---- stapslNn H ! ! ! —rY
12 - | — sep=las 1.2} < 3 : = IFnerunE
siep=0.2 i] i]
A e T e T T P HE :
outgat 98 .;'r(i
e | - a |
i
&

Mé o
0zp ! i
o i .

u 2 . = & _U 2 1 -] L] 20 4 Ty 18 X
Fig.1. Step response by variation of . . .

g D TeSponse by Fig.2. Comparison of each optimal
chemotactic step size - .
algorithm. (GA, Immune algorithm,

Bacteria Foraging)

. 14 T T T T T T
Amplitude=0.1
Asnplitude=n 3
Jr M'\"\'\w—"—“_—'ﬂ"?\‘ 1.2 Amplitude=0.5 i
o T
25 Kp-\ s o .‘H'.r.m uh 1 1 A — et e
N Moyt -
5 A r} N og /
% (.N {;{\ output !
15 £ & Td] 06 ||'II
o
ol A f o4}/
. f
\a’"l _,..J\.r !
T N oaf
ol e M AL M b N
a oo 230 300 400 500 600D 7O BOO SO0 9000 o 2 4 B g 10 12 14 16 18 2
chemolalic slep time
Fig.3. Search process of performance index Fig.4. Search process of optimal PID
(ITSE) by Bacteria Foraging parameters by Bacteria Foraging

5 Conclusions

Up to now, the PID controller has been used to operate the process loops including
motor control. However, achieving an optimal PID gain is very difficult for the
control loop with disturbances. Since natural selection of animal tends to eliminate
animals with poor foraging strategies for locating, handling, and ingesting food, they
obtain enough food to enable them to reproduce after many generations, poor foraging
strategies are either eliminated or shaped into good ones redesigned. Therefore,
optimization approach can be provided for social foraging where groups of
parameters communicate to cooperatively forage in engineering.

142 Dong Hwa Kim

Table 1. Comparison of PID parameter and ITSE of each optimal algorithm.

Bacteria GA[l1] Immune
Foraging Algorithm
Kp 29.901 29.992 29.739
Ti 0.25813 0.0001 0.39477
Td 30 28.3819 27.277
ITSE 0.000668 0.000668 0.0006352

In this paper, an intelligent tuning method of PID controller by bacterial foraging
based optimal algorithm is suggested for robust control with disturbance rejection
function on control system of motor control loop. Simulation results are showing
satisfactory responses. The object function can be minimized by gain selection for
control, and the variety gain is obtained as shown in Table 1. The suggested controller
can also be used effectively in the control system as seen from Figs. 1-4.

References

1. 2. J. X. Xu, C. Liu, and C. C. Hang: Tuning of Fuzzy PI Controllers Based on Gain/Phase
Margin Specifications and ITAE Index. ISA Transactions 35 (1996) 79-91.

2. Dong Hwa Kim: Intelligent tuning of a PID controller with robust disturbance rejection
function using an immune algorithm. Proc. Int. Conf. Knowledge-based intelligent
information and engineering systems. Springer-Verlag (2004) 57-63.

3. PASSINO, K. M.: Biomimicry of Bacterial Foraging for Distributed Optimization and
Control. IEEE Control Systems Magazine (2002)

4. Ching-Hung Lee, Yi Hsiung Lee, and Ching Ch-eng Teng: A novel robust PID controllers
design by Fuzzy Neural network. Proceedings of the American Control Conference,
Anchorage, May 8-10, (2002) 1561-1566

5. Dong Hwa Kim: Robust PID controller tuning using multiobjective optimization based on
clonal selection of immune algorithm. Proc. Int. Conf. Knowledge-based intelligent
information and engineering systems. Springer-Verlag (2004) 50-56.

The Customizable Embedded System for Seriate
Intelligent Sewing Equipment

Kailong Zhang, Xingshe Zhou, Ke Liang, and Jianjun Li

School of Computer, Northwestern Polytechnical University Xi’an, Shaanxi, 710072, China
{kl.zhang, zhouxs}@nwpu.edu.cn

Abstract: Today, the development of sewing technology has shown the seriate
intelligent trend, and one important factor is the embedded system technology.
After careful research and analysis, this paper brings forward a customizable
embedded system architecture, which is made up of customizable embedded
hardware platform, customizable embedded OS and component-based
embedded software. We have used this architecture to design new electro-
pattern sewing machine successfully.

1 Introduction

With the fast development of embedded system technique, the industry of sewing
equipment has entered an intelligent era after a long mechanical and electric sewing
period. The new generation of electro-sewing equipments, which adopts the advanced
intelligent embedded system, can do more complex and accurate sewing tasks, and is
easier to operate.

Having analyzed the features of intelligent sewing machines, this paper presents a
new customizable embedded system for the seriate intelligent requirement, which
includes a customizable hardware platform, a customizable embedded software
platform, a sewing domain-oriented embedded component set, development methods
and so on.

2 Customizable Embedded Hardware Platform

An intelligent sewing machine is mainly made up of mechanical-electro devices and
one embedded system. In such a machine, the embedded system makes all the electro
devices act coordinately and can interact with user.

Between different sewing machines, there are many differences, such as the type of
mechanical units, electric units and the control system. In order to explain this
question, we compare the electro-lockstitch sewing machine with the electro-pattern
sewing machine here. First, they are designed for different purposes. The former is
mainly to execute two-dimensional linear sewing tasks, while the latter is for three-
dimensional pattern sewing application. Second, they are different in mechanism. An
electro-lockstitch sewing machine needs a main-shaft motor and some mechanical

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 143-149, 2005.
© Springer-Verlag Berlin Heidelberg 2005

144 Kailong Zhang et al.

connecting rods to control the needle and move fabric backwards and forwards, while
an electro-pattern one requires two step motors and one servomotor to achieve
coordinated movement[1][2]. Of course, except these differences, there are some
similarities among different ones in many aspects. From the simpler electro-lockstitch
sewing machine to the more complex computerized embroidery machine, they all
adopt the manipulative mode of “embedded system + electric units”, and consist of
motor driver, auto-threadtrimming set and other apparatuses controlled by embedded
system. So, we can make the following conclusion primarily: the differences between
them are only the type, number and manipulative approaches of motors and
pneumatic equipments.

On the foundation, we put forward a new opening hardware platform that includes
the foundational platform and special devices in this paper. The foundational platform
includes general equipments and interfaces required by the seriate sewing machines,
such as embedded processor, basic I/O, USB, Ethernet interface, etc. The special
devices are required only by given intelligent equipment, for instance the motor
controller, pneumatic units, data acquisition devices, and what not. With such opening
architecture, embedded hardware system can be configured easily. And the nice
extensibility of such architecture can also guarantee the developer to produce new
intelligent sewing machines. The customizable hardware architecture for seriate
sewing machines is shown in Figl.

digital |:> Special || Touch L N |
switch Keyboard| [Screen
Data
[j Acqui-
sition

electromag (:I and
netic valve Switch

Control

electro- <:|
magnet

Fig. 1. Opening Architecture of Embedded Hardware for Seriate Intelligent Sewing Equipment

Therefore, the hardware platform of new sewing equipment can be developed
conveniently by customizing the number of switch, motor and motor driver, and the
interfaces of communication and control. For example, the typical hardware
configuration for electro-pattern sewing machine can be the following: foundational
hardware platform, touching-screen, LCD, CF card, 2-way digital switches, 3-way
data acquisition and three-dimensional motor controller, etc.

3 Customizable Embedded Software Platform

The embedded software platform of intelligent sewing machine is mainly constructed
by embedded OS, drivers for special devices and embedded application software,
while some applications may need embedded graphic and character libraries, network

The Customizable Embedded System for Seriate Intelligent Sewing Equipment 145

protocol stack and other modules. Traditional embedded software is difficult to be
applied to the other intelligent sewing equipments, because it is often designed for
special cases. To meet the seriate demands and improve the development method, a
new customizable architecture of embedded software platform is proposed as
following.

Such customizable software architecture is mainly separated into three different
parts: customizable embedded OS, general embedded software component set, and
special embedded software component set. With such architecture, the special
application-oriented embedded system can be customized easily. During the
development of new sewing machines, more embedded components can be developed
and added into the embedded software set continuously. Eventually, the customizable
embedded system platform with rich functions can be established, which will be more
helpful in the future. At the same time, the “general software + special software”
mode based on embedded component will meet the customizable demands.

3.1 Customizable Embedded RTOS

In our practice, we used embedded Linux as our foundational OS platform for it has
more merits. Embedded Linux provides not only the core functions of the micro-
kernel, such as general process management, but also the high-level ones, such as the
real-time FIFO, process schedule based on priority-driven polling and otherwise. The
architecture of embedded Linux is clear and can be divided into the following four
layers: HAL, micro-kernel, real-time kernel and application interface. For the limited
resources and domain-oriented applications, the common embedded Linux need to be
tailored, extended and optimized before it is used in the sewing equipments. This
work will be described as the following items.

Kernel Tailoring. Linux kernel is designed in modularization mode which allows
many functional modules to be compiled into kernel directly or loaded dynamically.
Because of the open source and powerful kernel-compiled tools, Linux kernel can be
tailored conveniently. In addition, embedded Linux should also activate the kmod
function to support diverse hardware by smaller core. When we try to tailor a kernel,
one of the important contents is the compile-items. Based on our experiments, the
following options must be considered: loadable module support, general kernel, block
devices, networking options, ATA/IDE, Frame-buffer, input core, file system, SCSI
and USB support, and etc. Additionally, we should consider tailoring the libc library
according to application, which can economize the storage space by a long way.

For example, to realize the automatic network configuration and the pattern data
transferring function, the items, such as Networking support [General setup], Network
block device support [Block devices], and Unix domain socket, IP: kernel level auto-
configuration, IP: DHCP support, IP: BOOTP support, IP: RARP support[Networking
options], should all be selected.

In practice, we adopt the Linux 2.4.20-8 kernel. The kernel we customized for the
electro-pattern sewing machine is about 1093K, which can support almost all the
basic functions required by an electro-pattern sewing machine.

146 Kailong Zhang et al.

Function Extending. Generally, the drivers and interfaces provided by embedded
Linux may not support all the devices needed by sewing equipment, especially some
special hardware. Consequently, the embedded Linux kernel should be extended fully.
Linux kernel is designed as a wholly independent entity, and the drivers are all
designed as modules. This mechanism allows all the drivers to be loaded or removed
dynamically with some useful system calls, such as init module() and cleanup
module(). Although the drivers are all treated as modules in Linux system, the kernel
can load them by two different methods. One is modularization mode that allows the
kernel loading special modules dynamically. And the other is kernel mode, which
requires the kernel to load all modules needed when system is booting. Considering
the fixed demands of the special sewing system, the latter is adopted in our practice.

Performance Optimizing. Embedded Linux can satisfy requirement of applications
on sizes and functions partly, but its performance, such as real-time processing, may
be limited if it is used in sewing field. Thus the performance of embedded Linux
should be optimized firstly when it will be used.

e The ability of real-time processing

Because the interrupt mechanism and process scheduling policy in traditional
embedded Linux are not designed in real-time mode, the real-time performance must
be optimized for real-time sewing application. Based on the analysis, the real-time
performance of Linux kernel can be promoted by modifying source code of kernel,
adopting optimized process scheduling, inserting preemptable points, optimizing the
mechanism of interrupt management and fining clock granularity [5].

e Rapid, graphic system booting

Another requirement of such embedded system is rapid system booting. For the
sake of hardware detection and system services loading, common Linux always starts
up slowly. But, not all of the detection and services are needed. To shorten the system
booting time, some unnecessary system detections and services must be masked by
modifying initial shell scripts and kernel configuration. On the other hand, Linux
should be booted in the single user mode. Moreover, some applications also require
the system booting in graphic mode, so that this function can be realized by patching
the optimized kernel with bootsplash 3.0.7.

On an embedded board with 1GHz main clock and 128M memory, the optimized
embedded Linux can boot up in 5 seconds, and shut down in 4 seconds, while the
common Linux will spend about 73 seconds to boot and 24 seconds to halt in the
same conditions.

3.2 Application Software Set Based on Embedded Component

Embedded components are self-contained, packaged, standard and reusable software
modules with a special functionality [11]. Having analyzed the functions of intelligent
sewing equipments, we divided embedded components into three classes: framework,
general sewing components, and the special ones. This classification indicates the
functional modes and the hierarchy of embedded component in sewing field, which is
helpful to configure, extend, and manage the component library.

The Customizable Embedded System for Seriate Intelligent Sewing Equipment 147

Embedded Component for Sewing Equipment (ECSE). An embedded component
X can be described with data structure: component X::= <Ix(X), I}(X), Ig(X), F(X),
[(X)>, where Ix(X) is the component remark, I;(X) is the data and control interface,
Ig(X) is the entity to realize the actual sewing function, F(X) = {fi,...,f,} is the set of
services encapsulated by component X, Iy(X) describes information about the related
hardware. Considering the fact that the embedded component for intelligent sewing
equipment is almost related to the control action, the descriptions of the time-
restriction, hardware platform, special embedded interfaces and other features are
supplied to the embedded component as metadata.

The procedure to design an embedded component mainly includes three steps:
component abstraction, component entity design and component packaging. Twice-
packing is necessary for component entity, and the first is to uniform the service
interfaces while the second to manage the component library [9].

Embedded Component Repository for Sewing Equipment (ECRSE). ECRSE is a

set of software modules constructed by certain semantic and structural rules. In

ECRSE, all the embedded components are stored in the form of files, and all can be

searched and customized by component management tools.

According to the classification of ECSE before, the ECRSE can be classified into
three sublibraries.

e Framework component subset contains all the foundational components. These
components are always the basic units, and provide abundant contracted interfaces.

e General component subset involves some components used by different
equipments, such as power on self-test, data acquisition, auto-threadtrimming,
thread-broken detecting and so on.

e Special component subset includes some components needed by special
equipment, such as pattern customizing for electro-pattern-sewing machine,
fastener hole diameter setting for electro-button-attaching machine.

ECRSE is established with information library and functionality library in practice.
The information library stores the description information of all components, while
the latter provides functionality to instantiate components. At the same time, the
mapping relationship between description information and components is also
necessary to be involved into ECRSE.

Customizing Application. Commonly, the process to customize an application
involves system designing, components customizing and assembling, system
simulating and testing, etc.

After analyzing and determining the characteristics and functionality of target
system, the following step is to choose one appropriate framework, some general
components and special ones for it. Since there aren’t completely equivalent function
descriptions in the component library where there aren’t reduplicate components [10],
new components should be customized or developed if no one can satisfy the
requirement. The third, all the customized components should be assembled
according to component contact and event/time-driven mode to form a new embedded
application. By integrating the customized embedded software, RTOS and hardware
platform together, the customization work is completed on the whole. As the last
important step, the system customized above must be tested and simulated in the

148 Kailong Zhang et al.

special simulation environment we have developed. The principle of customizing
component-based application is shown in Fig2.

| Component Manage Tools |

! Customized Application
Interfaces '
1

1

|

Com- Component; || Component, | *** Componentn:

Specification ponent / Contract |
1

1

1

1
1
i Framework Component
_’Custo- ._l __________________ If ________ l_
mizing ' Graphic Lib || Tidy TCP/IP
Special Framework Customized | e “ =
component General component Tools Embedded RTOS Ea : :
component Customized Embedded Hardware |
Component entities I for Serial Sewing Equipment |

Fig. 2. Component-based Embedded Application for Seriate Intelligent Sewing Equipment

4 Conclusion and Future Work

As a whole, the opening system architecture for seriate sewing machines presented in
this paper has been used in our project, and the result of experimentation shows that
the customizable method is doable and effective. With our research and practice, we
can get the following conclusion: the opening architecture and the component-based
application development method are useful to shorten the developing period of a new
product, and improve the performance of products further.

During our practice, we summarize two main tasks that should be researched more
in the future. First, the existing kernel customization tools can’t satisfy the special
requirements, so we will study further the mechanism of customizable embedded
RTOS and customization methods. In addition, we will optimize the interface and
structures of embedded component according to the characteristics of seriate
intelligent sewing equipment.

Acknowledgment

This work is supported by the National 863 Project under grant No.2004AA 172410
and Xi'an Science Technology Bureau under grant No.CH04004.

References

1. He Hai, Zhao Yanwen, Wu Shilin: The Design of Real Time Multi-task Controller for Home
Computerised Embroidery Machine, Journal of WuHan Institute of Science and
Technology, Vol.14, No.1(2001)18-21.

9.

The Customizable Embedded System for Seriate Intelligent Sewing Equipment 149

. Diao Hongquan, Yan Gangfeng: Integral Design Scheme of Computerised Embroidery

Machine's Control System, Journal of Engineering Design, Vol.10, No0.4(2003)187-191.

. Carsten Boke, Marcelo Gotz, Tales Heimfarth: (Re-) Configurable Real-Time Operating

Systems and Their Applications, The Fifth IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems(2003)148.

. Zhou Dexin, Zhang Xiangli: Embedded Operating System and Linux, Journal of Guilin

Institute of Eectronic Technology, Vol.20,No0.4(2000)21-23.

. Yang Chaojun, Li Shichang, Tao Yang: The Optimization of Embedded Linux, Journal of

Chonggqing University of Postsand Telecommunications, Vol.14 No.4(2002)61-64.

. Li Xiaoqun, Zhao Huibin, Ye Yimin, Sun Yufang: RFRTOS: A Real-Time Operation

System Based on Linux”, Journal of Software, Vol.14, No.7(2003)203-1212.

. Yu Xianqing: Component, Component-Base, Method Based on Component, Journal of

Graduate School, Academia Sinica, Vol.15, No.1(1998)86-90.

. Philip T Cox, Song Baoming: A Formal Model for Component-Based Software, IEEE 2001

Symposia on Human Centric Computing Languages and Environments(2001)304.
Liu Yu, Guo Heqing: The Realization of Reusable Component for Special Domain, Micro-
computer Applications, Vol.15, No.11(1999)21-23.

10. Zhang Haifei, Yuan Lei, Xia Kuanli: A Model of Software Component Libraries Function

11.

Set, Computer Engineering, Vol.26 No.11(2000)87-90.

Uwe E. Zimmermann, Michael Wenz, Thomas Léngle, Heinz Wo&rn: Describing
Components and Configurations for Embedded Control Systems. The Proceedings of the 4th
International Workshop on Computer Science and Information Technologies CSIT’2002.

A Distributed Architecture Model for Heterogeneous
Multiprocessor System-on-Chip Design*

Qiang Wu'-2, Jinian Bian', Hongxi Xue!

! Department of Computer Science and Technology, Tsinghua University,
Beijing, China 100084
wugiang2000@mails.tsinghua.edu.cn,

{bianjn, xuehx}@tsinghua.edu.cn
2 College of Computer and Communication, Hunan University,
Changsha, China 410082

Abstract. Current embedded system designs inspire the adoption of heteroge-
neous multiprocessor system-on-chip (SoC) technology, in which the architec-
ture model plays a very important role. This paper proposes a distributed archi-
tecture model for the heterogeneous multiprocessor SoC design. It takes the
view on the system as multiple processing elements connected with a network
of communication channels. System functions are refined to primitives pro-
vided by the processing elements and communication channels through a hier-
archy of abstraction layers. This will be helpful for the enhancement of system
design modularity and efficiency.

1 Introduction

Current embedded systems design trend is to employ the heterogeneous multiproces-
sor System-on-Chip (SoC) technology to achieve functionality, performance, price
and low power goals [1][2]. Chips summarized in [10] verify the emergence of such a
design style, while [11], [12] and [13] give the concrete examples of this trend. In
these designs, several microprocessors and ASIC blocks will be integrated on the
same chip. Particular implementation tools are used for each of the components, e.g.,
compilers for microprocessors, synthesizers for ASICs. Communication components
are often identified as hardware logics combined with software drivers, and imple-
mented with corresponding compilers and synthesizers. Beyond them, the architec-
ture model describes the organization of various components. It hides the details of
the underlying components, exhibits a unified programming model for the designers
to specify the system function, and provides an appropriate hierarchy of abstraction
layers to pass the system function specification to back-end implementation tools.

* This work was supported by ‘“National Natural Science Foundation of China 90207017,
60236020, 60121120706 and “Hi-Tech Research and Development Program (863) of China
2003AA115110”.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 150-157, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Distributed Architecture Model 151

Intensive researches have been carried out on the embedded system design [3], but
many of them focus on the single processor system, like COSYMA, VULCAN,
LYCOS, TOSCA, MICKEY [3][4]. Some of them target at the multiprocessor system,
like POLIS, COOL, Chinook, COSMOS, CoWare, SpecSyn [3][4] and MFSAM-
based approach [5]. Among these, POLIS, COOL, Chinook, COSMOS were devel-
oped before 2000, and did not focus on the heterogeneous multiprocessor SoCs.
CoWare and SpecSyn (and its successor, SpecC-based SCE [6]) consider the archi-
tecture of multiprocessor SoCs, but restrict themselves on some specific set of
interconnect topology and communication protocols. MFSAM is closest to the focus
of this paper which uses a generic architecture model for application-specific
multiprocessor SoCs.

The work presented in this paper follows a distributed computing manner for the
top view, regarding the system as multiple processing elements connected with com-
munication channels. The main difference between this model and the previous works
mentioned above is the manipulation of memories which are viewed as building
blocks of processing elements or communication channels, not appearing at system
level. This can maintain a clearer view at system level for an easy function-
architecture mapping.

The rest of the paper is organized as follows: Section 2 describes the architecture
model in detail. Section 3 outlines the translation of system functions through the
hierarchy of abstraction layers. Conclusion is given in section 4.

2 Architecture Model

2.1 System Model

The proposed architecture model is a network of communication channels (CH) con-
necting multiple processing elements (PE), as illustrated in fig.1.

Memories are attached either to PEs as their local memories or to CHs as shared
memories. No instances of independent memory exist in system level model of the
architecture. This is different from previous works that always have memories as
separate components in the architecture model, especially the shared memories. But
in heterogeneous multiprocessor SoC designs, memories may have different struc-
tures for different processors. Such a separate memory organization in architecture
model may have disadvantages for system scalability. MFSAM ameliorates this situa-
tion by integrating local memories with processors, thus enhances the modularity of
the system. However, shared memories in MFSAM approach are still separated from
other components in the system, especially from the communication network.

Considering that shared memories act as a center for information exchanges be-
tween different processes or tasks in the system, we think it is better to view shared
memories as a communication channel. This forms a clean distributed computing
model for the system, where PE performs the computation and CH performs the
communication. We emphasize on the distributed feature of the model with the con-
sideration of the relation to the back-end implementation tools. We hope that the
compilers, synthesizers and programmers can be applied within the domain of each

152 Qiang Wu, Jinian Bian, and Hongxi Xue

PE and CH in the implementation stage. This encapsulation of individual components
can increase the modularity and scalability of the whole system.

PE PE . PE PE
! NVMEM Cgrtlf}g ¢
T
uP +— SRAM or FPGA ASIC TP Core
DRAM
[[
‘ Interface ‘ ‘ Interface ‘ NVMEM Interface
CH,| 1nf | ' Inf | | Inf |
| BUS — Arbiter |
Cl, | Inf | | Inf | [Int |
., Memory
Shargqd Memory 1 Controller
CH, Inf | ' Inf | |
‘ Point-tg-Point Link }—{Controller‘
CH, Inf Inf Inf

Complex network ‘

Fig. 1. Illustration of the distributed architecture model

It can be seen in the fig.1 that all PEs and CHs have interfaces between them. The
interfaces on the PE side are used to hide the details of PEs and adapt them to the
abstract communication model. The interfaces on the CH side are used to hide the
details of CHs and provide an abstract communication model for PEs. This is helpful
for a clear separation between computation and communication.

2.2 PE and CH Types

The PE can be of whatever computation component, such as microprocessor, DSP,
ASIC block, reconfigurable logic device or IP core. They can be categorized to three
types according to the programmability: (1) programmable PE (for microprocessors);
(2) reconfigurable PE (for programmable logic devices); (3) fixed PE (for full-custom
logic blocks), like PE,, PE, and PE; illustrated in fig.1. IP cores that perform the
computation of the system will be regarded as one of these three types of PE with the
consideration of their programming characteristics and system needs. It should be

A Distributed Architecture Model 153

emphasized that each PE has a complete running environment for processes or tasks
executed on it. Data exchanges and control synchronizations with other processes or
tasks on different PEs are carried out through corresponding CHs.

The CH can be of whatever communication component, and are divided to four
types with the consideration of topologic complexity: (1) point-to-point link; (2) bus;
(3) shared memory; (4) complex network, as shown in fig.2 in detail.

Bus (H
Address
— —
j=] j=)
: :
T : ; PE = S H— PR
Point-to—point link CH %ﬁ Data [] %’v
= =) 1 . o)
5 g Arbi tor
—+ —+
PE S SH- M (
— ~
o o
o o
® @ Interface
L
L
(a) Point-to-point link (b) Bus
Shared mamory (H
Complex network CH
= | L=
LS R
22 Moy =] |2 =) =)
" e © IS < E = =+
b s o | [o = o [¢] @
m o a m PE t— = = —— PE
e o o e gl =
T A : :
D D
Mam Acc Ctrl
Interface
e 1
| — L _____ E
! i PE
PoE b
S
(c) Shared memory (d) Complex network

Fig. 2. Communication channel types

IP cores that perform the communication of the system are also classified in these
four types according to their topologic characteristics.

Based on these fundamental types, PEs and CHs can be further divided to sub-
types according to the functions they provide, as well as the performance and cost
associated. Such type refinement can be carried on recursively, resulting in a type tree
of PEs or CHs. The leaves of the tree should be the concrete PE or CH instances,

154 Qiang Wu, Jinian Bian, and Hongxi Xue

such as specific processors or buses. Theoretically, if all instances of PEs and CHs
and all variations of their functions, performance and cost are considered, the type
tree will be too large and possibly conflicting. This is not necessary and should be
avoided in a practical system design. So, in real system designs, type refinement
should be built on the complexity of the system function and the availability of hard-
ware and software resources to select appropriate width and height of the type tree
that can give efficient guidance to the system design.

For a good link to back-end tools, we suggest a principle of type refinement as fol-
lows: (1) At first, build sub-types from fundamental types by the functional compati-
bility; (2) Then, build further sub-types by the variations of performance and cost.
This is to say, we group available PEs or CHs that can be alternated to implement the
function of one or more processes in the system specification. After that, we will
decide whether to divide them further or not with the consideration of system design
requirement and the variances of performance and cost among the PEs and CHs in
each sub-type. If the variance is not significant and can be ignored in system design
decision, then the further division is not necessary. Otherwise, a deeper type tree is
demanded.

Fig.3 gives an example of PE type trees. It consists of 2 sub-types of programma-
ble PE: 8051 microcontroller and ARM microprocessor core series, 2 sub-types of
fixed PE: JPEG codec core and DCT logic block and 1 sub-type of reconfigurable PE:
FPGA fabric can be identified. The performance and cost differences of ARM9 and
ARMOE should be examined for further consideration, indicated by two dotted lines.
Usually, these two microprocessor cores need be separated to different sub-types. But
cases may exist in some designs that the processes to be mapped on these two cores
have minor differences in terms of design objects like running speed, power con-
sumption, development cost and so on. In such a situation, the designer may figure
that the choice between the two cores has little effect on the performance and cost of
the final system, and decide not to distinguish them. This means the type tree ends at
the ARM core series, not the core instances. For system design exploration and deci-
sion, this will be helpful due to the reduction of the search space, resulting in a faster
design convergence procedure.

:- e |

I Typesl

oy

" - 1 ST~~~ -~
IProgram . Reconfi
F

mable ixed gurable
8051 ARM DCT JPEG FPGA
MCU Series Block Codec Fabric

IARMYE ARM9

Fig. 3. Illustration of a PE type tree

A Distributed Architecture Model 155

The building of CH type tree is similar to PE type tree, while the compatibility
consideration mainly concerns the interoperability of communication protocols and
interface adaptability. And the terms of performance and cost often refer to the band-
width, frequency, transport power, chip area and so on.

3 Design Flow

Unlike the top-down [7] and bottom-up [8] approaches, the design methodology in
our work can be classified as the meet-in-the-middle approach. The whole design
flow is shown in fig.4.

System function
specification
(Concurrent Process)

. D System level
Function partitioning |--—- abstraction
© PE?CH rocess
Y allocation bindiﬁ
Custom| [] table &
design PE Database i i
~ @~ Architectural level
4444444% Interface generation ‘ ————— with channel-abstract
Ip — i i sub layer abstraction
w
— .
core L . . . Architectural level
. | Computation |Communication| with channel-specific
CH Database refinement refinement sub layer ab%tiaction
v i i S S
Implementation

444% Compiler/Synthesizer/Programmer |-----

!

‘ Physical design

level abstraction

Fig. 4. Design flow

3.1 Abstraction Hierarchy

A three-layered hierarchy is adopted in our architecture model, which consists of the
system level, architectural level and implementation level, as shown in fig.5.

At system level, the architecture model provides abstract computation and commu-
nication primitives to support system functional specification as concurrent processes.
The computation primitives are abstract functions, while the communication primi-
tives are based on the message passing mechanism.

At architectural level, computation is represented as the functions and statements in
high level programming languages or hardware description languages (HDL). On the

156 Qiang Wu, Jinian Bian, and Hongxi Xue

PE side, communication is represented as operating system services with hardware
dependent software drivers, or behavioral signaling in HDL. On the CH side, com-
munication is further divided to two sub layers. The higher one is called the channel-
abstract level, which provides communication primitives adapted to the PE’s commu-
nication interfaces. The lower layer is called the channel-specific level, which de-
scribes the composition of the underlying hardware components for each channel.

At implementation level, computation and communication are merged to more ba-
sic operations in the forms of instruction set and logic functions. Compilers, synthe-
sizers and programmers are introduced to take care of these tedious matters.

‘ Concurrent procosscs‘

+—‘—+ [V

Abstract Message
functions | passing AP]

+—1 +—‘—+

[pe—

ystem level

Sommo-

-
0S services/| Signals :.Architectural level
. . drivers in HDL I (channel-abstract)
Application ‘I
functions p2p Bus SharedComple :.Architectural level
link Memorynetwor ! (channel-specific)
rd

A

‘ Compiler/Synthesizer/Programmer‘

“_Implementation

3 level

Fig. 5. Three-layered abstraction hierarchy

3.2 Meet-in-the-Middle Approach

At first system function will be analyzed and partitioned to groups of processes. Each
group will be executed on the same PE. The communication channels will be attached
to PEs having communicating processes. Then we build implementation instances for
PEs and CHs in the preliminary architecture. Computation and communication ab-
straction will be performed for the PE and CH instances. The extracted primitives and
parameters will be stored in PE and CH database for future reuse. Later we refine the
partitioned processes towards the architectural level to meet these primitives. Once
reached, the architectural model and parameters of the PEs and CHs will be used to
guide the compilation and synthesis at implementation level.

Compared with a typical meet-in-the-middle method, the platform-based design [9],
our design flow refines the system function to individual PEs and CHs rather than a
platform. This is due to the distributed feature of our architecture model, which can
provide designers more freedom in specializing PEs and CHs for a given application.

And our approach differs from component-based approach [8] in that the compo-
nent-based approach focuses on the automatic generation of wrappers for components
in the system to interact with each other, which mainly concerns the communication
aspect of the implementation of system function. Our approach intends to cover both

A Distributed Architecture Model 157

computation and communication aspects of the system function to support architec-
tural exploration, integration and implementation.

4 Conclusion

We have introduced a distributed architecture model and related design methodology.
The model is featured with encapsulation of individual component and the separation
of computation and communication. A hierarchy of system level, architectural level
and implementation level abstraction is adopted in this model. Two sub abstraction
layers in architecture level for the CHs are employed to assist the refinement of the
communication interface between the PE and CH. This enhances the modularity and
scalability of the system, which increases the design reusability and efficiency. A set
of CAD tools is under development to support the design flow based on the proposed
architecture model.

References

1. Flynn, M. Dubey, P. Hot chips 15 - scaling the silicon mountain. IEEE Micro, Vol. 24,
Iss. 2 (2004) 7-9

2. Ravikumar, C.P. Multiprocessor architectures for embedded system-on-chip applications.
Proc. of Intl. Conf. on VLSI Design, Bangalore (2004) 512-519

3. Staunstrup J, Wolf W. Hardware/Software Co-Design: Principles and Practice. Boston:
Kluwer Academic Publishers (1997)

4. R. Rajsuman. System-on-Chip: Design and Test. London: Artech House Publishers (2000)

5. Amer Baghdadi, et al. An Efficient Architecture Model for Systematic Design of Applica-
tion-Specific Multiprocessor SoC. Proc. of DATE, Munich (2001) 55-62

6. S. Abdi, et al. System-on-Chip Environment (SCE Version 2.2.0 Beta): Tutorial. Techni-
cal Report ICS-TR-00-47, University of California, Irvine (2003)

7. Lukai Cai, et al. Top-down system level design methodology using SpecC, VCC and
SystemC. Proc. of DATE, Paris (2002) 1137

8. Cescirio W., et al. Component-based design approach for multicore SoCs. Proceedings of
Design Automation Conference (2002) 789-794

9. Sangiovanni-Vincentelli, A., Martin, G. Platform-based design and software design
methodology for embedded systems. IEEE Design & Test of Computers, Vol. 18, Iss. 6
(2001) 23-33

10. Michael Flynn, Pradeep Dubey. Hot Chips 15 - Scaling the Silicon Mountain. IEEE
Micro, Vol. 24, Iss. 2 (2004) 7-9

11. Alireza Hodjat, Ingrid Verbauwhede. High-Throughput Programmable Cryptocoprocessor.
IEEE Micro, Vol. 24, Iss. 3 (2004) 34-45

12. Deepu Talla, Ching-Yu Hung, Raj Talluri, et al. Anatomy of a portable digital mediaproc-
essor. IEEE Micro, Vol. 24, Iss. 2 (2004) 32-39

13. Hans-Joachim Stolberg, Mladen Berekovic, Lars Friebe, et al. HIBRID-SoC: a multi-core
system-on-chip architecture for multimedia signal processing applications. Proceedings of
the Conference on Design, Automation and Test in Europe: Designers' Forum - Volume 2
(2003) 8-13 suppl

A New Technique for Program Code Compression in
Embedded Microprocessor:

Ming-che Lai, Kui Dai, Li Shen, and Zhi-ying Wang

School of Computer National University of Defense Technology, Changsha, P. R. China.
mingchelai@chiplight.com.cn

Abstract. Program code compression has become a critical technology
nowadays, and it can promote the performance of microprocessor systems. But
compression techniques nowadays can hardly achieve both satisfactory
compression ratio and low hardware complexity. A new program code
compression method is proposed in this paper. Experiment results show that the
code sizes of ARM and OR1200 microprocessor can be efficiently reduced by
32.2% and 36.9% individually with this algorithm, resulting to a sharp decrease
in memory traffic. A hardware decompressing prototype is also presented,
revealing its advantage in ultra high speed decompression and low hardware
complexity.

1 Introduction

With all kinds of the electronic equipments widely used on PDA and automobiles,
embedded systems have been more and more popularized. Especially with the high
development of information society nowadays, embedded systems are advancing
towards large scale and complexity. Recent statistics show that the requirement for
the embedded system memory is increasing linearly by year, but it is accompanied
with a series of problems, such as shortage of storage resource, high price of the
memory elements and so on. Thus, the research on the code compression technology
is necessary.

The correlative research on the code compression begins at the nineties of the
twentieth century, and there is an abundance of algorithms in the literature now. In
1992, Wolfe and Chanin [7] proposed the first code compression system for
embedded processors using byte-based Huffman coding technology. They reported a
compression ratio around 0.73 for MIPS code. The main shortcoming of this method
is the low decompression speed. Lefury [4] proposed another new dictionary-based
method and presented the concept of variable-length codeword. The compression
ratios are 61%, 66% and 74% for the PowerPC, ARM and 1386 programs on average
respectively. The drawback of this method is that branch targets must be aligned and
the range of branched is reduced. IBM also presented a code compression method
named CodePack [1], which split 32-bit instruction into two 16-bit words and
compressed the program using the variable-length codeword. They reported that the

ISupported by the Natural Science Foundation of China under Grant No.60173040

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 158-164, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A New Technique for Program Code Compression in Embedded Microprocessor 159

compression ratio could be achieved about 61% for PowerPC program code.
Additionally, there are some new code compression methods based on the new
architecture, such as MIPS16 [6] and ARM Thumb [5]. The ARM Thumb instruction
set consists of a subset of the most commonly used 32-bit ARM instructions. The
ARM Thumb instruction set achieves an average compression ratio of 70% while
MIPS16 achieves about 60%. They have a zero decoding penalty but result in the loss
of the performance and require more effort on the microprocessor design.

This paper presents another new program code compression algorithm in section 2.
The related hardware implementation is discussed in section 3. Section 4 presented
the corresponding experiment results.

2 Code Compression Algorithm

2.1 Basic Algorithm

In order to achieve a satisfactory compression ratio by real-time decompression, this
section present a new program code compression technique, which is referred as
PCCP for Program Code Compression based on the Pretreatment.

First of all, a pretreatment mechanism is introduced. The aim of this mechanism is
to make the uncompressed code bits with value 0 become clustered relatively. Before
the pretreatment, here is a matrix whose rows correspond to the uncompressed code
vectors. Using this matrix, the pretreatment scheme works in the following two steps:
1. By studying all the elements of each column in the matrix, the corresponding bit of

the vector X; is made certain as follows: If the number of the element 0 exceeds the

number of the element 1 in a certain column, the corresponding bit of the vector .X;

will be set to 1. Otherwise, it will be set to 0.

2. Doing XOR operation between X; and the former code vectors to get the new code
vectors for the rows of the new matrix. After replacing the old matrix, go back to
the step 1 to get the new vector X, ;.

The two steps above will be repeated P times, and a new code vector § will be
generated for each input vector a. That is to say, a=f®X, where X represents
X;® X, --®X,. Itis assured that a can be recovered because § and X are both known.

After the pretreatment, the new code compression algorithm is presented. The
compression scheme works in the following four steps:

1. Get the new matrix and the vector X by the above pretreatment. And each row
corresponds to an uncompressed code vector.

2. Select a maximal vector from the matrix as the next dictionary item 7.

3. For each code vector Y labeled as uncompressed,

Y=T,-Y)]

Then a new matrix can be generated, in which any code vectors smaller than the
threshold 4 is labeled as compressed.
4. If all the code vectors in the new matrix are compressed, the compression finishes.

Otherwise, go to step 2.

Completing the above procedure, the dictionary has been generated. But it is not
suitable for the decompression. In fact, this dictionary only needs some mathematical

160 Ming-che Lai et al.

improvement to achieve the simple implementation and fast decompression. Suppose
there is an uncompressed program code sequence x;, X,,***, x,. Following the above
scheme, this sequence becomes another one y;, v, ***, ¥, (Vi (;<6)) while getting the
dictionary items 7, T5, -+, T,. If a certain code vector x; is compressed to the vector y;
by some dictionary items 77, 75, -+, T,,. There exists the following conclusion:

T, =T, (T, ~x))=» (2)
Then,
Tw_Tyt,-,]_"'(_])w:ilTl_yi:(_])wqxi (3)
t=y /0" =x,)
t, = (Tu - T»H - "(_ I)WJTI)/(_ I)WI (5)

In the formula (3), the code vector x; uses the first w dictionary items for its
compression. So the fast decompression can be realized only using the formula (4)
and (5). If ¢, is treated as the new dictionary items, there exists the following formula:

xl = tw + (_ 1)“’-)}1 (6)

Then, using the new dictionary items ¢,, the compressed vector y; can be
decompressed to the original code vector x;.

2.2 Dictionary Size

A key factor of the compression is the dictionary size. Any good code compression
method should limit the dictionary size. The scheme in the PCCP to reduce the
dictionary size works as follows: if the value of §” is less than the threshold 6", which
is determined by the dictionary size and the constraint size, the item ¢, is deleted.

5= 8(kx,) -2 8(y,) o) (7

Then, the models of the PCCP algorithm can be constructed immediately. In the
models, a self-adapt recursive search strategy is adopted to satisfy the dictionary size
constraint and to gain the best compression performance by selecting the proper
threshold # and 6.

3 Hardware Prototype

In the implementation of the PCCP, the biggest challenge is the effective run-time
decompression and the key is the address conversion. Ideally, solving these problems
only needs a bitmap to show whether each instruction is compressed or not. However,
the main shortage is that the hardware will be a burden when the program is large
enough. Thus, a block mechanism is adopted in the design to simplify the hardware

A New Technique for Program Code Compression in Embedded Microprocessor 161

for the address conversion. As shown in Fig. 1, 128 sequential instructions will be
organized as a block, whose correlative information item contains a bitmap and its
base address. Using an item of the Address Conversion Table (ACT), any compressed
instruction in the corresponding block can be accessed normally by the processor.

4 98 65 0
T T 1 LogicInstruction Address C o
OIIPresse
[index [Offet |
Waiin Memory Buffers Address Conversion Table Item () ADDISUB
> = [Base Address] | []
— —
Address [| RU 118 [+—iJ) XOR

Convert

Mormal Instruction

[1 —1
Compressed

Fig. 1. The fast decompression in PCPP

As shown in the left part of the Fig. 1, the instruction address is decomposed into
three parts. The sixteen most significant bits are used for the ACT index, and they are
compared to the tags held in the buffers. Once the tag matches an entry and there is a
cache miss, the corresponding ACT entry is used for address conversion. If the ACT
entry is not in the buffers, it will be read from memory using the ACT index. The
refill continues after the ACT entry is present. Then, if the compressed cache line is
fetched from the main memory, the decompression unit will decide any an instruction
to be decompressed or not, according to the corresponding bit in the bitmap. In the
right part, the compressed instruction is split into two parts, the high significant bits
are used as the dictionary index, and the low significant ones are used for the offset.
The PCPP only needs to do SUB or ADD operation between them to recover the
instruction (an XOR operation may be added because of the pretreatment).

Instruction
CPU - .
Cache
=l
2 I "
=3 nstruction
£2 | MEmTy
= 3
T &
F
&
=
Control T
address Block
convert [* information

Fig. 2. Overall memory system organization

Then, Fig. 2 shows the simple instruction memory hierarchy in a typical system.
From the analysis above, the logic of the address conversion is very easy, and its
controller only consumes around 1.1k gates in the following experiment on the ARM
architecture. Then, the process of its address conversion just needs 2 ns in the 0.18us

162 Ming-che Lai et al.

process. Therefore, it can be concluded that the decompression of the PCCP is
real-time and only needs little hardware cost for the implementation.

4 Experiments

Finally, the experiments are performed on ARM and OR1200 architectures and the
corresponding compression results are analyzed in the below.

Table 1. The compression result on the ARM architecture

No. Program Name Original Code Size Dictionary size Compression Ratios
1 ammp 270.2KB 1678 0.678225
2 g0 422.7KB 1888 0.635728
3 mcf 60.0 KB 994 0.703374
4 gzip 87.6 KB 890 0.709907
5 vortex 618.0KB 1854 0.673422
6 vpr 207.3KB 1750 0.709019
7 bzip2 82.9 KB 830 0.706707
8 twolf 269.0KB 1872 0.708113

All the simulations performed in the Table 1 use a number of commonly available
programs in SPEC 2000. For better compression performance in PCCP models, the
length of the compressed instruction is chosen to be 16 bits. As a result, the ratios of
compressed program size (including dictionary) over original program size in each
benchmark distribute between 59% and 67% with a constraint that the dictionary size
can’t exceed 8 KB. But the overhead of the ACT is approximately 3.61% of original
program size. So the inductive conclusion from the result shown in the Table 1 is that
the compression ratio is approximately 67.8%. With the same constraint, the
compression ratio on the OR1200 architecture achieves 63.1%.

0.75
L=
—
= H
20T
g O Infinity
= 0,850 o I B 5K
@ O 4EB
=] || H
2 0.6f O 2ER
L=
L)

0. 55" & N0,

1 2 3 4 5 5] 7 g

Fig. 3. The compression ratio under different dictionary constraints

Then, the size constraint of the dictionary is set to infinity, 8KB, 4KB and 2KB
individually on the experiment. Fig.3 shows four bars representing the different
compression ratio in the different size. The first bar is so similar to the second and the
third one that the dictionary constraint size beyond 4KB seems to have little influence
to the compression ratio. But 2KB size constraint is quite different. The compression

A New Technique for Program Code Compression in Embedded Microprocessor 163

ratio has a relative increase here. So 4KB is chosen for the dictionary size in the
implementation at last.

With the dictionary size of 4KB, the experiments are performed on the ARM
architecture again. The configuration of its instruction cache is 16-Kbyte, 1-way
direct mapped instruction cache with 64-Bytes per line. The statistics in the Table 2 is
about the memory traffic caused by the program code. And the result shows that there
is a sharp decrease in the traffic of its 32-bits bus because of the compressed code.

Table 2. the memory traffic caused by the program code

No Program Name Memory traffic Memory traffic
without code compression with code compression
1 ammp 6.21 E+09 Bytes 4.39 E+09 Bytes
2 go 1.39 E+09 Bytes 1.10 E+09 Bytes
3 mcf 2.07 E+09 Bytes 1.35 E+09 Bytes
4 gzip 2.13 E+10 Bytes 1.37 E+10 Bytes
5 vortex 2.60 E+10 Bytes 1.86 E+10 Bytes
6 vpr 5.14 E+09 Bytes 3.31 E+09 Bytes
7 bzip2 9.60 E+09 Bytes 6.23 E+09 Bytes
8 twolf 1.81 E+10 Bytes 1.17 E+10 Bytes

5 Conclusions and Future Work

This paper presents a new code compression algorithm for embedded system. As
mentioned above, the standard to evaluate a code compression method can’t be
limited to the compression ratio. The other key factors should be paid more attention
to, i.e. the compression ratio, the limited hardware cost, the real-time decompression,
the small additional table, the low dependence to the processor and so on. Compared
with Lekatsas [8] and other excellent code compression methods as mentioned above,
the PCPP has an attractive compression ratio and little influence to the processor
itself. Besides these, it decompresses in the real time only with low hardware cost.

The following related problems are to be studied further. The first is to apply the
PCCP to the VLIW architecture [3] and evaluate the performance. The second is to
study on the power impact to attack the problem of power consumption in the future
for better performance [2].

References

1. T. Kemp, R. Montoye, J. Harper, J. Palmer, and D. Auerbach. A Decompression Core for
PowerPC. IBM Journal of Research and Development, Vol. 42(6):807-812, November
1998.

2. Ismail Kadayif and Machmut T.Kandemir, “INSTRUCTION COMPRESSION AND
ENCODING FOR LOW-POWER SYSTEMS” 15th Annual IEEE International
ASIC/SOC Conference, pp.301-305, 2002.

164

3.

Ming-che Lai et al.

Y. Xie, W. Wolf, and H. Lekatsas. A Code Decompression Architecture for VLIW
processors. Proceedings of the 34th Annual International Symposium on
Microarchitecture, pages 66—75, December 2001.

C. Lefurgy, P. Bird, I.-C. Chen, and T. Mudge, “Improving code density using
compression techniques”, Proceedings of the 30th Annual International Symposium on
Microarchitecture, December 1997.

K.D. Kissell. MIPS16: High Density MIPS for the Embedded Market. Silicon Graphics
Group,1997.

Advanced Risc Machines Ltd. An Introduction to Thumb. March 1995.

Wolfe and A. Chanin, “Executing Compressed Programs on an Embedded RISC
Architecture,” International Conference on Microarchitecture, 1992.

H. Lekatsas and W. Wolf, “Code compression for embedded systems,” in ACM/IEEE
Design Automation Conf., San Francisco, CA, June 1998, pp. 23-28.

Design of System Area Network Interface Card
Based on Intel IOP310

Xiaojun Yang!-2, Lili Guo', Peiheng Zhang?, and Ninghui Sun2

! School of Information and Communication Engineering, Harbin Engineering University,
Harbin 150001, China
guolili@hrbeu.edu.cn
2 Institute of Computing Technology, Chinese Academy of Sciences,
Beijing 100080, China
{yxj, zph, snh}encic.ac.cn

Abstract. A design of system area network interface card (NIC) based on the
Intel IOP310 I/O processor chipset is proposed in this paper. The chipset makes
it powerful for the NIC to offload the processing of communication protocol
from the host CPU. A network interface unit (NIU) based on memory bus is
embedded in the NIC. The NIU not only thoroughly compensates for the lack
of high performance data transfer channel in the embedded system, but also ef-
ficiently utilizes the memory bus bandwidth and direct memory access (DMA)
engine to reduce the latency for data transfer between the host and network.
The NIC is a part of DCNet, which is the system area network (SAN) of Dawn-
ing 4000A Cluster'. The testing results of DCNet show that the NIC obtains
competitive communication performance compared with Myrinet, SCI, and
QsNet, and prove that the way to design high performance NIC is feasible.

1 Introduction

With the enlargement of supercomputer scale and the improvement of node perform-
ance, the demands for bandwidth, latency and reliability of system area network
(SAN) are becoming more and more important. At present, the SAN used in cluster
architecture supercomputer is usually SCI [1], Myrinet [2], and QsNet [3].

An effective network interface card (NIC) is the critical aspect for a SAN to
achieve high performance. The NICs of the above three SANs are all based on a SoC
(System on a Chip) approach. However, with the development of embedded technol-
ogy, more and more embedded systems have particular advantages such as processing
capability, I/O, cost, and potential to be improved. Now it is possible to design a high
performance NIC using universal embedded system. Based on the Intel IOP310 I/O
processor chipset, a NIC is designed for DCNet, which is the SAN of Dawning
4000A Cluster. In order to achieve the high bandwidth and low-latency of the com-

! This research was supported by the National High-Tech Research and Development Plan of
China under Grant, No. 2002AA104410.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 165-171, 2005.
© Springer-Verlag Berlin Heidelberg 2005

166 Xiaojun Yang et al.

munication, a network interface unit (NIU) based on memory bus is embedded in the
NIC.

The remainder of the paper is organized as follows. Section 2 briefly introduces
the NIC and the Intel IOP310 I/O processor chipset. Section 3 details the design of
DCNet NIC. Section 4 presents the results of the performance evaluation. Finally,
section 5 concludes the paper and discusses the future work.

2 Related Work

In this section, we make overviews of the NIC technology and the Intel IOP310 I/O
processor chipset.

2.1 NIC Technology Overview

SAN is the high performance interconnection for a supercomputer. It consists of the
switch, NIC, and communication protocol. Summary of the above three interconnects
is given in Table 1 [4]. The table shows that SAN possesses high performance in

bandwidth and latency. It is essential to construct the high performance SAN.

Table 1. Summary of SAN specifications and estimated cost

SAN Bandwidth (MB/s) Latency (us) Cost/Port (Euro)
QsNet (Quadrics) 360 5 4770
Myrinet (Myricom) 245 7 2050
SCI (Dolphin) 2D 5x5 200 4 1590

The processing and transferring capability of hardware is an increasing require-
ment of a NIC. It needs a high-speed processor and a low-latency data access channel
to process the communication protocol. It is necessary to have a high bandwidth data
transfer channel and an effective transfer mode (e.g., DMA) in order to assure the
data transfer performance. Today’s SANs such as SCI, Myrinet and QsNet all have a
dedicated 1/O processor and onboard memory, which offloads the protocol handling
from the host CPU and ensures that all available PCI bandwidth is dedicated to data
communication. They all support DMA and use PCI bus [5].

2.2 Intel IOP310 I/O Processor Chipset Overview

The Intel IOP310 I/O processor chipset with Intel XScale technology is the first
product in Intel's fourth-generation of I/O processors. It contains two devices: the
Intel80200 processor based on Intel XScale microarchitecture [6] and the Intel80312
I/O companion chip [7]. The chipset brings a dramatic increase of I/O performance.
When used as an add-in card, the chipset provides the benefit of offloading the proc-
essing of the communication protocol from the host CPU.

Design of System Area Network Interface Card Based on Intel IOP310 167

The Intel80200 processor is compliant with the ARM Version 5TE instruction set.
It has the good performance for moving and processing large amount of data quickly,
and hiding memory latency. The Intel80312 I/O companion chip is designed to work
with the Intel80200 processor to provide a cost effective solution for the intelligent
add-in cards. It is a multi-function device that integrates the PCI-to-PCI Bridge Unit,
DMA Controller, Integrated Memory Controller, and Application Accelerator Unit
(AAU), into a single system chip.

3 Design of NIC Based on Intel IOP310 I/O Processor

In this section, we illuminate the design of a NIC based on the Intel IOP310 I/O proc-
essor chipset. The architecture of NIC, the data transfer modes, and the control pro-
gram of NIC are illustrated.

3.1 Architecture of NIC

The Intel IOP310 I/O processor chipset lacks a high performance data transfer chan-
nel between the host and network, which is absolutely necessary to a high perform-
ance NIC. In order to solve the issue of the universal embedded system, as shown in
the Figure 1, a network interface unit (NIU) based on memory bus is embedded in the
NIC. The NIU efficiently utilizes the memory bus bandwidth and DMA engine to
implement a high performance data transfer channel between the host and network.
Figure 1 shows the function block diagram of NIC.

Network
o rnnneeseannes ST
Interrupt |— 2 | System Area Network Interface |
Controller 3 3
I I q SDRAM
3 3 X712
8254 : |Status/Control || Memory Target ()

Timer registers Interface E
NH}
Flash DMA / SDRAM
| Bus
o G 74 w100
:[f 8031, 1

16550 Intel 80200
UART Flash Bus

Y 3/0 Compamon : Microprocessor

- :
\\} Intel 80310 Chipset

Primary PCI Bus (64-bit, 66Miz)

Fig. 1. DCNet NIC architecture

The NIC includes Intel80312 Companion Chip, Intel80200 Processor, 64MB
Memory, 8MB FLASH, 8259 Interrupt Controller, 8254 Interval Timer, 16550
UART, and the NIU. This architecture not only offloads the communication protocol
processing, but also supports two DMA engines between the host and network.

168 Xiaojun Yang et al.

The NIU consists of Memory Target Interface (MTI), Status/Control Registers
(SCR), and Network Interface (NI). The MTI is a virtual memory device. It converts
the memory bus [8] to a simple local bus, which is used to communicate with the NI.
The SCR is the NIU operation registers based on FLASH bus. The Intel80200 proc-
essor can access these registers. The NI performs the physical and data link level
protocols. It is the same for the memory controller to access the MTI and the local
memory. The data that the memory controller has written to the MTI will be sent to
network, and the data coming from network is stored in the MTI and then will be
taken away by the read operation of the memory controller.

Table 2 describes the NIC memory map. The address range of SDRAM Bank;
dedicates to the MTI of NIU. The address range of Flash Bank, dedicates to the SCR
of NIU and peripherals such as the UART and timer.

Table 2. The NIC memory map

Address Range Layout
FE9EFFFF to FE800000h SCR of NIU and On-Board Devices (Flash Bank)
FE7FFFFF to A4000000h MTI of NIU (SDRAM Bank;)
A3FFFFFF to A0000000h SDRAM Bank,
9FFFFFFF to 90020000h Reserved
9001FFF to 80000000h ATU Outbound Transaction Windows
F
7FFFFFFF to 00800000h ATU Outbound Direct Addressing Windows
007FFFFF to 00002000h Flash Bank;
00001FFF to 00001900h Reserved
000018FF to 00001000h Peripheral Memory Mapped Register
00000FFF to 00000000h Initialization Boot Code From Flash Bank;

3.2 Data Transfer

Word, | Packet Length Packet Length
Word,, and

Word, Reserved Reliability
Word, Routing Word, Reserved
Word, Reserved Word,,
Word,, i

{ Payload i Payload
Word, | {
Word N CRC Word s

(a) (b)

Fig. 2. Packet definition. (a) Sending packet and (b) Receiving packet

The packet length used for the transaction in a SAN is unlimited. The cell of a packet
is a word (32bits). The packet definition is shown in figure 2, the sending packet
header carries the packet length and routing information, which will be thrown away
by the NIC and switch in the transaction processing, respectively. The receiving

Design of System Area Network Interface Card Based on Intel IOP310 169

packet header consists of the state information, which includes length and CRC check
result of the receiving packet. The CRC field is used for assuring the reliability of the
packet when received. The payload filed is the valid transfer data between the nodes.
The Intel IOP310 I/O processor chipset provides three data transfer modes: DMA,
AAU, and PIO. The Intel80312 provides two DMA channels that perform the data
transfer between the primary PCI bus and the local memory of the Intel IOP310 I/O
processor chipset. AAU performs the low-latency, high-troughput data transfer to and
from the local memory. PIO is the low-speed access mode that the Intel80200 ac-
cesses the devices located on FLASH bus. Because the NIU is a virtual memory de-
vice, the above three data transfer modes can be used all. A view of data transfer
between the host and the NIU in the embedded system is presented in Figure 1.

3.3 Control Program of NIC

The NIC achieves all functions of a SAN, such as parallel communication, reliable
and ordered communication, and timeout and resend mechanism. The control pro-
gram of NIC (NCP) is a significant part of overall communication protocol. It runs on
the NIC, and controls all the NIC operations for message passing. The design of NIU
makes the structure of NCP very simple. As shown in Figure 3, the NCP operation for
message passing is based on an event mechanism.

Sender Receiver

Data 1 Data

i =) b
ReceiveEnd
doPutEnd
= e
SendEnd ACK{ACK
TS ol

Fig. 3. NCP operation for message send/receive

4 Performance Evaluation

The testing platform consists of 8 servers (dual Intel Pentium IIT 1.0GHz CPU, 1GB
memory, 64-bit/66MHz PCI bus, and Linux 2.4.18-SMP OS), 8 DCNet NICs and an
8-port DCNet switch. We test the hardware performance and the user-level communi-
cation performance.

The hardware performance of the NIC includes latency and bandwidth: 1.9us in
ping-pong latency for small message and 333MB/s in maximal ping-ping bandwidth.
The testing result shows that the performance of hardware implementation based on
universal embedded system and the NIU approach is enough for a SAN.

170 Xiaojun Yang et al.

The user-level communication performance is the actual application performance
of a NIC. The testing results show that DCNet achieves 14.5us in user-level ping-
pong latency and 218.0MB/s in user-level ping-ping bandwidth. The user-level com-
munication performance of DCNet is close to that of Myrinet, SCI, and QsNet, which
are based on a SoC approach. Furthermore. MPI programs correctly run on the 8
nodes platform based on DCNet. The BER performance of the NIC is less than 1077,

The testing results show that the NIU is a reasonable solution to design high per-
formance NIC based on the low-cost and universal embedded system.

5 Conclusion and Future Work

In this paper, we have proposed the design of a NIC based on a universal embedded
system, which is the key technology of Dawning 4000A DCNet. The implementation
of the NIC obtains the reasonable user-level communication performance of DCNet.
Though the testing results of DCNet show that the NIC obtains unperfect user-level
communication performance compared with Myrinet, SCI, and QsNet, they prove
that the design of high performance NIC based on universal embedded system and the
NIU approach is feasible and effective. As shown in Figure 4, the performance prob-
lems of NIC will be readily solved with the application of other high performance
embedded systems such as Intel I/O processors [9].

[] Latency (us) B Bandwidth (MB/s)
21 700

600

500

400

300

200

100

0

10P310 I0P315 I0P321 I0P331 I10P332

Fig. 4. Performance prospect of NIC based on Intel I/O processors

The future work includes adding some functions to the NIU to reduce the latency,
and designing the next generation NIC based on the latest Intel I/O processors. The
performance of NIC based on universal embedded system will be close to that of NIC
based on the SoC approach more and more.

Design of System Area Network Interface Card Based on Intel IOP310 171

References

. High Speed Network and Interconnect Products. http://www.dolphinics.com/. August 2003.
. Myrinet Products. http://www.myri.com/. August 2003.

. QsNet High Performance Interconnect. http://www.quadrics.com/. August 2003.

. Cluster Design. http://www.clustervision.com/cluster_design.html. August 2003.

. PCI Local Bus Specification, Revision 2.2. December 18, 1998.

. Intel Corporation: Intel80200 Processor. November 2000.

. Intel Corporation: Intel80312 I/O Companion Chip. December 2000.

. Intel Corporation: PC SDRAM Specification, Revision 1.7. November 2000.

. Intel I/O Processors. http://www.intel.com/design/iio/. October 2004.

O 001N L bW —

Dual-Stack Return Address Predictor!

Caixia Sun' and Minxuan Zhang?

! College of Computer, National University of Defense Technology,
Changsha 410073, Hunan, P.R.China
cxsunl979@163.com
2 College of Computer, National University of Defense Technology,
Changsha 410073, Hunan, P.R.China
mxzhang@nudt .edu.cn

Abstract. Return address predictors used currently almost have the same archi-
tecture: a return address stack and a top-of-stack pointer, some of which may be
enhanced by repair mechanisms. The disadvantage of this type of return ad-
dress predictor is that either prediction accuracy is low or the hardware cost is
high. In this paper, we present a novel kind of return address prediction struc-
ture called Dual-Stack Return Address Predictor (DSRAP) which contains two
return address stacks: RAS PRED and RAS WRB. Just as the return address
stack in current return address predictors does, RAS PRED provides predicted
target addresses for procedure returns. RAS WRB provides data for repairing
RAS PRED when a branch misprediction is detected. Results show that
DSRAP can acquire 100% hit rates if mispredictions caused by unmatched
call/return sequences or the stack overflow are ignored. Furthermore, DSRAP is
very easy to design.

1 Introduction

Branch mispredictions have become a serious bottleneck to better performance for
microprocessors with wide-issue and deep-pipeline. Each misprediction results in
several, even more cycles of pipeline stalls. The target address misprediction of pro-
cedure returns is one important source of mispredictions, because a procedure may be
called from many different locations, while the target of a particular return varies. If
we use the old target address as the predicted target of current return instruction,
misprediction might occur. Therefore, a special prediction structure is needed to deal
with procedure returns. A return address stack [1, 2] is a good choice to provide tar-
get address for each return instruction. Most current microprocessors include such a
return address stack. For example, in Alpha 21164, there exists a twelve-entry return
address stack [3], and in Alpha 21264, a thirty-two-entry one [4]. Many of Intel’s
processors, including Itanium [5] and Itanium2 [6], also include a return address
stack.

I This work was supported by Chinese NSF project (60376018) and Chinese NSF project
(90207011).

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 172-179, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Dual-Stack Return Address Predictor 173

A simple stack, however, fails in the presence of speculative execution. In the
branch prediction stage, branch instructions are predicted and subsequent instruc-
tions, which may include calls and returns, are fetched speculatively. If a mispredic-
tion is detected later, all instructions executed speculatively should be squashed. Calls
and returns update the return address stack in the branch prediction stage, while mis-
predictions are detected in the writeback stage, and as a result, calls and returns on a
wrong path corrupt the return address stack. Not to undo the effects of squashed in-
structions, return address misprediction might occur later. So a simple return address
stack cannot satisfy high-performance microprocessors that allow speculating.

In this paper, we propose a novel kind of return address prediction structure. We
call it Dual-Stack Return address Predictor (DSRAP) for that it comprises two return
address stacks. DSRAP can undo the effects of squashed instructions on the return
address stack and achieve 100% return address prediction accuracy if mispredictions
caused by the stack overflow or unmatched call/return sequences are ignored.

The remainder of this paper begins with a brief discussion of related work. In sec-
tion 3, the architecture of DSRAP is described, and some design issues are discussed.
The experimental environment and benchmarks are presented in section 4. In section
5, the simulation results are explained. Conclusions are given in section 6.

2 Related Work

Return address predictors used currently have the same architecture: a return address
stack and a top-of-stack (TOS) pointer. We call this kind of prediction structure Sin-
gle-Stack Return Address Predictor (SSRAP). In order to achieve higher return ad-
dress prediction accuracy, SSRAP may be enhanced by different repair mechanisms.
There are mainly three kinds of repair mechanisms used widely.

The ecasiest repair mechanism is to save the current top-of-stack pointer each time a
branch is predicted [7]. We call this scheme saving the TOS pointer in the rest of this
paper. A copy of the current TOS (C_TOS) is associated with each branch instruction
that is detected in the branch prediction stage. When a branch misprediction is de-
tected, the associated C_TOS is adjusted according to the type of branch mispredic-
tion and the TOS pointer is updated with the adjusted C_TOS. Saving the TOS
pointer is very cheap. However, when there exist instruction sequences like a return
followed by a call on the mis-speculated path, the return address stack would be cor-
rupted.

A more aggressive scheme is to also save the content of the top stack entry along
with the TOS pointer [8]. We call this scheme saving the TOS pointer and TOS con-
tent in the rest of this paper. This method can improve prediction accuracy greatly,
but it will still fail if two returns are followed by a call on the mis-speculated path.

The extreme is to save the entire return address stack at the time of each branch
prediction. We call this scheme saving the entire stack in the rest of this paper. For
this scheme can always undo the effects of squashed instructions on return address
stack, it can achieve 100% prediction accuracy unless unmatched call/return se-
quences exist or the return address stack overflows. Saving the entire stack, however,
is very expensive, so it is employed rarely.

174 Caixia Sun and Minxuan Zhang

3 Dual-Stack Return Address Predictor

3.1 Architecture

Different from SSRAP, Dual-Stack Return Address Predictor proposed here includes
two return address stacks, as shown in Fig.1. Just as the return address stack in cur-
rent return address predictors does, RAS PRED provides predicted target addresses
for procedure returns. RAS WRB provides data for repairing RAS PRED when a
branch misprediction is detected.

Writeback module Prediction module
Pointer module I P»| Pointer module II Misprediction or not
«
Branch resolution dat: RAS_WRB RAS_PRED Branch prediction data
;_]
Return-address I e =2 Return-address 11

<

@ —+ .

> <] Predicted target

= SR = - S

a =N

5 =N

& g

Fig. 1. The Architecture of DSRAP. Branch prediction data include the type of a particular
branch instruction and its predicted direction. Branch resolution data include the type of a
particular branch instruction and its actual direction. Return-address II is the return address of
the call in the branch prediction stage. Return-address I is the return address of the call in the
writeback stage

RAS PRED and RAS WRB have the same structure and the same number of en-
tries. Two top-of-stack pointers, TOS PRED and TOS WRB, are defined to index
the two stacks. TOS PRED is for RAS PRED and TOS WRB is for RAS WRB.
TOS_PRED and TOS_WRB are both initialized to zero. Transfer module II reads the
stack entry indexed by TOS PRED as predicted target of a return instruction or
writes return address to RAS PRED. Transfer module I only writes return address to
RAS_ WRB. Pointer module II and pointer module I are responsible for updating
TOS_PRED and TOS_WRB, respectively.

According to the architecture given in Fig.1, the hardware cost of DSRAP can eas-
ily be compared to that of SSRAP. Suppose that the return address stack contains n
entries of p bits each, and up to m branches are in-flight. A return address stack needs
pn bits and a top-of-stack pointer needs logn bits. So the total cost of DSRAP is
2*(pn+logn) bits, independent of the number of in-flight branches m. Single-stack
return address predictors all require pn+logn bits for the return address prediction
structure, but additional bits for repairing are different. Saving the TOS pointer re-
quires mlogn bits; saving the TOS pointer and TOS content requires m *(p+logn) bits;
saving the entire stack requires m*(pn+logn) bits. Therefore, the total costs of these

Dual-Stack Return Address Predictor 175

three return address predictors are (pn+logn)t+mlogn, (pn+logn)+m*(p+logn) and
(pn+logn)+m*(pn+logn), respectively, which are all dependent of m.

3.2 Design Issues

Stack operations. We employ the same stack model as described in [8]. RAS PRED
and RAS WRB are all modeled as a circular LIFO buffer. A push operation causes
the top-of-stack pointer to increase by 1 and a pop operation causes the top-of-stack
pointer to decrease by 1. For the stack is circular, TOS will be (i+1) mod » after a
push operation and (i-1) mod » after a pop operation, supposing that the stack has n
entries and the current top-of-stack pointer is i.

RAS PRED and RAS WRB can both overflow and underflow. For RAS PRED,
an overflow occurs when a call is predicted taken and RAS PRED is full, either be-
cause of stack corruption or because there are more calls in program than stack en-
tries. The stack wraps around, which results in that the pushed return address over-
writes the oldest stack entry. If an overflow has occurred in RAS PRED, a later re-
turn that is predicted taken will cause an underflow by popping an already-popped
entry, and as a result, the return instruction receives an invalid target. For
RAS WRB, an overflow occurs when a taken call is retired and RAS_ WRB is full,
only because there are more calls in program than stack entries. If an overflow has
occurred in RAS WRB, a later taken return will cause an underflow by popping an
already-popped entry.

Stack updating. In the branch prediction stage, if a call instruction is detected and
predicted taken, TOS PRED increases by 1, and an associated return address is
pushed onto RAS PRED. If a return instruction is detected and predicted taken, the
stack entry indexed by TOS PRED pointer is popped from RAS PRED as the pre-
dicted target address of the return instruction, and TOS_PRED decreases by 1. Calls
and returns predicted not taken would not change RAS PRED and TOS PRED.
Instructions except for calls and returns would not change RAS PRED and
TOS_PRED, either. RAS WRB and TOS WRB would not be changed in this stage.

In the writeback stage, if a taken call instruction is retired, TOS_WRB increases by
1, and an associated return address is pushed onto the RAS WRB. If a taken return
instruction is retired, TOS_WRB decreases by 1. Predicted target address of a return
instruction is provided by RAS PRED, not by RAS WRB, so the data in the stack
entry indexed by TOS_WRB pointer will not be used. Calls and returns not taken
would not change RAS WRB and TOS WRB. Instructions except for calls and re-
turns would not change RAS WRB and TOS_WRB, either. If a branch misprediction
is detected, all the entries in RAS PRED are updated with the corresponding entries
in RAS WRB, and TOS PRED is updated with TOS WRB regardless of the reason
of misprediction; otherwise RAS PRED and TOS PRED would not be changed in
this stage.

176

Caixia Sun and Minxuan Zhang

4 Methodology

We use the modified version of SimpleScalar’s sim-outorder [9] to collect results.
SimpleScalar provides a simulation environment for modern out-of-order processors
which allow executing speculatively. Table 1 shows the baseline configuration of the
simulator used. The changes made to the simulator for our experiment are localized to
the fetch stage and the writeback stage.

Table 1. Baseline configuration of the simulator

Parameter [Value
Processor core

RUU size 64 instructions

LSQ size 40

Fetch queue size 8 instructions

Fetch/Decode width | 4 instructions/cycle

Issue width

4 instructions/cycle(out-of-order)

Commit width

4 instructions/cycle(in order)

Functional units

4 integer ALUS, 1 integer multiply/divide, 1 FP add, 1 FP multiply

Branch prediction

Branch predictor

Combining: 4K 2-bit selector, 12-bit history; 1K 3-bit local predic-
tor, 10- bit history; 4K 2-bit global predictor, 12-bit history

BTB 2048-entry, 2-way
Mispredict penalty | 2 cycles for misfetch, 7 cycles otherwise
Memory hierarchy
L1D cache 64K, 2-way (LRU), 32B blocks, 1 cycle latency
L1I cache 64K, 2-way (LRU), 32B blocks, 1 cycle latency
L2 Unified, 8M, 4-way (LRU), 32B blocks, 12-cycle latency
Memory 100 cycles
TLBs 128 entry, fully associative, 30-cycle miss latency

Table 2. Benchmarks

Benchmark Inputs Warm Up Instructions
gzip input.graphic 824M
vpr ref inputs 105M
gce ccep.i 221M
mcf inp.in 511M
crafty crafty.in 926M
parser ref.in 1051M
eon ref inputs 26M
perlbmk scrabble game 601M
gap ref.in 271M
vortex persons. 1k 2451M
bzip2 input.compressed 2576M
twolf ref inputs 255M

Dual-Stack Return Address Predictor 177

The SPEC2000 integer benchmarks [10] are used. All benchmarks are compiled
using gcc -03 -funroll -loops. The inputs of benchmarks are given in
Table 2. Table 2 also shows the number of warm-up instructions performed to avoid
the program’s initial phases and any warm-up effects.

5 Simulation Results

From section 3 we notice that the hardware costs of DSRAP and SSRAP are different
when the stack size is equal. So we will first evaluate DSRAP by comparing it with
SSRAP from two aspects: when the stack size is equal and when the hardware cost is
equal.

DSRAP can undo the effects of squashed instructions on the return address stack,
so speculative execution would not cause return address mispredictions. Mispredic-
tions in DSRAP are caused by unmatched call/return sequences or the stack overflow.
The return address is unpredictable if there are unmatched call/return sequences.
Fortunately, for most programs, unmatched call/return sequences are so rare that we
can ignore the mispredictions caused by them. The overflow depends on the stack
size only, and it can be avoided completely if the return address stack is large enough.
Therefore, for DSRAP, we only need to consider the effects of stack size on predic-
tion accuracy. In the second part of this section, we will show the effects of stack size
on prediction accuracy of DSRAP.

5.1 Prediction Accuracy Evaluation

When the stack size is equal. Fig.2 shows the prediction accuracy of each return
address predictor when the stack size is equal. The return address stack has 16 entries.
Compared to saving the TOS pointer, DSRAP improves prediction accuracy dramati-
cally, by an average of 9.58%. Compared to saving the TOS pointer and TOS content,
DSRAP improves prediction accuracy remarkably, especially for vpr, gcc, perlbmk,
gap and twolf, by 3.70%, 1.60%, 2.70%, 1.50% and 2.20% respectively. DSRAP can
achieve the same prediction accuracy as saving the entire stack does, which accords
with the theoretical analysis, because they can both undo the effects of squashed
instructions on the return address stack.

When the hardware cost is equal. Fig.3 shows the prediction accuracy of each re-
turn address predictor when the cost is equal. The stack in DSRAP has 16 entries.
The stack size cannot be too small; otherwise, stack overflow will dominate predic-
tion accuracy. In order to consume the same hardware resources, the size of stack in
saving the TOS pointer is fewer than 32, so does the size of stack in saving the TOS
pointer and TOS content, and the size of stack in saving the entire stack is not more
than 16 (m>1, generally). In our experiment, the size of stack in these three mecha-
nisms is 32, 32 and 16 respectively, so the results will be biased towards these three
kinds of return address predictors. Now with the same hardware resources consumed,
compared to saving the TOS pointer, DSRAP improves prediction accuracy by 9.47%

178 Caixia Sun and Minxuan Zhang

on average, and compared to saving the TOS pointer and TOS content and saving the
entire stack, DSRAP can also acquire higher hit rates.

||:| Saving pointer only B Saving pointer & content O Saving the entire stack O DSRAP

Prediction accuracy

Fig. 2. Prediction accuracy of each return address predictor with a 16-entry stack

||:| Saving pointer only B Saving pointer & content O Saving the entire stack O DSRAP

>

(@]

© 1 I — —

§0.95 | =1 =

s 09 I - |

= 0.85 — —

S |

S8y 1 e

2 0.75 I - |

)

o 0.7 I} I} I} I} I} I} I} I} I} I} I}

=

A ; $ © 5 5 S NS A i &

Qg)& & ¢ & é{;@ Q%@z S $°& og% 40{@ Q)\Q \4@\

&
Q

Fig. 3. Prediction accuracy of each return address predictor with the same cost

5.2 Effects of Stack Size on Prediction Accuracy

Fig.4 shows the prediction accuracy of DSRAP with different stack sizes. When the
stack size is 0, BTB (Branch Target Buffer) provides the predicted target of a return
instruction. For all benchmarks except for gzip and bzip2, prediction accuracy in-
creases rapidly before the stack size reaches to 16. vpr, gcc, perlbmk, gap, vortex and
twolf can benefit a little from a further increase to 16 entries. Almost no benchmarks
can benefit from more entries than 16. So for most programs, a stack with 8-16 en-
tries is enough to avoid stack overflow.

Dual-Stack Return Address Predictor 179

S i ——gzip
——vpr
gee

mcf
—K— crafty
—@— parser
—+——eon
——=—— perlbmk]|
gap
vortex
bzip2
twolf

Prediction accuracy

0 1 2 4 8 16 32 128

Stack size

Fig. 4. Prediction accuracy of DSRAP with different stack sizes

6 Conclusion

Recall that the cost of each kind of SSRAP is linear with the number of branches in
flight m. The larger m is, the higher the cost of SSRAP is. The cost of DSRAP, how-
ever, is independent of m. Therefore, with the pipeline of high-performance micro-
processors deeper, DSRAP becomes cheaper relatively. Furthermore, DSRAP can
achieve 100% return address prediction accuracy if mispredictions caused by the
stack overflow or unmatched call/return sequences are ignored. Therefore, for the
microprocessors with wide-issue and deep-pipeline, DSRAP is a good choice.

References

1. D.R.Kaeli and P.G.Emma: Branch history table prediction of moving target branches due to

subroutine returns. In Proc. ISCA-18(1991)

. C.F.Webb: Subroutine call/return stack. IBM Tech. Disc. Bulletin (1998)

. Alpha 21164 Microprocessor: Hardware Reference Manual (1995)

. L.Gwennap: Digital 21264 sets new standard. Microprocessor Report (1998)

. H.Sharangpani, K.Arora: Itanium Processor Microarchitecture. IEEE Micro (2000)

. C.McNairy, D.Soltis: Itanium2 Processor Microarchitecture. IEEE Computer Society (2003)

. T.Yeh: Return address predictor that uses branch instructions to track a last valid return

address. U.S. Patent No. 6,253,315(2001)

8. K. Skadron, P. Ahuja, M. Martonosi, D. Clark: Improving Prediction for Procedure Returns
with Return address-Stack Repair Mechanisms. In Proceedings of the International Sympo-
sium on Microarchitecture (1998)

9. D. Burger, T.M. Austin, S. Bennett: Evaluating future microprocessors: the SimpleScalar
tool set. TR-1308, Univ. of Wisconsin-Madison CS Dept. (1996)

10. The standard performance evaluation corporation. WWW site. http://www.specbench.org

~N NN

Electronic Reading Pen: A DSP Based Portable
Device for Offline OCR and Bi-linguistic
Translation

Qing Wang'2, Sicong Yue', Rongchun Zhao!, and David Feng?

1 School of Computer Science and Engineering
Northwestern Polytechnical University, Xi’an 710072, P.R. China
qwang@nwpu.edu.cn
2 School of Information Technologies
The University of Sydney, NSW2006, Australia
feng@it.usyd.edu.au

Abstract. In the paper, a portable off-line OCR, and bi-linguistic trans-
lation system (Chinese to English, English to Chinese)—Electronic Read-
ing Pen (ERPen) is designed and implemented. The constitution of ER-
Pen hardware is designed and several modules, including CCD line array
acquisition, wheel driven unit, FLASH management and USB interface
are implemented. Moreover, the embedded software, consisting of im-
age preprocessing, character segmentation and recognition, and corpus
based postprocessing, is also discussed and implemented. A novel seg-
mentation approach, central growth algorithm, is proposed and applied
in ERPen system. Experimental results have shown that ERPen is effec-
tive to tackle printed character recognition and translation.

1 Introduction

With the rapid development of economy and broad communication between
different regions and areas in the world, there exist a lot of language barriers
in multi-language inter-translation for people so that a portable bi-linguistic
or multi-linguistic translation device based on Optical Character Recognition
(OCR) is widely demanded. In the last decades, printed character recognition
[1,2] was gradually applied into commercial area from the experimental proto-
types. A great number of products can be found, such as TH-OCRJ[3], Han-
OCR[4], FormAgent, DocAgent[5] and so on. However, most of the commercial
systems are based on the document or form images scanned by the scanner and
run on the desktop. Although a few products are designed and implemented in
embedded systems, such as mobile phone, PDA, electronic dictionary and so on,
the kernels of the character recognition are still based on online handwriting
input instead of offline character recognition.

In the paper, an embedded off-line recognition and bi-linguistic interpreta-
tion system based on DSP chip, which is also called as Electronic Reading Pen
(ERPen), is designed and implemented. The hardware framework of ERPen is

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 180-187, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Electronic Reading Pen 181

designed and several key modules, including CCD line array acquisition, wheel
driven unit, FLASH management and USB interface, are implemented. On the
other hand, several key issues of the algorithms are discussed in detail, which
include scanned image preprocessing, character segmentation and recognition,
corpus based postprocessing, and translation. Meanwhile, a novel segmentation
approach, central growth algorithm, is proposed in embedded software, which is
based on region connectivity and dynamic programming. The cutting paths are
obtained by central growth algorithm and a simplified cost function is defined
to reduce the complexity of candidate decision. Moreover, a modified function
based on second order derivative of the projection is also defined and used to
evaluate the possibility of the cutting paths.

After a quick and easy scanning on the interested text area, the image of Chi-
nese or English words is captured into ERPen system and corresponding text
is translated and displayed on the LCD screen correctly. The ERPen system
contains over 300,000 words and phrases in Chinese and English. The overall
recognition rate for Chinese and English words are 99.2% and 98.3% respec-
tively. At the same time, the processing time is very little. All of these results
have proven that ERPen system is very effective and efficient.

The paper is organized as following. The framework of hardware system is
described in the Section 2. In Section 3, the processing flow of the software
system and key modules for segmentation, recognition and postprocessing are
discussed. The experimental results and analysis are given in Section 4. Finally,
the conclusion and further work are drawn in Section 5.

2 Hardware System

2.1 Constitution

The hardware system consists of a main module of DSP and four sub-systems,
which are image acquisition, result display, USB interface, and storage manage-
ment of feature set and dictionaries (Chinese to English — CTE and English to
Chinese — ETC), as shown in Fig.1.

DSP Module. Considering that ERPen system has the requirements of real-
time processing, low power consumption and small size of the shape, our initial
design of processor unit is to make use of DSP chip since DSP chips have more
advantages than traditional MCUs. In the final phase of the design, the ker-
nel of DSP module utilizes TMS320-54X chip [6,7], on which image acquisition
control, image processing, character segmentation and recognition, dictionaries
management and word searching are carried out respectively.

Image Acquisition Module. The image acquisition part is mainly based on a
300 dpi Line Array CCD and wheel-driven control unit. The digital image from
CCD is transferred into DSP module via parallel port and the sync signal and
interrupts generated by wheel-driven control unit guarantee the image quality.
Basically, the 8-bit gray scale image is captured and sent to binarization module.
However, we found it very time-consuming so that a fixed threshold is used.

182 Qing Wang et al.

CcD Image Acquistion |
Sensor Sub-system DSP FLASH
1 ﬂ ﬂ

2
\ Digital Signal — Dictionary/Corpus |\
4 Processing System - Image Storage
3 T "
/ 5\g
LCD Image/Result | USB Image/Result |}
Screen Display Sub-system Upload to PC

Fig. 1. The framework of the hardware modules and procedures in ERPen.

Result Display Module. The output sub-system is operated by DSP. The
recognition and translation results are shown on the LCD (122 x 32 pixels).
LCD is controlled by two micro chips, either of which is enabled by a trigger.

Storage Management Module. The storage module has 32M FLASH mem-
ory, which contains the extended programs, the labelled feature sets, ETC and
CTE dictionaries, and some of scanned images, which can be upload to PC for
further processing. DSP unit controls and accesses the data in FLASH through
the data buses and extended I/O ports.

USB Interface Module. The scanned images can be uploaded into PC via
USB interface. In ERPen, we select PDIUSBD12 chip as USB control unit, and
8 bit parallel data bus of PDIUSBD12 are connected with 8 bit data bus of DSP
chip. USB interface is activated by PC and interrupted by DSP.

2.2 Improvements

In hardware design, we consider that digital line CCD array has digital output
so that we omit the traditional scheme, which uses A/D modules and RAM to
store the image. This strategy not only reduces the processing time, but also
simplifies the hardware design. The image signal of CCD is controlled by three
interrupts, which are Field Sync FST«INT1, Line Sync LST«INT2, and Pixel
Sync PVB—INTS3. The following are these three interrupt functions.

interrupt void c¢ intl1() interrupt void c¢ int3()
{ {
cap=0; if (cap<32768) {
order=0; if (order) {
} order=0; data2=CAPD;
*(pStart+cap)=(datal&0xff)+(data2<<8);
interrupt void ¢ int2() cap++; }
{ else { order=1; datal=CAPD;}
order=0; }

} }

Electronic Reading Pen 183

At the same time, the advantages of DSP chip are considered so that we can
control and write/read FLASH memory directly by DSP. Moreover, USB inter-
face is designed in the system in order to send scanned images or recognized
results to PC and upgrade the firmware from PC, respectively. In some embed-
ded system, USB protocol and interface may be implemented and controlled by
MPU. Due to the requirements of ERPen, we utilize PDIUSBD12 and access it
via TMS320-54X chip.

3 Software System

3.1 Framework

After we complete the hardware design, the software system is to solve the
OCR and bi-linguistic translation. As a result, the software system is composed
of the following modules: text region scanning, image preprocessing, character
segmentation, character normalization and feature extraction, isolated character
recognition, postprocessing, translation and display, as shown in Fig.2.

3.2 Key Issues and Implementation

Considering that DSP based hardware system has less resource and lower pro-
cessing ability comparing with desktop computers, it is necessary to design high
performance embedded software in order to satisfy the requirements of real time
recognition and low power consumption. The key issues of software include char-
acter segmentation, feature extraction, classifier design and postprocessing.

Character Segmentation. Character segmentation is the first important step
for OCR system so that there are many approaches proposed in the literatures,
for example, vertical projection based method [2], knowledge based method [11],
contour based method [12], foreground and background analysis based method
[13] and so on. Besides the detection and segmentation of word strings, it is
more difficult to separate the whole word into isolated characters. Since ERPen
is designed to process Chinese and English words, it is necessary to deal with
character separation properly. Due to the regularity of Chinese document and
little connectivity among characters, it is comparatively easy to separate Chinese
text lines by vertical projection. On the other hand, for English words, it is more

o« T %) z 9
o 8] @ m_9 Fo a =
3 3 = S x93 e = g o3
= [s} o @ Q L a3 @
S P> 2 P> &8 P> 2 P2 e s 8 - § > c 2
g 5 @ g a2 =2 o 2=
= 3 5 = 3 o g = @ =]
< a E] =2 a -
<
.
Feature Extraction/ Labelled Rules E/C C/E
Training Feature Set Dictionaries

Fig. 2. The flowchart of the software modules in ERPen.

184 Qing Wang et al.

difficult to find out the gaps between characters since most of them may be so
close as if they were connected regions, for example, ‘ff’, ‘ft’, ‘fr’, ‘fi’, ‘rn’, ‘rt’
and so on. On the other hand, connected components could be processed as split
parts after image preprocessing, such as ‘m’—‘rn’‘w’—‘vv’ and ‘d’—‘cl’ [10] in
case of stroke pixel losing caused by the simplified preprocessing algorithm.

In the system, we propose a region connectivity and dynamic programming
based approach to tackle character segmentation, which is also called as central
growth algorithm (CGA). The detail of CGA is shown in the following steps.

1. Select the spare points on the center line as candidates for pre-cutting.

2. If there exists a path to approach the top and bottom of the word within
a small strip from the candidate point, this path is regarded as a cutting path.

3. Otherwise, if the width of the cut region is greater than the predefined
threshold or the average width of the character, it means that the box contains
more than one character and these characters are touched with each other.

Herein, the vertical projection function p(m), is utilized, and the second order
derivative of p(m), the Peak-Valley Projection Ratio Function f(m), is also used
to further cut the adhesive characters [9].

f(m) = [p(m —1) =2 x p(m) + p(m + 1)]/p(m) (1)

where p(m) is the vertical projection value at m-th column.
4. Terminate if all of the candidates are processed completely.

Feature Extraction. After obtaining isolated characters, the coarse and fine
statistic features are extracted from the normalized image (36x36). Suppose the
stroke pixels are white (255) and the background pixels are black (0). Two kinds
of features are used for classification, which are Coarse Periphery Feature (CPF)
and Average Line Density (ALD).

1. CPF is based on the periphery image, which is generated by the run length
of the blank line from the border to the first stroke pixel. CPF features reveal
the shape information and periphery distribution of the characters. Before we
extract CPF feature, we first obtain the peripheries of the character and fill out
the inner vacancies of the borders, as shown in Fig.3b. Then the periphery image
is partitioned into 4 x 4 grids, one of which has 9 x 9 = 81 pixels. Moreover, we
re-partition the inner part (27 x 27) of the character into 3 x 3 meshes (shown
in Fig.3d), and the number of white pixels is calculated. Therefore, we can get
16 + 9 = 25 dimensional CPF features.

2. ALD is extracted from the first order differential image on vertical and hor-
izontal directions respectively, which reflects the inner structure of the strokes.
We first obtain differential images along the vertical and horizontal directions
(see Eq.2 and 3). Then we divide the differential images into 9 x 9 grids and
81 + 81 = 162 dimensional ALD feature can be extracted.

Sn(i,j) =1C(i+1,7) = C(i,5)] i,j € [1,N,C(N+1,j)=0 (2)
8u(i,7) = IC(i,j +1) — Cli.)| ij € LNL,CGN+1)=0 (3)
where C(i, j) is the image intensity at pixel (i, j).

Electronic Reading Pen 185

a . E Eﬂ i
FASSEN
m %E m ﬂ HENENE

Fig.3. Feature extraction and region partition. a). Original images; b).
Vacancies-filled border images; c¢). Feature extraction; d). Partition scheme

Hierarchical Classifiers Design. In ERpen system, character classifiers are
designed as three stages. The first one is applied as pre-classification so that 25
dimensional coarse features and City Block Distance (high tolerance to noise
infection and low computation) are used to pre-select 30 candidates. Then the
second stage classifier focuses on 162 dimensional fine features by Euclidean Dis-
tance in order to emphasize on the difference of similar characters and generates
10 fine candidates. At the last stage, the similarity measure is computed (see
Eq.4) since it is more precise than distance measures.

m

RXG =Yg/ | Satx Yo 0

i=1
where X = (21, 22,...,&y) is the feature vector of the unknown character and
G = (q1,92,--.,9m) is the template vector from training samples, respectively.

Post-processing. Basically, the correctly recognized words are translated into
English or Chinese by CTE or ETC dictionaries directly. However, since there
exist wrong cases more or less in accordance with segmentation and recognition
errors, it is necessary to design a serial of rules to modify the recognized word.
From the experiments, we find out that four kinds of errors for English words
were caused by wrong segmentation and recognition, which are, 1) Replacement
error: recognize one character as another one; 2) Mergence error: recognize sev-
eral characters as one character; 3) Deletion error: miss characters in recognition
phase characters, and 4) Insertion error: insert redundant characters into a word.
To deal with issues mentioned above, many methods using word based or se-
mantic level post-processing are proposed and can produce good performance
[14]. However, we can not simply carry out these algorithms in ERPen system
since all of them have high computation complexity. After a great number of ex-
periments on database with 70,000 words, we have summarized a serial of rules,
including replacement, insertion and deletion, to solve these problems.

186 Qing Wang et al.

4 Experimental Results

4.1 Recognition Rate

The recognition of Chinese and English characters by ERPen is listed in Table.1.
The upper part of the table shows the correct recognition rates by three stage
classifiers for Chinese character. The most right column is the final recognition
result after using corpus and rules based post-processing. The lower part of the
table shows the corresponding results for English characters.

Since we have fully considered the effectiveness of the character segmentation
and recognition, the experimental results are reasonable. The precise results show
that the algorithms of text image preprocessing, character segmentation and
recognition and post-processing are effective and satisfied with the requirements
of ERPen system.

4.2 Processing Time

Besides high recognition rate and correct translation result, the computation
time is also important when evaluating the performance of ERPen system.
Through a lot of experiments, we get the average computing time, which is
0.153s for each Chinese word and 0.287s for English word, respectively.

The performance of speedy processing is based on the simplification of the
preprocessing procedure and some other algorithms. The results of processing
times have shown that the design and implementation of hardware system is
efficient and will fulfill the demand of real time processing.

4.3 Problems

Although we have successfully designed the hardware and embedded software,
the problem of high consumption of power still exists. According to the original
design, ERPen can work using 2 AAA Alkaline batteries and last for one month
continuously. However, the developed system can not satisfy this requirement.

5 Conclusions

In the paper, we describe the hardware and software frameworks and imple-
mentation of ERPen, a kind of portable device using offline printed character

Table 1. Recognition rate for printed Chinese and English characters

Classification Correct Correct rates after
method Recognition Rates (%) postprocessing(%)
Chinese first stage 89.7
second stage 99.0
similarity 99.1 99.2
English first stage 83.4
second stage 94.8

similarity 95.4 98.3

Electronic Reading Pen 187

recognition and bi-linguistic translation. We fully consider the characteristics of
TMS320-54x chip and the requirements of real time processing: small size, and
huge storage in terms of hardware design. At the same time, an embedded soft-
ware configuration for ERPen is well designed to deal with several key processes
of image preprocessing, character segmentation and recognition, and rules based
postprocessing. Experimental results have shown that ERPen has high recogni-
tion and correct translation rate (99.2% for Chinese words and 98.3% for English
words) and high processing speed. In the future work, we will put our emphasis
on the problem of power consumption.

Acknowledgements

The work described in the paper was partially supported by National Natu-
ral Science Fund (No. 60403008), " The Developing Program for Outstanding
Persons” fund by Northwestern Polytechnical University, Natural Science Foun-
dation of Shaanxi Province, P. R. China, and ARC grant, Australia.

References

1. Mantas, J.: An overview of character recognition methodologies. Pattern Recogni-
tion. 19 (6), (1986) 425-430

2. Casey, G., Lecolinet, E.: A Survey of methods and strategies in character segmen-
tation. IEEE Trans Patt. Anal. Mach. Inetll. 18(7), (1996) 690-706

3. http://www.wintone.com.cn

4. http://www.hw99.com/

5. http://www.ceresoft.com

6. Zhang, X., Cao, T.: Principle and development application of DSP chips (Second
Edition). Publish House of Electronics Industry, China. (2000)

7. Dai, M., Zhou, J.: Structure, principle, and application of TMS32054X DSP. Press
of BUAA, China. (2001)

8. Khan, S.: Character segmentation heuristics for check amount verification. Ph.D
Dissertation, MIT, USA (1998)

9. Liu, G., Wei, F. etal: A segmentation method of cursive handwritten digit string
based on limited dynamic programming. J. of Beijing Univ. of Post and Telecom-
munication. 26(1), (2003)14-18

10. Lu, Y., Haist, B. et al: An accurate and efficient system for segmenting machine-
printed text, 5" Advanced Technology Conf. U.S. Postal Service. 3(1992), 93-105

11. Liu, G., Ding, X. etal:Knowledge synthesis decision based character segmentation
algorithm. Computer Engineering and Application. 17(2002)59-63

12. Strathy, N., Suen, C., Krzyzak, A.: Segmentation of handwritten digits using con-
tour features. Proc. 2" Int. Conf. on Document Analysis and Recognition(ICDAR),
Tsukuba Japan. (1993) 577-580

13. Chen, Y., Wang, J.: Segmentation of single- or multiple-touching handwritten nu-
meral string using background and foreground analysis. IEEE Trans Patt. Anal.
Mach. Inetll. 22(11), (2000)1304-1317

14. Dey, S.: Adding feedback to improve segmentation and recognition of handwritten
numerals. Ph.D Dissertation, MIT, USA (1999)

Formal Co-verification for SoC Design with Colored
Petri Net*

Jinyu Zhan, Nan Sang, and Guangze Xiong

School of Computer Science & Engineering
University of Electronic Science & Technology of China
Chengdu 610054, China
zhanjy@uestc.edu.cn

Abstract. The complexity of SoC is increasing rapidly. It is an important trend
that SoC design is always based on the reuse of both IP cores and software com-
ponents. In consequence, new verification techniques are needed, which over-
come the limitations of traditional methods and are suitable for SoC at the same
time. This paper introduces a computational model for SoC based on colored Petri
net, formulates the IP cores, components and user defined logics, and presents a
method to translate the architecture design into the colored Petri net model. And
a formal co-verification approach of SoC using CPN tools is also proposed. The
method concentrates on verifying the correctness of the design. An example of
the audio and video architecture design of the PDA platform illustrates the ef-
fectiveness of our approach on practical applications. Finally, the experimental
results are given.

1 Introduction

With the development of embedded system technology, the integration level of hard-
ware is higher and higher. SoC (System on Chip) becomes a mainstream design ap-
proach of embedded systems. And the development of SoC is a challenge to the verifi-
cation of embedded systems.

For the levels of complexity typical to modern electronic systems, traditional vali-
dation techniques like simulation and testing are neither sufficient nor viable to verify
their correctness. First, these techniques may cover just a small fraction of the system
behavior. Second, long simulation times and bugs found late in prototyping phases have
a negative impact on time-to-market.

Co-verification is a new technology to verify the software and hardware of embed-
ded systems. Different from traditional method, co-verification emphasizes parallel pro-
cessing and the interaction between software and hardware. Co-verification is not only
beneficial to reduce the time-to-market and design cost for the embedded products, but
also gives a better understanding of the system behavior, contributes to uncover ambi-
guities, and reveals new insights of the systems.

* This work was supported by the National High Technology Research and Development Pro-
gram (863), under Grant No. 2003AA1Z2210.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 188-195, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Formal Co-verification for SoC Design with Colored Petri Net 189

One main idea of SoC is the reuse of the IP (Intellectual Property) cores, which
can reduce the time-to-market and design cost [1]. The conception of software compo-
nents is like IP cores of SoC. Both of them emphasize the importance of design reuse.
This paper presents a hardware/software formal verification method for the SoC design
based on both IP cores and software components. Once the architecture of the IP cores,
components and UDLs(user defined logics) are defined, the correctness of the whole
system can be verified.

This paper is organized as follows. The related works are given in section 2. In
section 3, we formally define the IP cores, components, UDLs and the whole systems
using colored Petri nets. In section 4, we illustrate our method through an example. In
section 5, our approach is proved effective by verifying the audio and video architecture
design of a practical PDA platform. Finally, some conclusions are drawn in section 6.

2 Related Works

In the field of hardware/software co-verification of the embedded systems, there are
two research directions. One is simulation, and the other is formal verification. In the
simulation method, the hardware of the whole embedded system is specified in hard-
ware description language such as Verilog HDL, VHDL, SystemC, HandleC, and is
established in software. It can realize the integrated debugging and modify the faults
of hardware freely, which avoids the waste of manpower and material resources. But
with many restrictions, the hardware description language can only describe a subset
of the hardware of common embedded systems. Therefore, more and more scientists
turn their attention to formal verification. Edmund M. Clarke presented the theory of
Model Checking [2] based on finite automata for hardware formal verification. In recent
years, Model Checking has been extensively used in hardware/software co-verification
of embedded systems. Predicate Abstraction presented by Graf and Saidi [3], which is
a method to verify the correctness of software, is modified by many scientists and used
in hardware/software co-verification of embedded systems in these years. Luis Alejan-
dro Cortes presented PRES method [4][5], which uses Petri Net to describe hardware
and software of the embedded systems at first and then verifies the description in hy-
brid automata model which was presented by Alur [6]. But these methods mentioned
above seldom consider the problems about the verification of SoC based on IP cores
and components, which is the purpose of this paper.

3 Formal Representation

IP cores are reused modules in SoC, while software components are reused modules
in the software systems. Though they belong to hardware subsystems and software
subsystems respectively, both of them embody the idea of module reuse. Therefore, they
can be formulated into one model. In this paper, reused modules are used to represent
both IP cores and components.

The verification of SoC consists of three parts, the verification of the reused mod-
ules, the UDLs and their interconnections. Reused modules, which are provided by
core vendors, must be verified before delivery, and can be regarded correct. There are

190 Jinyu Zhan, Nan Sang, and Guangze Xiong

many techniques to test or verify the UDLs [7][8] [9][10][11]. The correctness of the
UDLs can be guaranteed through these methods. Therefore, the verification of SoC puts
emphasis on verifying the interconnections among IP cores, components and UDLs.
Both UDLs and reused modules can be regarded as black boxes. Once the inputs
are given, the outputs are defined. So they can be represented as “if inputy, inputs, ...,
input,, then outputy, outputs, ..., output,”, in which inputy, inputo, ..., input,, are
the inputs of the UDLs or the reused modules, and output;, outputs, ..., output,, are
the outputs of them. They all can be formulated into Petri net model shown in Figure 1.

t
inl O (O outl inl O——»r———») outl
in2 C core O out2 |:“> in2 O—V—PO out2
inm C O outn inm O—»—»O outn

Fig. 1. Formulate a core into a Petri net model

Definition 1. SoC based on IP cores and components can be modeled in a nine-tuple
CPN(Colored Petri Net)= (X, P,T,A,N,C,G, E, S), where

(1) X is the color set, determines the types, operations and functions that can be
used in the net. It is assumed that the color sets have at least one element each;

(2) P = {p1,p2,...,Dm} Iis a finite non-empty set of places, represents the inputs
and outputs of the cores in SoC;

(3) T = {t1,ta, ..., tn} is a finite non-empty set of transitions, represents the cores
in SoC;

(4) A is a finite non-empty set of arcs such that, PNT = PNA=TNA=4,
defines the flow relation between places and transitions, I C P x T is a finite non-empty
set of input arcs, which defines the flow relation from places to transitions; O C T x P
is a finite non-empty set of output arcs, which defines the flow relation from transitions
to places;

(5) N is a node function, defined from A into P x T UT x P, which maps each
arc into a tuple where the first element is the source node and the second element is the
destination node;

(6) C'is a color function, defined from P into X, which means that C maps the place
p to a color set;

(7) G is a boolean expressions, called guard function, which maps the transition t to
the Boolean function and are needed to evaluate to "true” in-order when the transition
fires;

(8) E is an arc expression function, which maps the arc a to an expression, and
a transition in a CPN is enabled if it is possible to bind the variables in such a way
that the arc-expressions of all the input arcs evaluate when tokens are present at the
corresponding input places;

(9) S is the initialization function, which specifies the initial state of the Petri net.

Formal Co-verification for SoC Design with Colored Petri Net 191

Definition 2. A Marking M : P — {0,1} is a function that denotes the absence or
presence of tokens in the places of the net. Therefore, the Petri net CPN is safe or 1-
bounded, that is, a place may hold at most one token for a certain marking. M (p) = 1
whenever the place p is marked, otherwise M (p) = 0.

4 Verification and Analysis

In this section, a verification method for SoC’s correctness is represented, using the
model introduced above, is presented. It is illustrated through an example shown in
Figure 2. According to the definitions in Section 3, the Petri net model equivalent to the
architecture design of the example in Figure 2 is given in Figure 3.

core core

core

core

core J_
L

o T

core

Fig. 2. An example of an architecture Fig. 3. The Petri net model of the example
design

Therefore, the correctness of the architecture design is transformed into the analysis
of Petri net model. There are two main types of analysis that can be performed on SoC
architecture design represented in Petri net. The first one is liveness analysis. A given
marking, i.e. absence or presence of tokens in places of the net, may represent the state
of the system in the dynamic behavior of the Petri net. It is very important whether the
system ends at the needed states or is dead in the dynamic process. Therefore, deadlock
is a very important problem. Second is reachability analysis. In the dynamic behavior
of the Petri net, the designer could be interested in proving that the system eventually
reaches a certain state whose marking represents the completion of a task.

There are two traditional methods to analyze the Petri nets. One is the reachability
tree, and the other involves the matrix equations. But both are manual and very complex.
Therefore, we use CPN Tools [12] to analyze the Petri net model of the architecture
design. CPN Tools is a tool for editing, simulating and automatically analyzing Colored
Petri nets. All the needed analysis results of the Petri net model can be obtained through
CPN Tools. Then we can get the state graph of the example shown in Figure 4 from CPN
Tools. CPN Tools generates an analysis report of the Petri net model shown in Table 1
which contains statistical information, reachable information and liveness information
about the state graph. Therefore, we can conclude that the architecture design of the
example is not correct from Figure 4 and Table 1.

192 Jinyu Zhan, Nan Sang, and Guangze Xiong

-2

ooy
ROaOs

Fig. 4. The state graph of the example

£ O

Table 1. Analysis results of the example

State Graph Reachable Properties Liveness Properties
Nodes: 8 Reachable State: p1, p2, ps, p4, Ps, D6, Dead Transition: 5
Arcs: 8

P7,P8,P9,P10, P11, P13

Status: Not Full ~ Unreachable State: pi2

Live Transition: ¢1, t2, t3, t4, te

Now let us analyze the fault of the architecture design. ps is the input place of the
transition ¢; and transition ¢o, while the C PN is 1-bounded according to definition 2.
So there are exclusive relations between transition ¢; and transition ¢. We modify the
architecture design shown in Figure 5 to get rid of the exclusive relations. The modified
Petri net model is given in Figure 6. Then we can get the state graph of the net shown
in Figure 7 from CPN Tools. The analysis results of the modified Petri net model are
shown in Table 2. Then we can get that the modified architecture design is correct from

the data.

core core

core

core core

|]
L

core

Fig. 5. the modified architecture design

Fig. 6. The modified Petri net

model

w

Fig.7. The state graph of the modified architecture design

Formal Co-verification for SoC Design with Colored Petri Net 193

Table 2. Analysis results of the modified architecture design

State Graph ~ Reachable Properties Liveness Properties
Nodes: 18 Reachable State: All Dead Transition: None
Arcs: 26 Unreachable State: None Live Transition: All

Status: Full

S Verification of a Practical System

In this section, we will illustrate the verification of a practical system using our ap-
proach. The video and audio architecture design of a PDA platform is shown in Figure
8. The Petri net model equivalent to the architecture design is given in Figure 9. And
we can get the state graph of the Petri net model shown in Figure 10 and the analysis
results shown in Table 3 from CPN Tools. Therefore, the audio and video architecture
design of the PDA platform is correct according to Figure 10 and Table 3.

| | Audio Data Capture Unit and Video Data Capture Unit
Audio Data User Video Data are IP cores. They transform voice and image into
Capture Unit ‘ Interface ‘ Capture Unit audio and video information.

/ \ / User Interface is a user define logic. It deals with user
requirements and sends them to MPEG4 and MP3
Encoder.

MP3 Encoder and MPEG4 Encoder are IP cores. They
deal with the compression and coding of the video and
Sender Synchronization Unit audio information.

Synchronization Unit is a component. It deals with the
synchronization problems of the audio and video, and
sends information from sender to receiver through the

: wireless net.
Receiver Code Checker .
Code Checker is a component. It analyzes and checks

the information from sender, and outputs audio and
video information.

MP3 Decoder and MPEG4 Decoder are IP cores. They
l l deal with the decompression and decoding of the audio
and video information.

‘ MP3 Encoder ‘ ‘MPEG4 Encoder

‘ MP3 Decoder ‘ ‘MPEG4 Decoder

‘ Video Displayer ‘

1 '

‘ Audio Displayer L . R
Audio Displayer and Video Displayer are hardware
devices. They display the voice and image.

Fig. 8. The audio and video architecture design of the PDA platform

6 Conclusions and Future Work

This paper presents a methodology to perform formal co-verification of SoC design,
which is composed of IP cores in hardware design, components in software design
and UDLs. A colored Petri-net-based design representation is used to capture impor-
tant features of SoC. The co-verification technique based on architecture design with

194 Jinyu Zhan, Nan Sang, and Guangze Xiong

Pis

Pis

Fig. 9. The Petri net model of the audio and video architecture design

'é @t4t3 - '.t9
t3@<t1@t3@t2 :%: ;@té,’ﬂ@ts @ €9 @

B i s
t :(;)/t5>.t @tn @

Fig. 10. The state graph of the audio and video architecture design

5

O

Table 3. Analysis results of the audio and video architecture design of the PDA platform

State Graph ~ Reachable Properties Liveness Properties
Nodes: 23 Reachable State: All Dead Transition: None
Arcs: 34 Unreachable State: None Live Transition: All

Status: Full

IP core-component reuse smoothly integrates with communication. The method can
translate the architecture design of SoC into a colored Petri net model simply and in-
tuitively. The colored Petri net model can be automatically analyzed many properties
such as liveness, reachability by CPN Tools. We also illustrate the verification of the
audio and video architecture design of the PDA platform using our approach, and give
the experimental results.

The performance, such as timing requirement and power consumption, is very im-
portant in SoC design. In this paper, we concentrate on the correctness of the architec-
ture design, but don’t consider the timing requirement and power consumption. There-
fore, these are the problems worth for further research.

References

1. Haase, J.: Design methodology for ip providers. In: Proc. DATE 1999. (1999) 728-732

2. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. (1999)

3. Graf, S., Saidi, H.: Construction of abstraction state graphs with pvs. In: CAV’97. (1997)
72-83

4. A,C.L,PE., Z, P.: Formal coverification of embedded systems using model checking. In:
The 26th Euromicro Conference. (2000) 106-113

5. A,CL.,P,E. Z, P.: Verification of embedded systems using petri net based representation.
In: The 13th International Symposium on System Synthesis. (2000) 149-155

10.

12.

Formal Co-verification for SoC Design with Colored Petri Net 195

. Alur, R., Henzinger, T.A., Ho, P.H.: Automatic symbolic verification of embedded systems.

IEEE Transaction on Software Engineering 22 (1996) 181-201
Marinissen, E., Arendsen, R., Bos, G.: A structured and scalable mechanism for test access
to embedded reusable cores. In: The International Test Conference. (1998) 284-293

. Yoneda, T., Fujiwara, H.: A dft method for core-based systems-on-a-chip based on consec-

utive testability. In: The 10th Asian Test Symposium. (2001) 193-198

Iyengar, V., Chakrabarty, K., Marinissen, E.J.: Test wrapper and test access mechanism co-
optimization for system-on-chip. Journal of Electronic Testing: Theory and Applications 18
(2002) 213-230

T, S., Y, Y, T, H.: Between-core vector overlapping for test cost reduction in core testing.
In: The 12th Asian Test Symposium. (2003) 268-273

. O, S., A, O.: Parity-based output compaction for core-based socs [logic testing]. In: The 8th

IEEE European Test Workshop. (2003) 15-20
Online: CPN Tools, (http://wiki.daimi.au.dk/cpntools/)

Hardware for Modular Exponentiation
Suitable for Smart Cards

Luiza de Macedo Mourelle' and Nadia Nedjah®

"Department of Systems Engineering and Computation
Department of Electronics Engineering and Telecommunications
Faculty of Engineering
State University of Rio de Janeiro, Brazil
{1dmm, nadia}eeng.uerj.br

Abstract. Smart cards use integrated circuits instead of magnetic tape. Its
architecture includes a processor, memory, input/output and, possibly, a
cryptographic coprocessor. The cost of smart cards is directly related to the size
of the integrated circuit. Our present focus is the cryptographic coprocessor,
which usually uses a public-key cryptosystem. In these cryptosystems, the main
operation is the modular exponentiation, which is performed using successive
modular multiplications. This operation is time consuming for large operands,
which is always the case in cryptography. Here, performance is another matter
of concern. For fast software or hardware cryptosystems, one needs thus to
reduce the total number of modular multiplications required. In this paper, we
propose a fast and compact hardware for computing modular exponentiation
using the m-ary methods, applying the addition chain method for the pre-
processing step. The cryptographic hardware is low-cost and concise, offering a
good solution for smart cards.

1 Introduction

The RSA encryption scheme [1], [2] is an example of public-key cryptographic
system. This kind of cryptosystem often involve raising large elements of some
groups fields, such as GF(2") or elliptic curves [3], to large powers. The main
operation in such cryptosystems is the modular exponentiation, which is performed by
successive modular multiplications. As the plain text of a message or the cipher text
are usually large, i.e. 1024 bits or more, it is essential to attempt to minimise the
number of modular multiplications performed, in order to improve time requirements
of the encryption/decryption operations. Hardware architecture implementations of
the RSA cryptosystem are widely studied [4].

The paper-and-pencil method to compute C = T° mod M requires -1 modular
multiplications, computing all powers of 7: T — 7> — I* — ... - I*' — T*. The
window-based methods [1] consist of algorithms that perform modular exponentiation
with a nearly minimal number of modular multiplications. These methods have a pre-
processing step, which can be optimised with the use of the addition chain methods.

Smart cards are plastic cards with an integrated circuit on it. They guarantee more
security than the plastic cards with magnetic strip do. The smart cards are more

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 196-202, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Hardware for Modular Exponentiation Suitable for Smart Cards 197

sophisticated, which contain a processor, memory, input/output components and a
cryptographic coprocessor. A typical architecture for smart cards is depicted in Fig 1,
in which the processor is based on the 8051 or 6805 microcontrollers. Smart cards
cost about ten times more than common plastic cards, with magnetic strip, do. The
cost of smart cards is proportional to the area of the integrated circuit, which is
directly associated to the complexity of the operations required and the architecture of
the system. Therefore, in order to minimise the cost of smart cards we should target at
the area required for its implementation. One of our aims is to obtain a cryptographic
coprocessor that offers minimum area with optimal performance.

(|)

I"E processor [€®»| coprocessor
< : y —~
s S

memory input/output

7y
_ \4 J

Fig. 1. Smart cards architecture

This paper is organised as follows: first, we concentrate on describing the m-ary
methods; then, we introduce the addition chain method; next, we present the
Montgomery’s algorithm used for the modular multiplication; thereafter, we propose
the architecture design for the m-ary modular exponentiation, based on the addition
chain method, together with an iterative and low-cost hardware for Montgomery’s
algorithm; finally, we summarise the work presented throughout this paper and draw
some conclusions.

2 Modular Exponentiation Based on the M-ary Methods

The m-ary methods for modular exponentiation [1] consist of three major steps: (i)
partitioning the binary representation of the exponent £ in /-bit windows; (ii) pre-
computing all possible powers in windows one by one; (7ii) iterating the squaring of
the partial result / times to shift it over, and then multiplying it by the power in the
next window, if this is different from 0. In other words, the m-ary methods partition £
in p windows of length / = log m, where m is a power of two. Algorithm 1 describes

the m-ary algorithm, wherein M and E represent the modulus and exponent of the
cryptosystem, 7 and C stand for the text and the ciphertext, respectively, and, finally,
V; denotes the decimal value of the ith window, where p-1 <i <0.

198 Luiza de Macedo Mourelle and Nadia Nedjah

Algorithm 1. MME(T, M, E)
1l: Partition E into p l-bit windows;

2 for i = 2 to m-1 Compute T mod M;
3: C := Tvp_1 mod M;
4 for i := p-2 downto 0 do
1
5: ¢ := Cc% mod M;
6: if V,# 0 then C := CxT% mod M;
7: return C;
end.

The pre-processing step, shown in lines 2 and 3 of Algorithm 1, calculates all
possible powers of T, according to the window size /. However, we do not know
which powers will effectively take part in the final computation. In order to reduce the
amount of computation performed in the pre-processing step, we use the addition
chains method to obtain a sequence of powers to yield 7°.

3 Addition Chains Method

An addition chain of length r for a positive integer N is a list of positive integers (a,
ay, ay, ..., a;) such that gy =1, a, = Nand a, = a; + a;, 0 <i <j < k < r. Finding a
minimal addition chain for a given positive integer is an NP-hard problem. It is clear
that a short addition chain for exponent E gives a fast algorithm to compute 7° mod M

as we have T% =T xTaj,ifak:a,-+aj.

A generalisation of the concept of addition chain is that of addition sequence. An
addition sequence for a list of positive integers Vi, V2, ..., V), such that V;<V,<
...<V,, is an addition chain for integer V,,, which includes V;, V>, ..., V.. The length of
an addition sequence is the number of integers that constitute the chain. An addition
sequence for a list of positive integers Vi, V>, ..., V, will be denoted by S(V1, V5, ...,
V). For instance, considering V=3, V>=7 and V=11, a possible addition sequence
would be (1,2,3,4,7,9,11). An addition sequence of minimal length (or simply
minimal addition sequence), for the values of the partitions included in the non-

redundant ordered list § (E), would optimise the number of modular multiplications
required in the pre-processing step of the m-ary methods for computing 7° mod M
(line 2 of Algorithm 1). Finding this minimal addition sequence is an NP-hard
problem and we use genetic algorithms to solve it [5].

4 Hardware Architecture

Fig. 2 introduces the hardware architecture for the m-ary methods. The modular
multiplications are performed using Montgomery’s algorithm [6], for which we have
developed a hardware architecture (MODMULT) described later on in this paper. The
pre-processing step computes the powers of 7, based on the addition sequence

Hardware for Modular Exponentiation Suitable for Smart Cards 199

provided, and stores these powers in a local memory (MEM). Each position of this
memory consists of two kinds of information: the high-order bits store the exponent,
as provided by the addition sequence, and the low-order bits store the corresponding
power of 7. At the beginning, position 0 contains de decimal value 1 in its high-order
bits and 7 in its low-order bits.

K

ck
incrl
REGADDIE

ldrege

=

E
decr ck

ck REGADDRI
shrege
RECE zerod laadari

ldrege
rege<k-1:k-1+]

rst—

waxd w2
1 —a
—7/_HUX ° MODHULT H'LTN
ST AT]

unfinal e N

l 1ldaddrj

datain 4 dataout.
ck

ck

/' muxl

REGC REGT ‘ [4— write |

I

— —|
loado loadi load) MEM e rend address
[match
ADDER

ck

COMPARATOR

Fig. 2. The architecture of the m-ary hardware

The powers are computed according to the addition chain rule: ax=a;+a,;, 0 <1<
J < K. K is initialised to 2 (REGADDRK=2), / to 1 (REGADDRI=1) and J to 1
(REGADDRJ=1). The memory location addressed by K is read and the high-order bits
of the word are loaded in REGK. The memory location addressed by / and J are,
subsequently, read and the word loaded in REGI (high-order bits) and REGA (low-
order bits), and in REGJ (high-order bits) and REGB (low-order bits), respectively.
The sum of REGI and REGJ is, then, compared to REGK. Once valid / and J are found,
the current contents of REGA and REGB are, then, modular multiplied. The result is
stored in memory location K. This value is, then, incremented and / and J are
initialised to K-1. The search for other valid values begins, by successively
decrementing / and J, until found. For example, using the initial values declared, the
first power computed is 7°.

Each partition of the exponent £ will be used to address the memory to obtain the
corresponding pre-computed power of 7, as defined in line 3 of Algorithm 1. The
local memory is, in fact, an associative memory (MEM), in order to read the data based
on the value of the current exponent partition. During this step, signal match is
asserted for every read cycle from MEM.

200 Luiza de Macedo Mourelle and Nadia Nedjah

In each iteration of the exponentiation step, the partial result C is raised to the 2’
power and, then, multiplied by 77 modulo M, when ¥; is not a zero partition (see lines
5 and 6 of Algorithm 1). The values of 7’7 modulo M are obtained from the
associative memory, according to the current partition of the exponent E. In order to
obtain the value of the current partition, we store exponent E in shift register REGE,
from which the most significant partition is retrieved to address the associative
memory (see line 3 and 6 of Algorithm 1). When a new partition is required, register
REGE is left-shifted / times. REGL is loaded with the length of the partition (/) and
decremented for each shift operation performed. The square-and-multiply loop
(starting in line 4 of Algorithm 1) consists of two main phases:

1. The first one performs / squaring of the partial result. For this purpose, the partial
result is fed-back to inputs 4 and B of the modular multiplier of Fig. 2;

2. The second phase performs the modular multiplication of the partial result with
the pre-computed power of 7, when the current partition is not zero. The power
of T, i.e. T modulo M, is read from the associative memory, at the location

matching the most significant partition of register REGE.

The square-and-multiply loop is executed until the least significant partition of £ is
reached. REGP is loaded with the number of partitions (P) and decremented once in
each iteration. The final result is then loaded into register REGC.

The pre-processing step consists of performing »—1 modular multiplications, while
the exponentiation step consists of /(p—1)+q | 0 < g < p—1 modular multiplications,
where ¢ is number of non-zero partitions. The operands, however, differ from one
multiplication to another. The main work of the controller consists of setting up the
right operands for each one of these modular multiplications. The controller interface
signals are set according to the synchronous finite state machine SM=(S,, 0={S,, Si,
..., S19}, F={S19}, 0), wherein S, is the initial state, O is the state set, F is the set of
final states and J'is the state transition function, presented as follows:

Sp: Initialise the system; If start = 1 Then go to S;i;

S;: REGE <= E; REGADDRK <= K;

S,: Read MEM(REGADDRK); REGADDRI <= K; REGADDRJ <= K;

S3;: REGK <= MEM(REGADDRK); Decrement REGADDRI and REGADDRJ;
S;: Read MEM(REGADDRI) ;

Ss: REGI <= high-order bits of MEM(REGADDRI) ;
REGA <= low-order bits of MEM (REGADDRI) ;

S¢: Read MEM(REGADDRJ) ;

S;: REGJ <= high-order bits of MEM(REGADDRJ) ;
REGB <= high-order bits of MEM(REGADDRJ) ;

Sg: If (REGI + REGJ) = REGK Then go to S;,;
Else if REGADDRJ=1 Then go to Sio,

Syg: Decrement REGADDRJ;

Si10: Decrement REGADDRI;

S;1: REGADDRJ <= REGADDRI;

S1,: Start the modular multiplier;

S13: If modular multiplier has finished Then go to Si4;

5

Hardware for Modular Exponentiation Suitable for Smart Cards

: Stop the modular multiplier;
: Write the result in MEM (REGADDRK) ;

: Increment REGADDRK; If REGADDRK > addition chain size Then go to
: Read MEM (most significant window of REGE); Decrement REGP;

: If modular multiplication finished Then go to Sis;
: REGA <= MEM (most significant window of REGE);

REGB <= MEM(most significant window of REGE);
If there are no more squaring to do Then Go to S3;;

: If modular multiplication finished Then go to Sis;
: Decrement REGP; REGL <= partition size;
: Decrement REGL; left shift REGE;

If there are no more bits to shift Then go to S:;;

: If the new partition is not zero Then go to Sy

Else If there are more partitions Then go to S, Else go to Si;

: REGB <= MEM (most significant partition of REGE);
: If the modular multiplier finished Then

If there are more partitions Then Go to S:7;

: REGA <= modular multiplication result;

REGB <= modular multiplication result into REGB; Go to Sy;

: Indicate end of operation; If start signal unasserted Then Go to

Results

201

Sz

So7

The design is specified in VHDL [7] and a functional simulation [8] is then
performed. The project is synthesised [8] and the area and time requirements are
registered for different parameters. The figures are listed in Table 1. The hardware
area is given in CLBs while the response time is given in nanoseconds (ns). The
results show clearly that the proposed hardware is very efficient: it requires very
much less hardware area and encrypts/decrypts very much faster.

Table 1. Area and time requirements for the m-ary hardware that uses a minimal
addition sequence vs. the m-ary hardware that does not

M-ary Hardware M-ary Hardware

Operand size | ;m | with addition sequence without addition sequence
area (CLBs) | time (ns) area (CLBs) time (ns)

64 2 492 3.1 509 17.3

4 441 2.9 897 15.0

128 2 811 7.3 912 22.9

4 721 5.8 1777 20.1

6 Conclusions

In this paper, we have presented a fast and compact hardware implementation for the
modular exponentiation based on the m-ary methods, using a minimal addition

202 Luiza de Macedo Mourelle and Nadia Nedjah

sequence of exponents. As the window size /, related to the partitioning of the
exponent E, increases, so does the amount of possible powers of 7 to compute during
the pre-processing step. Therefore, instead of computing all the possible powers of T’
in the pre-processing step of the m-ary methods, we compute only those powers
present in the minimal addition sequence. We use genetic algorithms to obtain this
sequence. The pre-processing time decreases using a minimal addition sequence of
exponents, as the window size / increases. During the iterative step of the m-ary
methods for the exponentiation process, the pre-computed powers are retrieved from
the memory. Hence, the memory size required is smaller than if we compute all the
possible powers, thus reducing the overall area.

Acknowledgements

The authors wish to acknowledge the financial support provided by Fundacdo de
Amparo a Pesquisa no Estado do Rio de Janeiro (FAPERJ) and Conselho Nacional de
Desenvolvimento Cientifico e Tecnologico (CNPq) for the development of this
research.

References

1. Kog, C.K., High-speed RSA Implementation, Technical report, RSA Laboratories, Redwood
City, California, USA (1994).

2. Rivest, R.L., Shamir, A. and Adleman, L., 4 method for obtaining digital signature and
public-key cryptosystems, Communication of ACM (1978), vol. 21, no.2, 120-126.

3. Menezes, A.J., Elliptic curve public key cryptosystems, Kluwer Academic (1993).

4. Eldridge, S.E. and Walter, C.D., Hardware Implementation of Montgomery’s Modular
Multiplication Algorithm, 1EEE Transactions on Computers (1993), 42(6), 619-624.

5. Nedjah, N., Mourelle, L.M., Efficient Pre-processing for Large Window-based Modular
Exponentiation using Genetic Algorithms, Proceedings of the 16™ International Conference
on Industrial & Engineering Applications of Artificial Intelligence and Expert Systems,
Loughborough, England (2003), LNAI 2718, 625-635.

6. Montgomery, P.L., Modular Multiplication without Trial Division, Mathematics of
Computation (1985), vol. 44, 519-521.

7. Navabi, Z., VHDL - Analysis and Modeling of Digital Systems, McGraw Hill, Second
Edition (1998).

8. Xilinx Inc., ISE 6.1i, http://www xilinx.com.

PN-based Formal Modeling and Verification for
ASIP Architecture!

Yun Zhu, Xi Li, Yu-chang Gong, and Zhi-gang Wang

Dept. of Computer Science, University of Science and Technology of China, Hefei, Anhui
230026, China
yukiyun@mail.ustc.edu.cn

Abstract. This paper presents a novel extended timed Petri Net model called
PNPM — Petri Net based Representation for Pipeline Modeling, and a
verification scheme based on PNPM called PPL-MC — PNPM and Lambda
Calculus based Model Checker They focus on formal modeling and verification
especially for ASIP architecture with pipeline structure. In this paper, PNPM
elements have been defined, and their validity and usage are demonstrated.
Also, the scheme of PPL-MC is introduced.

1 Introduction

Figure 1 shows the design flow [1] of ASIP (Application Specific Instruction
Processors). Architecture DSE (Design Space Exploration) is an important step. To
uncover the flaws earlier and to realize the automatization of DSE need a validation
mechanism. Formal verification [4] is a widely-used method for validation, though it
is underdeveloped. Many are concentrated on some layers below architecture or
certain part of architecture, such as [2, 3].

(.‘i}'sh:m |'¢1|1]ircmimt>— h-i"um:liml]:lurlilimling|-1-

¥ B ¥ j
|Suf'rws|rc design | | Architecture DSE |-o w
I

¥ ¥

-)P,'nmpilurinn n|'|[1'mi7arinn|—+nsrnmiun level siml uﬁnnHﬂysrcm inn:gmrirm)

Fig. 1. Flow of the software-hardware co-design

We want to do formal verification for our ASIP architecture DSE, so the first thing
come to us is how to formally model the ASIP architecture. Petri Net [6] is a
graphical and mathematical modeling tool especially applicable to asynchronous and

ISupported by the National Natural Science Foundation of China under Grant No.60273042; the
Natural Science Foundation of Anhui Province of China under Grant No.03042101.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 203-209, 2005.
© Springer-Verlag Berlin Heidelberg 2005

204 Yun Zhu et al.

concurrent system. It [7, 8] is netlike, and can be represented as a 3-tuple N=(P, T; F)
with certain restrictions. We call P and T in the triple place-set and transition-set of N
respectively; and arc-set F reflects their relationships. Tokens are added to express
status messages and their distribution is called marking. The dynamic behavior of PN
model is guarded with its firing rule. Implementation of a transition must be atomic.
ForVx € PUT the input and output of x are called pre-set and post-set of x (denoted
by *x and x*) respectively.

Petri Net is a precise system, and can be extended according to certain
requirements. The application of Petri Net for performance analysis of networks and
concurrent systems is already well developed. But applications to architecture
modeling are relatively few. The basic Petri Net is too simple to describe the structure
and behavior of complicated architecture, and the size of PN model is a big problem.

Aimed at the design of ASIP architecture, this paper first presents a novel extended
timed Petri Net model called PNPM (Petri Net based representation for Pipeline
Modeling), which can describe target architecture in a succinct and precision way.
Then a formal verification method based on PNPM is introduced, taking advantage of
PNPM, PPL-MC can efficiently verify various aspects of the target system..

2 PNPM — An Extended Timed Petri Net Model

2.1 Pipelined Architecture and PNPM

Pipeline is a key technique in modern ASIP architectures. It brings high performance
as well as some technical problems. Various pipelines are exploited in different
domain, but the basis of pipeline is always its units, behavior, timing and the
relationships among them.

There are two kinds of units in pipeline: storage units and execution units.
Denoting them by places and transitions respectively seems rational. PNPM is based
on /-PN since the pipeline registers always have mono-value. It extends a token to a
pair k = (v, r), where v is the token value implying register value, and r is the token
time. So the marking M for each place p, when it has token in it, M(p) stands for the
token pair in it. M(p).v denotes the token value, M(p).r denotes the token time. v, and
r,are brief notations.

We also make each transition 7 have a formal description which can be stored and
used as independent text file. Shown as below, it includes information about action,
timing, and signal control and so on.

description_T6{ /*description for transition T6*/
pipelinestage = 3 ; /*EXE */
enable = (v,o="“R”) ; /*P9 connects toT6 with a testing arc*/
action ={
Vo6 = Vp3 OP Vpss /*system behavior of T6*/
J
timedelay= 6 ; /*firing time for T6*/
/

Enabling of transition in PNPM depends on the token pair in the place with testing
arc connecting to it. So the enabling and firing are defined as follows:

PN-based Formal Modeling and Verification for ASIP Architecture 205

Definition 2-1. Transition £ € T is enabled at marking M iff:

(Vpe't: M(p)=e)A(Vpet' : M(p)=¢) Adescription _t.enable .
Definition 2-2. The firing of an enabled transition ¢ € 7 changes a marking M into a
new marking M’, denoted by M[t > M'. As a result of firing the transition t, the

following events occur:
Vpe't, M(p)=¢)
Vp et®, M("t).y—decrivtion_taction_y prv(Yy (2)
Vpet' ,M'(p)r=max{M("t)r}+description _t.timedelay 3)

2.2 Modification for PNPM

For modeling the ASIP architectures with PNPM more precisely and succinctly, we
need to do some modification in PNPM.

Transition should not be disabled when its output places have tokens because
register with value can still get a new value to replace the old one. Structure with
inhibitor arc and testing arc shown in figure 2 (b) is a solution to it. 7/ in figure 2 (c)
is an encapsulated symbol of 77 and 7/ ’. And transitions in PNPM all imply such.

Pl O Pl O l’IO
General

', __ Inhibitor

. B
. P2 .

Testing
ial {c} arce

Fig. 2.transition with value-replacement semantics

Certain storages like system memory and register file, which have many memory
cells, are modeled in PNPM as multi-place, which encapsulate many normal places
into one abstract place. When simulating or evaluating, needed cells are parsed out
from it. We denote multi-place by a ring as in figure 3.

Thus manual-transition is a correspondence to multi-place. T5 denoted byl L in
figure 3 is a manual-transition express instruction decoding. It is coincided with
normal transition in the form, and could be implemented as a sub-PNAM; i.e., PNPM
supports systems modeled at different levels of granularity with transitions
representing simple arithmetic operations or complex algorithms. Also, we use
transient (a thick bar) to simply express transition with token replication semantics in
0 time delay. In Petri Net, one token can only take part in one transition at a time. By
using transient T1 in figure 3, the value of token in P/ (PC) can now be used by both
T2 (fetching instruction) and 73 (new PC counting) simultaneously.

206 Yun Zhu et al.

2.3 Formal Definition of PNPM

Since all the extended PNPM elements can be constructed from the basic PNPM
elements, we introduce the formal definition of PNPM.
Definition 2-3 A PNPM system is a 7-tuple, ¥ = (P,T;F,B,C, A,,M) where:

(1) (P,T;F) is anet;

(2) B:T — Boolean.Vt €T , B(t) is a Boolean value or a Boolean expression
about the token values of tokens in the places connected to ¢ with testing
arcs;

(3) C:T—>Q.Qisafinite set of sentences. Ve T ,C(¢) e O, sentence in C
(t) is either a evaluation of the token values in °¢ with the token values in
¢t*, or a behavior description of them after a “stall” instruction;

4) A4, :T—(N,B(T),C(T),R" u{0}).VteT, A, (¢t)is the value of the 4-
tuple (pipelinestage,enable,action,timedelay) corresponding to “description
_t”, where N is natural numbers, and R* U {0} is the set of non-negative
real numbers;

(5) M:P->(¥Y,RFu{0p)Us . VpeP , M(p) denotes the token pair
associated with the place p. ¥ can be any possible type of the token value,
and token time is a non-negative real number. M (p) =& means that no

token in p at marking M. M, is the initial marking of the net.

3 A PNPM Model for a 5-Stage Pipeline

O—E]
J P8 —

_;

Pr9

Fig. 3. A PNPM Model for a 5 stage pipeline

Figure 3 is a graphical representation of a PNPM model. It is a five-stage pipeline
with stages IF, ID, EXE, MEM, WB in turn. The associations between PNPM
elements and architecture elements are shown in Table 1. The token in P9 indicates
the control signal with the value L, S, R or B corresponding to the Instruction Load,
Store, Reckon and Branch in turn. The token in P9 is issued from 775 in stage /D, and
the place P9 is connected to 76, 77, T8, T9 and T10 with testing arcs.

PN-based Formal Modeling and Verification for ASIP Architecture 207

Tl and T4 are transients. T2, TS5, T9, T10, T1l and T12 are manual-transitions
connected to multi-places. Descriptions of all these transitions in figure 3 can refer to
description_T6 in 3.1.

Table 1. Correspondence between place/transition and architecture element

Places Arch. Units Transitions Architecture Behaviors
P1 PC T2 IF/ID.IR = MEM [PC]
P2 IF/ID.IR T3 PC=PC+4
ID/EXE.A = REG [IF/ID.IR¢_ 0]
P3 ID/EXE.A T5 ID/EXE.B = REG [IF/ID.IRy; 5]
ID/EXE.Imm= (IR) “#4REG .IRy5_3,
P4 ID/EXE.B T6 EXE/MEM.ALUoutput = ID/EXE.A op ID/EXE.B
P5 ID/EXE.Imm T7 EXE/MEM.ALUoutput = ID/EXE.A+D/EXE.Imm
if ID/EXE.A =ID/EXE.B)
P6 EXE/MEM. T8 PC = PC + ID/EXE.Imm — 4
ALUoutput else PC=PC
P7 EXE/MEM.B T9 MEM [EXE/MEM.ALUoutput] = ID/EXE.B
P8 MEM/WB.LMD T10 MEM/WB.LMD= MEM [EXE/MEM.ALUoutput]
P9 (ID.signal) T11 REG[IF/ID.IR};..15] = MEM/WB.LMD
T12 REG [IF/ID.IR6,_20] = EXE/MEM.ALUoutput

4 PNPM Based Formal Verification

A formal verification can simply be expressed as “M |= P”. Where “M” is a system
modeling like state machine, “P” is a set of required properties usually represented by
logics. “|=" is the technique to deal with the relationships between “M”” and “P”.

Based on the PNPM, which is designed for the formal modeling for ASIP
architectures, we have constructed a formal verification scheme. As shown in figure
4, PPL-MC (PNPM and Lambda Calculus based Model Checker) uses a Petri Net
based model PNPM to represent the target system, and Lambda Calculus[5] to specify
the expected system properties. The Lambda Calculus (LC) is a formal system
designed to investigate function definition, function application and recursion. It can
be used to cleanly define what a “computable function” is. Any computable function
can be expressed and evaluated using LC formalism with a single transformation rule
(variable substitution) and a single function definition scheme. It is thus equivalent to
turing machines, and system behavior restrictions can be easily described dependent
on its expressiveness and canonicity.

Since we use PNPM as “M” and use LC as “P” in our formal verification. The
most pivotal point left is the verification process “|=", viz. the PPL-MC scheme. See
figure 4, it is composed of five main modules: two for input pretreatment, two major
checking modules, and an output management module.

The “PN-based Checking” module uses Petri net technique to check the initial
PNPM models on their reachability, liveness, boundness, fairness, and so on. The “L-
Formula Preliminary” module unrolls and simplifies the input LC formulas to regular
and straightforward form. If there exists illegality of the input, a feedback through the
export will return to the beginning.

208 Yun Zhu et al.

PPL-MC can perform two kinds of verification, one is “Equivalence Checking”
between two PNPM models, and the other is “Property Satisfying” between a PNPM
model and L-formulas. To spread the whole system model in fine grit will inevitably
lead to state space exploration, and the design of the complex system becomes
infeasible. In virtue of the modularized and hierarchical modeling ability of PNPM,
there can be a series of PNPM model of a single system at different levels and
different pipeline stages. So the consistencies between them become very important.
We provide a mechanism based on net morphism theory to automatically check the
equivalence of them. Property satisfying is realized by PPL-MC with an interpreter. It
constructs mappings between atomic transitions with formalized atomic operation in
PNPM and the atomic functions in LC; and the satisfaction between M and P can be
based on them. Also, the checking can be performed globally or in a particular stage.
Moreover, since PNPM has timing ability, constraints with timing can also be
checked.

immature embedded system

—

=
gySlﬂ,ﬂ properties
modeling .
specifying
o PNPM models L-calculus
PPL Model Checker 1 N
PN-Based checking L-formula preliminary
reachability simplification
liveness regularization
fairness utirolling
[]
[YES YES—
model equivalence checking safety property checking
(two PNPMs) | {a PNPM and L-Tormiulas)
Functional Equivalence MO semantic mapping
system Time Eguivalence time-guard checking
modilving

vy 4 ¥

DMagnosis Module

v

Fig. 4.The PPL-MC Scheme

All these checking results above are drawn to a “diagnosis module”, which
automatically analyzes and decides what to do next, that is, to feedback and make
modifying, or to proceed.

PN-based Formal Modeling and Verification for ASIP Architecture 209

5 Conclusions

We have introduced and formally defined PNPM, a Petri Net based novel model
aimed at formal verification in DSE. The model is simple, intuitive, and applicable to
any abstract level of architecture in DSE. PNPM is a graphical and mathematical
model with extensions to capture important characteristics of various architectures by
describing the units, behavior, timing and their relationships structural and
hierarchical. We have presented an encapsulation approach to improve the correctness
and succinctness of PNPM. In addition, a five-stage pipeline has been studied to
illustrate the applicability of our approach to practical systems.

We have also constructed the scheme of a PNPM and Lambda Calculus based
Model Checker called PPL-MC. It uses PNPM as underlying sustainment for system
modeling. Detailed design of its modules is ongoing. Aimed at formal verification of
ASIP Architecture, taking advantage of PNPM, PPL-MC can efficiently verify
various aspects of the target system.

References

1. Li X, Zhou XH, Xiong Y, Lu L, Zhao ZX. XP-ADL: A key issue in Software and Hardware
Codesign[A].DPCS2002[C]. Wuhan: 2002. 100-104.

2. R.S.Tupuri, J.A.Abraham. A Novel Functional Test Generation Method for Processors using
Commercial ATPG[A]. Proceedings Intl Test Conference[C]. San Jose, California, 1997.
743-752.

3. Jeffrey Su, David Dill, Jens Skakkeb. Formally Verifying Data and Control with Weak
Reachability Invariants[A]. FMCAD'98[C]. California, USA: Phillip J. Windley, 1998-11-
04. 387-402.

4. E. M. Clarke, J. M. Wing. Formal methods: state of the art and future directions. ACM
Computing Surveys, 28(4):626--643, Dec. 1996.

5. H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in
Logic and the Foundations of Mathematics. NorthHolland, Amsterdam, The Netherlands,
Revised Edition, 1984.

6. Yuan CY. Principle of Petri Net{M]. Electronics Industry Press, 1998 (in Chinese). 25-75.

7. Jiang CJ. Behavior Theory and Applications of Petri Net[M]. Higher Education Press, 2002.
19-28.

8. Lin C. Stochastic Petri Net and System performance evaluation[M]. Tsinghua University
Press, 1999. 1-44.

The Design and Performance Analysis of Embedded
Parallel Multiprocessing System

Guanghui Liu, Fei Xia, Xuejun Yang, Haifang Zhou, Heng Zhao, and Yu Deng

Institute of Computer, National University of Defense Technology
410073 Changsha, China
nudtlgh@sohu.com

Abstract. The performance of traditional embedded satellite-carried system is
limited by various conditions. It makes people find out a better solution. This
paper presents a solution of embedded parallel multi-processing system which
orients to satellite-carried application. The system consists of two double-
processor parallel systems. In addition, theory analysis and program simulation
are used to analyze the system’s performance. Compared with single-processor
embedded system, the design can not only improve system performance
observably but also satisfy the requirement of satellite business processing
better.

1 Introduction

The embedded system is used more and more widely. However, in some severe
circumstances which are restricted by various factors (e.g. temperature range,
radiation-hard ability), its processing ability cannot be largely improved. Some
application fields demand for high processing ability of embedded system (e.g. the
image data processing of aerospace remote sensing, multimedia data processing),
making the single processor of embedded system unqualified for the job. This forces
system designers to explore new methods to improve the processing ability of
embedded system. A reasonable solution for overcoming the low performance of
embedded application is the parallel multi-processing technology. This paper
discusses the design and performance analysis of embedded multi-processing system
based on satellite-carried parallel computer system and furthermore explores on the
concept of embedded multi-processing system. Presently, the most representative
project about satellite-carried computer system is SCS750 of Maxwell Technology,
Besides, Proton 100k™ of Space Micro Inc and ISC series of GD-AIS Company are
all good candidates for satellite-carried computer. All the above solutions employ the
parallel computer architecture, they provide enough processing ability for all kinds of
satellite business management and pay load processing which is increasing steadily.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 210-215, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Design and Performance Analysis of Embedded Parallel Multiprocessing System 211

2 System Design

The architecture of the highly-reliable embedded multi-processors system for satellite
and its behavior are described in detail in this section.

2.1 System Architecture

SHARED
MEM

SHARED
MEM

Fault Tolerance

12C BUS: Module

[ICI BUS

s |_
12C
|

[Power Supply Module]

Fig. 1. The architecture of Highly-reliable Embedded Multiprocessors system

The solution is designed for satellite-carried system, whose working environment is
critical. Therefore it demands high reliability. The whole system exploits multi-level
reliable design strategies, including dual-computer cold backup in system level, dual-
CPU processing and degraded running in unit level and redundant design in logic
level.

The whole system is consisted of CPU module, fault tolerance module, I/O module
and power supply module. As can be seen in figure.1, the CPU module, bridge, and
the I/0 module coupled with them make up of an independent computer. There are
two computers of this kind in this satellite-carried system, which are named computer
A and computer B (Computer B is the cold backup for computer A) respectively.
CPU modules are consisted of two CPUs, two local memories, two ROMs, one
shared-memory and one bridge.

On one hand, the fault tolerance module monitors the working state of system by
connecting to bridge through I°C bus. On the other hand, it is connected to power
module by I°C bus, achieving the function of degraded running on a certain computer
(A or B) or system switching when the fatal fault is detected.

When the system is powered on, the power supply module supplies voltages for
computer A in default and the whole system begins to work. The fault tolerance
module monitors the working state of computer A. When there is an error coming
from a certain CPU, system enters the state of degraded running. Meanwhile, with the
assistance of the normal-stated CPU of computer A, the fault tolerance module boots
computer B and completes the state transition of the whole system. Then computer B

212 Guanghui Liu et al.

begins to work. The process above can be called system switching. If there is an error
coming from a certain CPU of the current computer (computer B), the system enters
the state of degraded running again, without taking the system switching process. In
this situation, the normal-stated CPU can still assure of completing all system
functions.

As the key unit in CPU module, bridge includes several important functions:

— Protocol transformation between local memory bus and PCI bus, which transforms
one of the two types of transaction on two buses to the other,

— Bus control and arbitration, which sequences the concurrent I/O accesses from two
CPUs and implements the arbitration function for PCI bus,

— Synchronized communication mechanism between two CPUs, which assures the
shared-memory of being accessed critically, and thus assures the data in shared-
memory of consistency,

— DMA and interrupt control, which deal with the DMA request and interrupt request
from peripheral equipments,

— Redundant interface for I°C bus, which makes the communication between bridge
and fault tolerance module reliable.

The architecture of the solution introduced here is in some sense similar to SMP,
but each processor has its own local SRAM. The memory access model is likely
between NORMA and UMA. CPUs for this solution are all commercial processors
and communications between them are not through crossbar network but bridge. The
shared-memory is hung onto the bridge and the whole system looks symmetric. All
processors can access the shared-memory and I/O devices coequally but each
processor has its own operating system located in the local SRAM. Because
processors used in space is much slower than which on the ground, data can be
accessed directly from or to local SRAM despite of the processor-memory gap
without the help of cache. Therefore, as shared data is located in shared-memory and
private data in local memory, problem of cache-coherence can be avoided.

2.2 Strategies of Improving Performance

The system uses close coupling architecture of shared-memory. Here gives the
strategies of improving performance in this design:

— Exploiting dual-CPU strategy, which obviously makes the processing capability of
system more powerful,

— System is symmetric and shared-memory is introduced, so high degree of
parallelism can be exploited,

— The two CPUs each have their local memory for private data, which brings two
major benefits. First, it is a cost-effective way to scale the memory bandwidth if
most of the accesses are to the local memory in the node. Second, it reduces the
latency for accesses to the local memory,

— The two CPUs share one memory space, which is employed for data exchange and
transfer. This communication mechanism has several advantages compared to
message-passing mechanism. First, it makes programming easier when the
communication patterns among processors are complex or vary dynamically during

The Design and Performance Analysis of Embedded Parallel Multiprocessing System 213

execution, and similar advantages simplify compiler design. Second, when
developing applications using the familiar shared-memory model, it focuses
attention only on those accesses that are performance-critical. Third, it aims at the
characteristics of relative independence among applications and small
communication items. The overhead for communication will be lower, use of
bandwidth will be more efficient, and efficiency of communication will be higher.

3 Parallel Performance Analysis

The index of performance to judge the parallel processing capacity of systems is
application speedup. Speedup can be presented as S= Ty/T,, “Ts” represents serial
execution time, “T,” represents parallel execution time. How to exploit the parallel
processing capacity to the utmost is related extremely to the software and hardware
structure of the system and the characteristics of application. The design employs the
architecture of dual-computer redundant cold backup. On the normal state, two CPUs
of single computer are running collaterally. They employ shared-memory to
communicate with each other and their program space is independent.

The software system of multi-processors on satellite is an embedded real-time
operating system. The kernel code of system software can be controlled less than
100kB. If instructions are loaded from ROM directly, the program will not use
dynamic storage space. Because of banding with applications, the system cost can be
ignored, so the speedup is extremely decided by task allocation and exploiting of the
parallelism degree of application programs. However, the measurement of accurate
speedup must be combined with particular application type. When tasks are
distributed and the proportion of communication is controlled reasonably, the speedup
can approach linear acceleration.

Analysis as far as application, there are two main parallel application patterns:
coarse grained task level parallelism suitable to the management of tasks on satellite,
and fine-grained algorithm level parallelism suitable to pay load. This plan can
support both parallel patterns above.

3.1 Coarse-Grained Parallelism

By analyzing the applications on satellite, it is known that tasks on satellite are not
calculation-intensive but independent with each other and the grains of
communication is also small. So the execution pattern of the program on the dual-
CPU system should be coarse-grained. What’s more, in order to simplify design and
satisfy the requirement of real-time, the task distribution on the dual-processor is
initialized statically, and dispatched dynamically. It can be supposed that within a
long execution time of full load, n tasks are equally distributed to 2 CPUs. Define the
tasks’ number on the two CPUs differently as “nl1” and “n2”, and the serial execution
time of the task No. k is “t,*, then the single CPU’s execution time of n tasks Ty= t+
t52+...+ t,", and the parallel time T, = max{ Ty Tno}, Tai, Tao represent the execution
time on each CPU. Suppose T,= T,; > Ty, Tni = t+ t., among these, t,= (tsl+ t2H+. .+
tsnl) > T2, which is serial execution time of nl tasks and “t.” is the tasks’ remote

214 Guanghui Liu et al.

communication time. Communication among processors is mostly small-grained data
exchanging, which is very suitable to shared-memory communication mechanism.
According to the Amdahl’s Law, speedup can be represented as:

R bl ’ M

On the ideal state, tasks are distributed evenly and there is no communication
among tasks, so speedup is 2. But actually there are necessary data exchanging among
tasks. According to the application characteristics on satellite, it can be estimated
optimistically that when the processing program of task is parallelized fully (by static
distribution or dynamic scheduling), the imbalanced execution time and cost of
communication can be controlled ranging from 5% to 15% of T,. From formula
above, it can be concluded: (suppose the cost of communication is 10%):

— s =1 _
§ = = =1.67 ()

3.2 Fine-Grained Parallelism

The fine-grained parallelism is mainly applied to pay load processing, such as image
transaction. The application speedup is decided mainly by the design of parallel
algorithm. Here, a typical application of image processing is introduced as example to
analyze the system’s parallel capacity. In DFT algorithm, each output value of
calculation is independent. All calculation tasks can be divided equally to each
processor. There is little data-dependence between processors, so it is fit for this
parallel design of close coupled.

The Amdahl’s Law only evaluates parallel system performance from the aspect of
task parallel degrees, its shortcoming lies in not containing various architecture
characteristics of parallel processors, and uniform divisibility of task. But in fact,
these actual factors are vital to the performance of the parallel processing. About
above, advantages can be taken from the following timing model.

L,=T. ..+ L..ntT

comp kcomm ksync

+Tge 15k<p. 3)

Here, “Ticomp” is the execution time that No. k unit used to completes it’s
distributed subtask; “Ticomm’” 1S the time of data communication with itself and other
processing units; “Tyne” is the necessary waiting time when there is data exchanging
between multi-processors; “Ty;q” 1s the idleness waiting time of No. k processing
unit that before the last subtask is finished by some processing unit. So, the time to
finish all tasks — T, = max {Ty}, 1 < k < p. The execution time using same
algorithm on single processing unit is Tseri = Ticomp T Tacomp T -+ T Tpeomp, thus the
speedup of parallel processor is Sy = Tseri/ Tpar < .

The Design and Performance Analysis of Embedded Parallel Multiprocessing System

3.3 The Consequence of Simulation Testing

Here gives two experiments, one is the computing of 77 to 12" bit after dot, the other

is a 64 X 64 matrix multiplying.

Table 1. Experiments of 77 computing and matrix multiplying

Experiment 7T computing Matrix multiplying

of CPUs 1 2 1 2

Calculation | To