

Lecture Notes in Computer Science 3605
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Zhaohui Wu Chun Chen Minyi Guo
Jiajun Bu (Eds.)

Embedded Software
and Systems

First International Conference, ICESS 2004
Hangzhou, China, December 9-10, 2004
Revised Selected Papers

13

Volume Editors

Zhaohui Wu
Chun Chen
Jiajun Bu
Zhejiang University, College of Computer Science
Hangzhou, 310027 P.R. China
E-mail: {wzh,chenc,bjj}@cs.zju.edu.cn

Minyi Guo
The University of Aizu Tsuruga
School of Computer Science and Engineering
Ikki-machi Aizu-Wakamatsu, Fukushima 965-8580, Japan
E-mail: minyi@u-aizu.ac.jp

Library of Congress Control Number: 2005932310

CR Subject Classification (1998): C.3, C.2, C.5.3, D.2, D.4, H.4

ISSN 0302-9743
ISBN-10 3-540-28128-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28128-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 11535409 06/3142 5 4 3 2 1 0

Preface

Welcome to the post proceedings of the First International Conference on Embedded
Software and Systems (ICESS 2004), which was held in Hangzhou, P. R. China, 9–10
December 2004.

Embedded Software and Systems technology is of increasing importance for a
wide range of industrial areas, such as aerospace, automotive, telecommunication, and
manufacturing automation. Embedded technology is playing an increasingly dominant
role in modern society. This is a natural outcome of amazingly fast developments in
the embedded field.

The ICESS 2004 conference brought together researchers and developers from
academia, industry, and government to advance the science, engineering, and
technology in embedded software and systems development, and provided them with
a forum to present and exchange their ideas, results, work in progress, and experience
in all areas of embedded systems research and development.

The ICESS 2004 conference attracted much more interest than expected. The total
number of paper submissions to the main conference and its three workshops, namely,
Pervasive Computing, Automobile Electronics and Tele-communication, was almost
400, from nearly 20 countries and regions. All submissions were reviewed by at least
three Program or Technical Committee members or external reviewers. It was
extremely difficult to make the final decision on paper acceptance because there were
so many excellent, foreseeing, and interesting submissions with brilliant ideas. As a
result of balancing between accepting as many papers as possible and assuring the
high quality of the conference, we finally decided to select 80 papers for the post-
proceeding. We firmly believe that these papers not only present great ideas, inspiring
results, and state-of-the-art technologies in recent research activities, but will also
propel future developments in the Embedded Software and Systems research field.

The magnificent program for this conference was the result of the hard and
excellent work of many people. We would like to express our sincere gratitude to all
authors for their valuable contributions and to our Program/Technical Committee
members and external reviewers for their great inputs and hard work. We are
particularly grateful to our workshop chairs: Xiangqun Chen, Zhanglong Chen, Yue
Gao, Xiaoge Wang, Xingshe Zhou and Mingyuan Zhu for their invaluable work in
organizing wonderful workshops. We would also like to express our thanks to Jiajun
Bu, Tianzhou Chen, Kougen Zheng, Minde Zhao, Hui Zhu, Shuying Tian, Fengxian
Li and Cheng Jin for putting everything together to create this magnificent scientific
event.

June 2005 Chun Chen, Xiangke Liao
Zhaohui Wu, Ranfun Chiu

VI Organization

Organization

ICESS 2004 was organized by Zhejiang University, Important Software Committee of
the National 863 Program, the China Computer Federation, and the Hangzhou
Association for Science and Technology.

Executive Committee

Honorary Chair Yunhe Pan, Zhejiang University, China

General Chairs Xiangke Liao, 863 Program Expert, China
 Chun Chen, Zhejiang University, China

Program Chairs Zhaohui Wu, Zhejiang University, China
 Ranfun Chiu, HP lab, USA

Workshop Chairs Minyi Guo, The University of Aizu, Japan
 Kougen Zheng, Zhejiang University, China

Public Relation Chair Tianzhou Chen, Zhejiang University, China

Publication Chair Jiajun Bu, Zhejiang University, China

Local Organizing Committee Minde Zhao (Chair)
 Shuying Tian, Hui Zhu, Fengxian Li,
 Cheng Jin, Wei Chen

Sponsoring Corporations

Intel Corporation
China Putian Corporation
Hopen Software Eng. Co. Ltd.
ZTE Corporation
Huawei Technologies Co. Ltd.
CoreTek Systems Incorporated
China Mobile Software League

Organization VII

Program Committee

Makoto Amamiya Kyushu University, Japan
Jiamei Cai Zhejiang University of Industry, China
Tak-Wai Chan National Central University, China
Xiangqun Chen Peking University, China
Yaowu Chen Zhejiang University, China
Zhanglong Chen Fudan University, China
Walter Dosch Medizinische Universität Lübeck, Germany
Nikil Dutt University of California, Irvine, USA
Jesse Z. Fang Intel Labs, USA
Yue Gao Hopen Software Eng. Co. Ltd. China
Naiping Han Chinasoft Network Technology Co., Ltd., China
R. Nigel Horspool University of Victoria, Canada
Chris Hsiung Hewlett-Packard Lab, USA
Margarida Jacome University of Texas at Austin, USA
Moon Hae Kim Konkuk University, Korea
Insup Lee University of Pennsylvania, USA
Meng Lee Hewlett-Packard Lab, USA
Xinming Li ACET, China
Kwei-Jay Lin University of California, Irvine, USA
Lei Luo University of Electronic Science and Technology

of China, China
Yi Pan Georgia State University, USA
Xian-he Sun Illinois Institute of Technology, USA
Walid Taha Rice University, USA
Xiaoge Wang Tsinghua University, China
Xing Zhang Peking University, China
Xingshe Zhou Northwestern Polytechnical University of China,

China

Workshop Chairs

The International Workshop on Embedded Systems and Pervasive Computing

Xiangqun Chen Peking University, China
Xingshe Zhou Northwestern Polytechnical University, China

The International Workshop on Embedded Systems and Automobile Electronics

Zhanglong Chen Fudan University, China
Mingyuan Zhu CoreTek Systems Incorporated, China

VIII Organization

The International Workshop on Embedded Systems in Telecommunication

Yue Gao Hopen Software Eng. Co. Ltd., China
Xiaoge Wang Tsinghua University, China

Technical Committee

Hamid R. Arabnia University of Georgia, USA
Alessandro Bogliolo University of Urbino, Italy
Luciano Bononi University of Bologna, Italy
Jiajun Bu Zhejiang University, China
Rajkumar Buyya The University of Melbourne, Australia
Jiannong Cao Hong Kong Polytechnic University, China
Tiziana Calamoneri University of Rome "La Sapienza", Italy
Adriano Mauro Cansian State University of Sao Paulo, Brazil
Naehyuck Chang Seoul National University, Korea
Vipin Chaudhary Wayne State University, USA
Shu-Ching Chen Florida International University, USA
Shuoying Chen Beijing Institute of Technology, China
Tianzhou Chen Zhejiang University, China
Wenzhi Chen Zhejiang University, China
Yu Chen Tsinghua University, China
Zièd Choukair ENST Bretagne, France
Hao-hua Chu National Taiwan University, China
Chen Ding University of Rochester, UK
PeiYu Fang DYNA Technology, China
Feng Gao Zhejiang University, China
Dan Grigoras University College Cork, Ireland
Jianjun Hao Beijing University of Posts and Tele-

communications, China
Hangen He Changsha Institute of Technology, China
Qianhua He South China University of Technology, China
Yan Hu China Electronics Standardization Institute, China
Liqun Huang Huazhong University of Science and Technology,

China
Zhiping Jia Shandong University, China
Xiaohong Jiang JAIST, Japan
Qun Jin Waseda University, Japan
Mahmut Taylan Kandemir Pennsylvania State University, USA
Ryan Kastner University of California, Santa Barbara, USA
Dieter Kranzlmüller University of Linz, Austria
Mohan Kumar The University of Texas at Arlington, USA
Hsien-Hsin (Sean) Lee Georgia Institute of Technology, USA
Trong-Yen Lee National Taiwan University, China
Qing Li City University of Hong Kong, China

Organization IX

Technical Committee (continued)

Jinlong Lin Peking University, China
Youn-Long Steve Lin National Tsing Hua University, China
Jilin Liu Zhejiang University, China
Xiang Liu GRAND Software, China
Xiang Liu Peking University, China
Yan Liu Putian-Smartcom, China
Zhaodu Liu Beijing Institute of Technology, China
Zhen Liu Nagasaki Institute of Applied Science, Japan
Bin Luo Nanjing University, China
Lei Luo CoreTek Systems Incorporated, China
Jingjian Lv Beijing Open Lab (BOL) System Inc., China
HongBing Ma Tsinghua University, China
Joberto Sérgio Barbosa
Martins

University of Salvador, Brazil

Malena Mesarina HP Labs, USA
Marius Minea Universitatea Politehnica din Timi oara, Romania
Tatsuo Nakajima Waseda University, Japan
Stephan Olariu Old Dominion University, USA
Mohamed Ould-Khaoua University of Glasgow, UK
Victor Prasanna University of Southern California, USA
Huabiao Qin South China University of Technology, China
Omer Rana Cardiff University, UK
Edwin Sha University of Texas at Dallas, USA
Lihong Shang Beijing University of Aeronautics and

Astronautics, China
Beibei Shao Tsinghua University, China
Xiumin Shi Beijing Institute of Technology, China
Timothy K. Shih Tamkang University, China
Gurdip Singh Kansas State University, USA
Zechang Sun Tongji University, China
Zhenmin Tang Nanjing University of Science and Technology,

China
Pin Tao Tsinghua University, China
Lorenzo Verdoscia ICAR, CNR, Italy
Cho-li Wang The University of Hong Kong, China
Dongsheng Wang Tsinghua University, China
Farn Wang National Taiwan University, China
Lei Wang Beijing University of Aeronautics and

Astronautics, China
Qing Wang Institute of Software, Chinese Academy of

Sciences, China
Guowei Wu Dalian Institute of Technology, China

X Organization

Technical Committee (continued)

Jie Wu Florida Atlantic University, USA
Yong Xiang Tsinghua University, China
Mingbo Xiao Xiamen University, China
Cheng-Zhong Xu Wayne State University, USA
Weikang Yang Tsinghua University, China
Yanjun Yang Peking University, China
Binyu Zang Fudan University, China
Chengcui Zhang University of Alabama at Birmingham, USA
Guobao Zhang Southeast University, China
Jong Zhang Beijing University of Aeronautics and

Astronautics, China
Youtao Zhang The University of Texas at Dallas, USA
Lin Zhong Princeton University, USA
Huiyang Zhou University of Central Florida, USA
Dakai Zhu University of Pittsburg, USA

Table of Contents

Keynote Speeches and Invited Talks Abstracts (Partial)

Keynote Speech: Abstraction and the C++ Machine Model…………………....... 1
Bjarne Stroustrup

Keynote Speech: Industrializing Software Development………………………... 14

Alexander Stepanov

Keynote Speech: Testing Methodologies for Embedded Systems and
Systems-on-Chip…………………………………………………………….…… 15

Laurence T. Yang and Jon Muzio

Keynote Speech: China Putian Promote Commercial TD-SCDMA Services…… 25

Qingfang Chen

Invited Talk: Agent-Oriented Approach to Ubiquitous Computing…………….. 30

Makoto Amamiya

Invited Talk: Resource-Aware Programming…………………………….……… 38

Walid Taha

Invited Talk: In-House Tools for Low-Power Embedded Systems…………….... 44

Naehyuck Chang

Invited Talk: CODACS Project: A Development Tool for Embedded System
Prototyping……………………………………………………………………….. 59

Lorenzo Verdoscia

Track 1 Distributed Embedded Computing

A Study on Web Services Selection Method Based on the Negotiation Through
Quality Broker: A MAUT-based Approach……………………………………… 65

Young-Jun Seo, Hwa-Young Jeong, and Young-Jae Song

XII Table of Contents

CA-Ex: A Tuning-Incremental Methodology for Communication Architectures
in Embedded Systems……………………………………………………………. 74

Haili Wang, Jinian Bian, Yawen Niu, Kun Tong, and Yunfeng Wang

Efficient Parallel Spatial Join Processing Method in a Shared-Nothing Database
Cluster System……………………………………………………………………. 81

Warnill Chung, Soon-Young Park, and Hae-Young Bae

Maximizing Parallelism for Non-uniform Dependence Loops Using Two
Parallel Region Partitioning Method…………………………………..…………. 88

Sam Jin Jeong

The KODAMA Methodology: An Agent-Based Distributed Approach…...……. 94

Guoqiang Zhong, Satoshi Amamiya, Kenichi Takahashi, and
Makoto Amamiya

Track 2 Embedded Systems

A New Iris Recognition Approach for Embedded System….…………………… 103
Hongying Gu, Yueting Zhuang, Yunhe Pan, and Bo Chen

A RAID Controller: Software, Hardware and Embedded Platform Based on
Intel IOP321…………………………………………………………………..….. 110

Xiao-Ming Dong, Ji-Guang Wan, Rui-Fang Liu, and Zhi-Hu Tan

Component-Based Integration Towards a Frequency-Regulating Home
Appliance Control System…………………….…... 118

Weiqin Tong, Qinghui Luo, Zhijie Yin, Xiaoli Zhi, and Yuwei Zong

Design and Implementation of the System for Remote Voltage Harmonic
Monitor…………………………………………………………………………… 124

Kejin Bao, Huanchuen Zhang, and Hao Shentu

Guaranteed Cost Control of Networked Control Systems: An LMI Approach...... 130

Shanbin Li, Zhi Wang, and Youxian Sun

Robust Tuning of Embedded Intelligent PID Controller for Induction Motor
Using Bacterial Foraging Based Optimization…………………………………... 137

Dong Hwa Kim

Table of Contents XIII

The Customizable Embedded System for Seriate Intelligent Sewing
Equipment………………………………………………………………………... 143

Kailong Zhang, Xingshe Zhou, Ke Liang, and Jianjun Li

Track 3 Embedded Hardware and Architecture

A Distributed Architecture Model for Heterogeneous Multiprocessor
System-on-Chip Design…………………………….……………………………. 150

Qiang Wu, Jinian Bian, and Hongxi Xue

A New Technique for Program Code Compression in Embedded
Microprocessor…………………………………………………………………… 158

Ming-che Lai, Kui Dai, Li Shen, and Zhi-ying Wang

Design of System Area Network Interface Card Based on Intel IOP310………... 165

Xiaojun Yang, Lili Guo, Peiheng Zhang, and Ninghui Sun

Dual-Stack Return Address Predictor……………………………………………. 172

Caixia Sun and Minxuan Zhang

Electronic Reading Pen: A DSP Based Portable Device for Offline OCR and
Bi-linguistic Translation………………………..………………………………... 180

Qing Wang, Sicong Yue, Rongchun Zhao, and David Feng

Formal Co-verification for SoC Design with Colored Petri Net………..………... 188

Jinyu Zhan, Nan Sang, and Guangze Xiong

Hardware for Modular Exponentiation Suitable for Smart Cards………………... 196

Luiza de Macedo Mourelle and Nadia Nedjah

PN-based Formal Modeling and Verification for ASIP Architecture……….….... 203

Yun Zhu, Xi Li, Yu-chang Cong, and Zhi-gang Wang

The Design and Performance Analysis of Embedded Parallel Multiprocessing
System……………………………………………………….…………………… 210

Guanghui Liu, Fei Xia, Xuejun Yang, Haifang Zhou, Heng Zhao, and
Yu Deng

XIV Table of Contents

Use Dynamic Combination of Two Meta-heuristics to Do Bi-partitioning..…….. 216
Zhihui Xiong, Sikun Li, Jihua Chen, and Maojun Zhang

Track 4 Middleware for Embedded Computing

A New Approach for Predictable Hard Real-Time Transaction Processing in
Embedded Database……………………………………………………………… 222

Tianzhou Chen, Yi Lian, and Jiangwei Huang

A QoS-aware Component-Based Middleware for Pervasive Computing.……….. 229

Yuan Liao and Mingshu Li

AnyCom: A Component Framework Optimization for Pervasive Computing..... 236

Wenzhi Chen, Zhou Jiang, and Zhaohui Wu

Association Based Prefetching Algorithm in Mobile Environments…………….. 243

Ho-Sook Kim and Hwan-Seung Yong

Integration Policy in Real-Time Embedded System……………………………... 251

Hyun Chang Lee

Prism-MW Based Connector Interaction for Middleware Systems…..………….. 258

Hwa-Young Jeong and Young-Jae Song

ScudWare: A Context-Aware and Lightweight Middleware for Smart Vehicle
Space...…………………………………………………………………………… 266

Zhaohui Wu, Qing Wu, Jie Sun, Zhigang Gao, Bin Wu, and Mingde Zhao

Track 5 Mobile Systems

Application of Cooperating and Embedded Technology for Network Computer
Media Player……………………………………………………………...……… 274

Yue Gao, Bin Zhang, Xichang Zhong, and Liuying Qu

QoS Adaptive Algorithms Based on Resources Availability of Mobile
Terminals…………………………………………………………………………. 280

Yun Li and Lei Luo

Table of Contents XV

Semi-Videoconference System Using Real-Time Wireless Technologies……..... 287
Cheng Jin, Jiajun Bu, Chun Chen, Mingli Song, and Mingyu You

Smart Client Techniques for Online Game on Portable Device…………………. 294

Huacheng Ke, Haixiang Zhang, and Chun Chen

The Implementation of Mobile IP in Hopen System…………………………….. 300

Yintang Gu and Xichang Zhong

Track 6 Transducer Network

A New CGI Queueing Model Designed in Embedded Web Server………..……. 306
Xi-huang Zhang and Wen-bo Xu

A New Embedded Wireless Microcensor Network Based on Bluetooth
Scatternet and PMCN……………………………………………………..……… 312

Kangqu Zhou and Wenge Yu

A New Gradient-Based Routing Protocol in Wireless Sensor Networks………... 318

Li Xia, Xi Chen, and Xiaohong Guan

A Sensor Media Access Control Protocol Based on TDMA………...…………... 326

Xiaohua Luo, Kougen Zheng, Yunhe Pan, and Zhaohui Wu

Clusters Partition and Sensors Configuration for Target Tracking in Wireless
Sensor Networks…………………………………………………………………. 333

Yongcai Wang, Dianfei Han, Qianchuan Zhao, Xiaohong Guan, and
Dazhong Zheng

Enhanced WFQ Algorithm with (m,k)-Firm Guarantee…………………………. 339

Hongxia Yin, Zhi Wang, and Youxian Sun

Fuzzy and Real-Time Queue Management in Differentiated Services
Networks…………………………………………………………………………. 347

Mahdi Jalili-Kharaajoo, Mohammad Reza Sadri, and
Farzad Habibipour Roudsari

XVI Table of Contents

Issues of Wireless Sensor Network Management………………………………... 355
Zhigang Li, Xingshe Zhou, Shining Li, Gang Liu, and Kejun Du

OPC-based Architecture of Embedded Web Server……………………………... 362

Zhiping Jia and Xin Li

Synchronized Data Gathering in Real-Time Embedded Fiber Sensor
Network………………………………………………………………..…………. 368

Yanfei Qiu, Fangmin Li, and Ligong Xue

The Energy Cost Model of Clustering Wireless Sensor Network Architecture.… 374

Yanjun Zhang, Xiaoyun Teng, Hongyi Yu, and Hanying Hu

Traffic Control Scheme of VCNs' Gigabit Ethernet Using BP…………………... 381

Dae-Young Lee and Sang-Hyun Bae

Track 7 Embedded Operating System

A Jitter-Free Kernel for Hard Real-Time Systems..…………………………..….. 388
Christo Angelov and Jesper Berthing

A New Approach to Deadlock Avoidance in Embedded System.………….……. 395

Gang Wu, Zhiqiang Tang, and Shiliang Tu

A Novel Task Scheduling for Heterogeneous Systems...………….…………….. 400

XuePing Ren, Jian Wan, and GuangHuan Hu

Applying Component-Based Meta-service in Liquid Operating System for
Pervasive Computing…………………………………………..………………… 406

Bo Ma, Yi Zhang, and Xingguo Shi

Embedded Operating System Design: The Resolved and Intelligent Daemon
Approach……………….………………………………………………………… 412

Hai-yan Li and Xin-ming Li

Table of Contents XVII

New Approach for Device Driver Development – Devil+ Language……………. 418
Yingxi Yu, Mingyuan Zhu, and Shuoying Chen

On Generalizing Interrupt Handling into a Flexible Binding Model for Kernel
Components………………………………………………………….…………… 423

Qiming Teng, Xiangqun Chen, and Xia Zhao

Research Directions for Embedded Operating Systems…..……………………... 430

Xiangqun Chen, Xia Zhao, and Qiming Teng

SmartOSEK: A Real-Time Operating System for Automotive Electronics..……. 437

Minde Zhao, Zhaohui Wu, Guoqing Yang, Lei Wang, and Wei Chen

Track 8 Power-Aware Computing

A Functionality Based Instruction Level Software Power Estimation Model for
Embedded RISC Processors……………………………………………………… 443

Jia Chen, Sheng-yuan Wang, Yuan Dong, Gui-lan Dai, and Yang Yang

Robust and Adaptive Dynamic Power Management for Time Varying System… 449

Min Li, Xiaobo Wu, Menglian Zhao, Ping Li, and Xiaolang Yan

Skyeye: An Instruction Simulator with Energy Awareness.………….…….……. 456

Shuo Kang, Huayong Wang, Yu Chen, Xiaoge Wang, and Yiqi Dai

The Modeling for Dynamic Power Management of Embedded Systems...……… 462

Jiangwei Huang, Tianzhou Chen, Minjiao Ye, and Yi Lian

Why Simple Timeout Strategies Work Perfectly in Practice?.......................……. 468

Qi Wu and Guang-ze Xiong

Track 9 Real-Time System

An Adaptive Fault Tolerance Scheme for Applications on Real-Time
Embedded System...……………………………………………………………… 474

Hongzhou Chen, Guochang Gu, and Yizun Guo

XVIII Table of Contents

Concurrent Garbage Collection Implementation in a Standard JVM for
Real-Time Purposes……………………………………..…………..…………… 481

Yuqiang Xian, Ning Zhang, and Guangze Xiong

Relating FFTW and Split-Radix...……………………………………………….. 488

Oleg Kiselyov and Walid Taha

Selecting a Scheduling Policy for Embedded Real-Time Monitor and Control
Systems………….……………………………………………………………….. 494

Qingxu Deng, Mingsong Lv, and Ge Yu

Sharing I/O in Strongly Partitioned Real-Time Systems...………………………. 502

Ravi Shah, Yann-Hang Lee, and Daeyoung Kim

The Efficient QoS Control in Distributed Real-Time Embedded Systems………. 508

You-wei Yuan, La-mei Yan, and Qing-ping Guo

Track 10 Embedded System Verification and Testing

An Efficient Verification Method for Microprocessors Based on the Virtual
Machine………………………………………………………...………………… 514

Jianfeng An, Xiaoya Fan, Shengbing Zhang, and Danghui Wang

EFSM-based Testing Strategy for APIs Test of Embedded OS..………….……... 522

SongXia Hao, XiChang Zhong, and Yun Wang

EmGen: An Automatic Test-Program Generation Tool for Embedded IP Cores... 528

Haihua Shen, Yunji Chen, and Jing Huang

Formal Verification of a Ubiquitous Hardware Component…………….……….. 536

Lu Yan

Model Optimization Techniques in a Verification Platform for Classified
Properties…………………………………………………………………………. 542

Ming Zhu, Jinian Bian, and Weimin Wu

Table of Contents XIX

Using Model-Based Test Program Generator for Simulation Validation...……… 549
Youhui Zhang, Dongsheng Wang, Jinglei Wang, and Weimin Zheng

Track 11 Software Tools for Embedded Systems

A New WCET Estimation Algorithm Based on Instruction Cache and
Prefetching Combined Model……………………………………………………. 557

Guowei Wu and Lin Yao

A Component-Based Model Integrated Framework for Embedded Software…… 563

Wenzhi Chen, Cheng Xie, and Jiaoying Shi

A Cooperative Web Framework of Jini into OSGi-based Open Home
Gateway…………………………………………………………………………... 570

Zhang-Long Chen, Wei Liu, Shi-Liang Tu, and Wei Du

A Structure Modeling Method for Multi-task Embedded Software Design…..…. 576

Jiamei Cai, Tieming Chen, and Liying Zhu

Chaos-Model Based Framework for Embedded Software Development..………. 582

Huifeng Wu, Jing Ying, Xian Chen, Minghui Wu, and Changyun Li

Hierarchical Integration of Runtime Models..………………………………….... 589

Cheng Xie, Wenzhi Chen, Jiaoying Shi, and Lü Ye

Object-Oriented Software Loading and Upgrading Techniques for Embedded
and Distributed System…………………………………………………...……… 595

Bogus aw Cyganek

Preserving Consistency in Distributed Embedded Collaborative Editing
Systems…………………………………………………………………………… 601

Bo Jiang, Jiajun Bu, and Chun Chen

Author Index……………………………………………………….………… 607

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 1-13, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Abstraction and the C++ Machine Model

Bjarne Stroustrup

Texas A&M University
(and AT&T Labs – Research)
http://www.research.att.com/~bs

Abstract. C++ was designed to be a systems programming language and has
been used for embedded systems programming and other resource-constrained
types of programming since the earliest days. This paper will briefly discuss
how C++'s basic model of computation and data supports time and space
performance, hardware access, and predictability. If that was all we wanted, we
could write assembler or C, so I show how these basic features interact with
abstraction mechanisms (such as classes, inheritance, and templates) to control
system complexity and improve correctness while retaining the desired
predictability and performance.

Ideals and Constraints

C++ [6] [10] is used in essentially every application areas, incl. scientific calculations,
compilers, operating systems, device drivers, games, distributed systems
infrastructure, animation, telecommunications, embedded systems applications (e.g.
mars rover autonomous driving), aeronautics software, CAD/CAM systems, ordinary
business applications, graphics, e-commerce sites, and large web applications (such as
airline reservation). For a few examples of deployed applications, see
http://www.research.att/~bs/applications.html.

How does C++ support such an enormous range of applications? The basic answer
is: “by good use of hardware and effective abstraction”. The aim of this paper is to
very briefly describe C++’s basic model of the machine and how it’s abstraction
mechanisms map a user’s high-level concepts into that model without loss of time of
space efficiency. To put this in context, we must first examine the general ideals for
programming that C++ is designed to support:

• Work at the highest feasible level of abstraction
Code that is expressed directly using the concepts of the application domain (such

as band diagonal matrices, game avatar, and graphics transforms) is more easy to get
correct, more comprehensible, and therefore more maintainable than code expressed
using low-level concepts (such as bytes, pointers, data structures, and simple loops).
The use of “feasible” refers to the fact that the expressiveness of the programming
language used, the availability of tools and libraries, the quality of optimizers, the size
of available memory, the performance of computers, real-time constraints, the
background of programmers, and many other factors can limit our adherence to this
ideal. There are still applications that are best written in assembler or very-low-level

2 Bjarne Stroustrup

C++. This, however, is not the ideal. The challenge for tool builders is to make
abstraction feasible (effective, affordable, manageable, etc.) for a larger domain of
applications.

By “abstract”, I do not mean “vague” or “imprecise”. On the contrary, the ideal is
one-to-one correspondence between application concepts and precisely defined
entities in the source code:

• Represent concepts directly in code
• Represent independent concepts independently in code
• Represent relationships among concepts directly in code
• Combine concepts freely in code when (and only when) combination makes

sense
Examples of “relationships among concepts” are hierarchies (as used in object-

oriented programming) parameterized types and algorithms (as used in generic
programming).

This paper is about applying these ideas to embedded systems programming, and
especially to hard-real time and high-reliability embedded systems programming
where very low-level programming techniques traditionally have been necessary.

What’s special about embedded systems programming? Like so many answers
about programming, this question is hard to answer because there is no generally
accepted definition of “embedded systems programming”. The field ranges from tiny
controllers of individual gadgets (such as a car window opener), through stereo
amplifiers, rice cookers, and digital cameras, to huge telephone switches, and whole
airplane control systems. My comments are meant to address all but the tiniest
systems: there can be no ISO C++ on a 4-bit micro-processor, but anything larger
than that could potentially benefit from the ideals and techniques described here. The
keys from a system design view are

• The system is not just a computer
– It’s a “gadget”/system containing one or more computers

• Correctness
– “but the hardware misbehaved” is often no excuse

• Reliability requirements
– Are typically more stringent than for an “ordinary office

application”
• Resources constraints

– Most embedded systems suffer memory and/or time constraints
• Real time constraints

– Hard or soft deadlines
• No operator

– Just users of “the gadget”
• Long service life

– Often a program cannot be updates for the years of life of its gadget
• Some systems can’t be taken down for maintenance

– Either ever or for days at a time
What does C++ have to offer in this domain that is not offered by assembler and

C? In particular, what does the C++ abstraction mechanisms offer to complement the
model of the machine that C++ shares with C? For a discussion of the relationship
between C and C++, see [11].

Abstraction and the C++ Machine Model 3

Machine Model

C++ maps directly onto hardware. Its basic types (such as char, int, and double) map
directly into memory entities (such as bytes, words, and registers), most arithmetic
and logical operations provided by processors are available for those types. Pointers,
arrays, and references directly reflect the addressing hardware. There is no “abstract”,
“virtual” or mathematical model between the C++ programmer’s expressions and the
machine’s facilities. This allows relatively simple and very good code generation.
C++’s model, which with few exceptions is identical to C’s, isn’t detailed. For
example, there is nothing in C++ that portably expresses the idea of a 2nd level cache,
a memory-mapping unit, ROM, or a special purpose register. Such concepts are hard
to abstract (express in a useful and portable manner), but there is work on standard
library facilities to express even such difficult facilities (see the ROMability and
hardware interface sections of [7]). Using C++, we can get really close to the
hardware, if that’s what we want.

Let me give examples of the simple map from C++ types to memory. The point
here is not sophistication, but simplicity.

Basic arithmetic types are simply mapped into regions of memory of suitable size.
A typical implementation would map a char to a byte, an int to a word, and a double
to two words:

The exact map is chosen so as to be best for a given type of hardware. Access to

sequences of objects is dealt with as arrays, typically accessed through pointers
holding machine addresses. Often code manipulating sequences of objects deal with a
pointer to the beginning of an array and a pointer to one-beyond-the-end of an array:

The flexibility of forming such addresses by the user and by the code generators

can be important.
User-defined types are created by simple composition. Consider a simple type

Point:
class Point { int x; int y; /* … */ };
Point xy(1,2);
Point* p = new Point(1,2);

pointer:

array:

char:

 int:

double:

pointer:

4 Bjarne Stroustrup

A Point is simply the concatenation of its data members, so the size of the Point

xy is simply two times the size of an int. Only if we explicitly allocate a Point on the
free store (the heap), as done for the Point pointed to by p, do we incur memory
overhead (and allocation overhead). Similarly, basic inheritance simply involves the
concatenation of members of the base and derived classes:

class X { int b; }
class Y : public X { int d; };

Only when we add virtual functions (C++’s variant of run-time dispatch supplying

run-time polymorphism), do we need to add supporting data structures, and those are
just tables of functions:

class Shape {
public:
 virtual void draw() = 0;
 virtual Point center() const = 0;
 // …
};

Class Circle : public Shape {
 Point c;
 double radius;
public:
 void draw() { /* draw the circle */ }
 Point center() const { return c; }
 // …
};

Shape* p = new Circle(Point(1,2),3.4);

1

2

xy:

1

2

Heap
 info

 p:

b b

d

X:
Y:

Abstraction and the C++ Machine Model 5

Naturally, this simple picture leaves out a lot, but when it comes to estimating time

and space costs it’s pretty accurate: What you see is what you get. For more details
see [7]. In general, C++ implementations obey the zero-overhead principle: What you
don’t use, you don’t pay for [8]. And further: What you do use, you couldn’t hand
code any better.

Please note that not every language provide such simple mappings to hardware and
obeys these simple rules. Consider the C++ layout of an array of objects of a user-
defined type:

class complex { double re, im; /* … */ };
complex a[] = { {1,2}, {3,4} };

The likely size is 4*sizeof(double) which is likely to be 8 words. Compare this
with a more typical layout from a “pure object-oriented language” where each user-
defined object is allocated separately on the heap and accessed through a reference:

The likely size is 3*sizeof(reference)+3*sizeof(heap_overhead)+ 4*sizeof (double).

Assuming a reference to be one word and the heap overhead to be two words, we get

 Heap
 info

vptr
(1,2)
3.4

draw
center

…

Circle’s
draw()

Circle’s
center()

vtbl:

p:

1a 432

References:

Reference:

 21 43

6 Bjarne Stroustrup

a likely size of 17 words to compare to C++’s 8 words. This memory overhead comes
with a run-time overhead from allocation and indirect access to elements. That
indirect access to memory typically causes problems with cache utilization and limits
ROMability.

Myths and Limitations

It is not uncommon to encounter an attitude that “if it’s elegant, flexible, high-level,
general, readable, etc., it must be slow and complicated”. This attitude can be so
ingrained that someone rejects essentially every C++ facility not offered by C without
feeling the need for evidence. This is unfortunate because the low-level alternative
involves more work at a lower level of abstraction, more errors, and more
maintenance headaches. Bit, byte, pointer, and array fiddling should be the last resort
rather than the first choice. C++ balances costs with benefits for “advanced features”,
such as classes, inheritance, templates, free store (heap), exceptions, and the standard
library. If you need the functionality offered by these facilities, you can rarely (if
ever) provide better hand-coded alternatives. The ISO C++ standard committee’s
technical report on performance [7] is provides data and arguments for that
proposition.

Obviously, we should not use every feature of C++ for every problem. In
particular, not every feature is suitable for hard real time because their performance is
not 100% predictable (that is, we can’t state in advance exactly how much an
operation cost without knowing how it is used and the/or state of the program when it
is used). The operations with this problem are:

• Free store (new/delete): The time needed for an allocation depends on the
amount of available free memory and fragmentation can cause deterioration
of performance over time. This implies that for many systems, free store
cannot be used or can be used only at startup time (no deallocation implies
no fragmentation). Alternatives are static allocation, stack allocation, and use
of storage pools.

• RTTI (dynamic_cast/typeid): This is rarely needed in small embedded
systems, so just don’t use it for such systems. It is possible to implement
dynamic_cast to be fast and predictable [3] but current implementations
don’t implement this refinement.

• Exceptions (throw/catch): The time needed to handle an exception depends
on the distance (measured in function calls) from the throw-point to the
catch-point and the number of objects needed to be destroyed on the way.
Without suitable tools that’s very hard to predict, and such tools are not
available. Consequently, I can’t recommend exceptions for hard real time;
doing so is a research problem, which I expect to be solved within the decade.
For now, we must use more conventional error-handling strategies when
hard real time is needed, and restrict the use of exceptions to large embedded
systems with soft real time requirements.

The rest of C++ (including classes, class hierarchies, and templates) can be used
and has been used successfully for hard real time code. Naturally, this requires
understanding of the facilities and their mapping to hardware, but that’s no different

Abstraction and the C++ Machine Model 7

from other language constructs. Writing code for hard-real-time or high-reliability
systems also requires caution and a good compiler (see http://www.research.att/~bs/
compilers.html). It is worth noting that for many styles of usage, modern exception
implementations are within 5% of the performance of non-exception code – and that
non-exception code must be augmented with alternative exception-handling code
(returning error codes, explicit tests, etc.). For systems where exceptions can be used,
I consider them the preferred basis for an error-handling strategy [10].

Compilers used for embedded systems programming have switches to disable
features where they are undesirable (e.g. in a hard-real time application). Anyway,
their use is obvious from the source code.

Abstraction Mechanisms

The main abstraction mechanisms provided by C++ are classes, inheritance of classes,
and templates. Here, I’ll concentrate on templates because they are the key tool for
modern statically type-safe high-performance code. Templates are a compile-time
composition mechanism implying no runtime or space cost compared to equivalent
hand-written code. Templates allow you to parameterize classes and functions with
types and integers. If you like fancy words, they provide parametric polymorphism
complementing the ad-hoc polymorphism offered by class hierarchies. Generally,
systematic use of templates is called “generic programming” which complements the
“object-oriented programming” that you get from systematic use of class hierarchies.
Both programming paradigms rely on classes.

I will first present some simple “textbook examples” to illustrate the general
techniques and tradeoffs. After that, I’ll show some real code from a large marine
diesel engine using those same facilities to provide reliability, safety, and
performance.

Here is a slightly simplified version of the C++ standard library complex type. This
is a template class parameterized by the scalar type used:

template<class Scalar>
class complex {
 Scalar re, im;
public;
 complex() { }
 complex(Scalar x) : re(x) { }
 complex(Scalar x, Scalar y) : re(x), im(y) { }

 complex& operator+=(complex z) { re+=z.re; im+=z.im; return

*this; }
 complex& operator+=(Scalar x) { re+=x; return *this; }

 // …
};

This is a perfectly ordinary class definition, providing data members (defining the
layout of objects of the type) and function members (defining valid operations). The

8 Bjarne Stroustrup

template<class Scalar> says that complex takes a type argument (which it uses as its
scalar type). Given that definition – and nothing else – we can write

complex<double> z(1,2); // z.re=1; z.im=2;
complex<float> z2 = 3; // z2.re=3;

z += z2; // z.re=z.re+z2.re; z.im=z.im+z2.im;

The comments indicate the code generated. The point is that there is no overhead.
The operations performed are at the machine level exactly those required by the
semantics. A complex<double> is allocated as two doubles (and no more) whereas a
complex<float> is allocated as two floats. A complex<int> would make a rather
good Point type. No code or space is generated for the template class complex itself
and since we didn’t use the += operation taking a scalar argument, no code is
generated for that either. Given a decent optimizer, no code is laid down for the used
+= operation either. Instead, all the operations are inlined to give the code indicated in
the comments.

There are two versions of += to ensure optimal performance without heroic efforts

from the optimizer. For example, consider:

z+=2; // z.re+=2
z+=(2,0); // z.re+=2; z.im+=0;

A good optimizer will eliminate the redundant z.im+=0 in the second statement.

However, by providing a separate implementation for incrementing only the real part,
we don’t have to rely on the optimizer to be that clever. In this way, overloading can
be a tool for performance.

We can use the += operation to define a conventional binary +:

template<class S>
complex<S> operator+(complex<S> x, complex<S> y)
{
 complex<S> r = x; // r.re=x.re; r.im=y.im;
 r+=y; // r.re+=y.re; r.im+=y.im;
}

// define complex variables x and y
complex<double> z = x+y; // z.re=x.re+y.re; z.im=x.im+y.im;

Again the comments indicate the optimal code that existing optimizers generate for

this. Basically, the templates map to the implementation model for classes described
above to give good use of memory and inlining of simple function calls ensures good
use of that memory. By “good” I mean “optimal given a good optimizer” and
optimizers that good are not uncommon. The example above might make a simple
first test of your compiler and optimizer if you want to see whether it is suitable for an
application.

Abstraction and the C++ Machine Model 9

The performance of this code depends on inlining of function calls. It has correctly
been observed that inlining can lead to code bloat when a large function is inlined
many times (either for many different calls or for s few calls but with different
template arguments). However, that argument does not apply to small functions (such
as, the += and + defined for complex) where the actual operation is smaller and faster
than the function preamble and value return. In such cases, inlining provides
improvements in both time and space compared with ordinary functions and ordinary
function calls. In fact, a popular use of class objects and inline function is to
implement parameterization where the parameter can be a single machine instruction,
such as < [9].

Inlining a large function is usually a very bad idea. Doing so typically indicates
carelessness on behalf of the programmer or a poorly tuned optimizer.

In sharp contrast to the claim that templates cause code bloat, it so happens that
templates can be used to save code space. A C++ compiler is not allowed to generate
code for an unused template function. This implies that if a program uses only 3 of a
template class’ 7 member functions, only those three functions will occupy space in
memory. The equivalent optimization for non-template classes is not common (the
standard doesn’t require it) and extremely hard to achieve for virtual functions.

The perfect inlining of small member functions and the guarantee that no code is
generated for unused functions is the reason that function objects have become the
preferred way of parameterizing algorithms. A function object is an object of a class
with the application operator () defined to perform a required action. For example

template<class T> struct less {
 bool operator()(const T& a, const T& b) const { return a<b; }
};

This function object, less, is used by most standard library facilities that need to

perform a comparison. The result can be factors of improvement in run time
compared to parameterization with a function pointers for algorithms such as sort()
[Stroustrup, 1999].

Most uses of templates are described as “generic programming” or “template meta-
programming”. Both are based on overloading where we let the compiler pick the
right implementation based on types (and integer values). The simplest and most
familiar example is the compiler choosing the right implementation of + when we add
int, double, complex, etc. values. The compiler can pick the right function (or basic
operation) based on argument types. Similarly, the compiler will pick the right type
for an object based on template arguments.

The selection of types and operations is done at compile time and can lead to major
improvements. For example, in an embedded application the indirection through
pointers to manipulate device drivers turned out to be the bottleneck. The solution
was to replace hand-optimized low-level C with templates parameterized on the
device register addresses and object types; a 40% improvement in performance was
achieved that way. The resulting code was also much shorter and easier to maintain
[5]. Section 5 of [7] contains code illustrating such techniques; the examples there
relate to a standard interface to special-purpose registers.

It’s amazing what you can do using these techniques. One place to look for
techniques and examples is the STL (the C++ standard library’s framework for

10 Bjarne Stroustrup

containers and algorithms) [10]. Since the STL relies on free store it may not be
applicable to your particular embedded application, but the techniques are general.
For more advanced/extreme uses labeled “template metaprogramming”, see [1] and
for lots of examples see the Boost collection of libraries [2].

For generality, it is important that templates can have integer arguments. In
particular, you can do arbitrary computations at compile time; compile-time constant
folding is just the simplest example.

Code Examples

Consider briefly a problem faced by the designers of control and monitoring software
for large (100,000Hp+) marine diesel engines at MAN B&W Diesel A/S. These
engines simply can’t be allowed to fail (or a huge ship is adrift), the engine computers
must potentially work for years without maintenance, and programs must be portable
to new generations of computers (since computer generations are shorted than engine
generations) [4].

How can we compute accurately and safely? Using numbers of different
accuracies? And detect errors such as dived by zero and overflow? Fast enough for
hard-real time? (on rugged hardware based on 25MHz Motorola 68332 processors
used for electronic fuel injection). The solution chosen and now running on huge
ships on the high seas involves:

• Make a template class for fixed-point arithmetic
– Fixed point is completely portable
– Fixed point is most efficient on the relevant processors

• Use template specializations where needed
As expected and required, this solution has zero overhead in time and space.
Consider first an example of a function that performs a critical computation. I have

done nothing to this code except adjusting the indentation. I am told that it is easy to
read if you understand about the engine. Having seen far worse looking code for far
simpler problems, I have no trouble believing that:

StatusType<FixPoint16> EngineClass::InternalLoadEstimation(
 const StatusType<FixPoint16>&

UnsigRelSpeed,
 const StatusType<FixPoint16>&

FuelIndex)
{
 StatusType<FixPoint16> sl =UnsigRelSpeed*FuelIndex;

 StatusType<FixPoint16> IntLoad =
 sl*(PointSevenFive+sl*(PointFiveFour-PointTwoSeven*sl))
 -

PointZeroTwo*UnsigRelSpeed*UnsigRelSpeed*UnsigRelSpeed;

 IntLoad=IntLoad*NoFuelCylCorrFactor.Get();

Abstraction and the C++ Machine Model 11

 if (IntLoad.GetValue()<FixPoint16ZeroValue)
 IntLoad=sFIXPOINT16_0;

 return IntLoad;
}

The 16-bit fixed point type is just an ordinary class:

stuct FixPoint16 {
 FixPoint16();
 FixPoint16(double aVal);

 bool operator==(const FixPoint16& a) const { return

val==a.val; }
 bool operator!=(const FixPoint16&) const;
 bool operator>(const FixPoint16&) const;
 bool operator<(const FixPoint16&) const;
 bool operator>=(const FixPoint16&) const;
 bool operator<=(const FixPoint16&) const;

 short GetShort() const;
 float GetFloat() const;
 double GetDouble() const;
private:
 long val; // e.g. 16.16
};

The real computation (of engine status) takes place on status types (parameterized

by arithmetic types, such as FixPoint16):

template <class T>
struct StatusType {
 StatusType();
 StatusType(const StatusType&);
 StatusType(const T aVal,const unsigned long aStat);

 // Member Compound-assignment operator functions:
 StatusType& operator+=(const StatusType&);

 // Miscellaneous:
 const T& GetValue() const;

 // Access functions for status bits:
 bool isOk() const;
 bool IsValid() const;
private:
 T value;

12 Bjarne Stroustrup

 unsigned long fpStatus; // Bit codes defined by type
tagFixPoint16Status

};

This template class is designed and implemented using the techniques we saw for

complex. For its time and space performance, it relies on the same techniques and
optimizations. This implies that the techniques (and the tools that supports them) are
effective in real-world embedded systems contexts.

The low-level details of the engine and the processor are encoded in constants and

encapsulated in functions relying on such constants:

template<class T>
inline bool StatusType<T>::IsValid() const
{
 return (bool)((fpStatus & 0x0000FFFF) ==VS_VALID);
}

template <>
StatusType<long>&
 StatusType<long>::operator+=(const StatusType<long>& rhs)
{
 long sum = value + rhs.value;

 if ((value ^ sum) & (rhs.value ^ sum) & LONG_MSB) { //

overflow
 AppendToStatus(VS_OVERFLOW);
 value = (sum & LONG_MSB ? LONG_MAX : LONG_MIN);
 }
 else {
 value = sum;
 }

 AppendToStatus(rhs.GetStatus());

 return (*this);
}

The designers of this software emphasize (my translation from Danish):

• C++ is not just used as ”A better C”
– Our results far exceeded our outside consultants experience with

comparable C-based projects.
• Heavy use of object-oriented techniques

– Including class hierarchies and virtual functions
• Heavy use of generic programming and templates

– Essential to avoid code duplication

Abstraction and the C++ Machine Model 13

– Essential to achieve optimal performance
– Object-oriented and generic programming used in combination

• A good tool chain is essential
The code does not use exceptions (since it is a hard-real-time program) and free

store allocation is only used during startup where memory exhaustion and
fragmentation cannot occur.

Acknowledgements

Special thanks to Mogens Hansen and Martin O’Riorden for making their examples
available to me and educating me in some newer techniques used in performance-
critical and safety-critical embedded systems programming. Also thanks to the
members of the ISO C++ standard committee’s Performance working group who
collected the information for [7].

References

1. David Abrahams and Aleksey Gurtovoy: “C++ Template Metaprogramming: Concepts,
Tools, and Techniques from Boost and Beyond”. Addison Wesley. 2005. ISBN 0-321-
22725-5.

2. www.boost.org.
3. Michael Gibbs and Bjarne Stroustrup: “Fast Dynamic Casting”. Software-

Practice&Experience. Wiley. To appear 2005.
4. Mogens Hansen: “C++ I embedded systemer”. Elektronik 04. Odense Congress Center.

September 2004. And personal communication.
5. Martin J. O’Riordan: “C++ For Embedded Systems”. And personal communications.
6. “The C++ Standard” (ISO/IEC 14882:2002). Wiley 2003. ISBN 0 470 84674-7.
7. “Technical Report on C++ Performance”. ISO.IEC PDTR 18015.

(http://www.research.att.com/ ~bs/performanceTR.pdf).
8. Bjarne Stroustrup: “The Design and Evolution of C++”. Addison Wesley, 1994. ISBN 0-

201-54330-3.
9. Bjarne Stroustrup: “Learning standard C++ as a new language”. C/C++ Users Journal. May

1999
10. Bjarne Stroustrup: “The C++ Programming Language”. Addison Wesley. 2000. ISBN 0-

201-70073-5.
11. B. Stroustrup: “C and C++: Siblings”, “C and C++: A Case for Compatibility”, “C and

C++: Case Studies in Compatibility”. The C/C++

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 14-14, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Keynote Speech: Industrializing Software Development

Alexander Stepanov

Adobe Systems
USA

The objective of the talk is to discuss economic, organizational, and technological
aspects of software industrialization. While it is impossible to predict exactly when
the industrial revolution in software will occur, it is clear that when it happens it will
cause a dramatic redistribution of wealth and a decline of the software monopolies.

There is the economic reason why software components as an industry (predicted
in the late sixties by Doug McIlroy) never materialized: it is the emergence of the
software industry, whose very existence is based on unspecified, irregular and
extremely complex interfaces.

Organizationally, there is no division of labor, a very low level of professionalism,
and a reward system that is based on number of features, rather than on the level of
reliability, correctness, and security.

Finally, technologically we still have to learn to produce comprehensive, well-
organized catalogs of highly generic, reliable components with precise time and space
performance characteristics.

Testing Methodologies for Embedded Systems

and Systems-on-Chip

Laurence T. Yang1 and Jon Muzio2

1 Department of Computer Science, St. Francis Xavier University
P.O. Box 5000, Antigonish, B2G 2W5, NS, Canada

2 Department of Computer Science, University of Victoria
Victoria BC, V8W 3P6 Canada

Abstract. Testing of a fabricated chip is a process that applies a se-
quence of inputs to the chip and analyzes the chip’s output sequence
to ascertain whether it functions correctly. As the chip density grows to
beyond millions of gates, Embedded systems and systems-on-chip test-
ing becomes a formidable task. Vast amounts of time and money have
been invested by the industry just to ensure the high testability of prod-
ucts. On the other hand, as design complexity drastically increases, cur-
rent gate-level design and test methodology alone can no longer satisfy
stringent time-to-market requirements. The High-Level Test Synthesis
(HLTS) system, which this paper mainly focuses on, is to develop new
systematic techniques to integrate testability consideration, specially the
Built-In Self-Test (BIST) methodology, into the synthesis process. It
makes possible for an automatic synthesis tool to predict testability of
the synthesized embedded systems or chips accurately in the early stage.
It also optimizes the designs in terms of test cost as well as performance
and hardware area cost.

1 Introduction

Driven by the rapid growth of the Internet, communication technologies, perva-
sive computing, automobiles, airplanes, wireless and portable consumer electron-
ics, Embedded Systems and Systems-on-Chip (SoC) have moved from a craft to
an emerging and very promising discipline in today’s electronic industry.

Testing of a fabricated very large scale integrated embedded systems and
system-on-chip is a process that applies a sequence of inputs to the circuit and
analyzes the circuit’s output sequence to ascertain weather it functions cor-
rectly. As the chip density grows to beyond millions of gates, testing becomes
a formidable task. Vast amounts of time and money have been invested by the
semiconductor industry just to ensure the high testability of products. A number
of semiconductor companies estimate that about 7% to 10% of the total cost is
spent in single device testing [17]. This figure can rise to as high as 20% to 30% if
the cost of in-circuit testing and broad-level testing is added. However, the most
important cost can be the loss in time-to-market due to hard-to-detect faults.
Recent studies show that a six-month delay in time-to-market can cut profits

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 15–24, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

16 Laurence T. Yang and Jon Muzio

by 34% [17]. Thus, testing can pose serious problems in embedded system and
systems-on-chip designs.

Part of reason testing cost so much is the traditional separation of design
and testing. Testing is often viewed inaccurately as a process that should start
only after the design is complete. Due to this separation, the designer usually
has little appreciation of testing requirements, whereas the test engineer has
little input into the design process. In order to effectively reduce testing cost,
methods which take into account testability of the final product are needed
and are usually called Test Synthesis. This approach is motivated by the high
complexity of current design and related testing costs. The design test related
activities, such as test generation and test application, usually have a relatively
big share of the total design and test cost. In some cases, this can reach to as
high as 50% of the total cost. Thus the main idea of Test Synthesis is to improve
testability of the design during early stages which is expected to reduce the later
design testing costs.

On the other hand, as design complexity drastically increases, current gate-
level synthesis methodology alone can no longer satisfy stringent time-to-market
requirement. High-level Synthesis [2,5] which takes a behavioral specification
of a digital system and a set of design constraints as input and generates a
Register-Transfer Level (RTL) hardware implementation is hence considered as
a promising technology to boost design quality and shorten the development
cycle.

The main objective of the High-level Test Synthesis this paper focus on is
to develop new systematic techniques to integrate testability consideration into
synthesis process and make it possible for an automatic synthesis tool to predict
testability of the synthesized circuits accurately in the early stage and optimize
the designs in terms of test cost as well as performance and area cost.

2 Recent Research Summary

Due to the increasing gate-to-pin ratios which limit the feasibility of testing digi-
tal circuits externally, this paper mainly describes some recent research progress
on our work of a built-in self-test synthesis system. Its framework is depicted in
Figure 1.

2.1 Design Representation

First of all, our system takes a VHDL behavioral specification of a digital sys-
tem and a set of design constraints as input and generates a Register-Transfer
Level (RTL) hardware implementation which consists of a data path and a con-
troller. The kernel of the system is an intermediate design representation, called
Extended Timed Petri Net (ETPN), which can be used both for testability anal-
ysis and high-level synthesis [14]. In ETPN, the structural properties of the data
path and controller are explicitly captured in order to facilitate accurate analysis
of the intermediate design in term of performance, area and testability.

Testing Methodologies for Embedded Systems and Systems-on-Chip 17

Intermediate
representation measurement

Testability

Resource
Optimization

specification
VHDL

Testability
analysis

primitives

 BIST
architecture

High-level
 synthesis

 RTL implementation

with built-in DFT

Testability

transformation

improvement

1. Scan/BIST inseration
2. Partitioning

Logic synthesis

Mentor Graphics

LBISTArchitect

3. Transformations

Fig. 1. The built-in self-test synthesis system

2.2 Data Path Testability Analysis

Based on the design representation, we have developed register transfer level
data path testability metrics to evaluate various BIST configurations and make
improvement decision [23,25]. The early decision about testability improvement
gives the possibility that designs can be optimized in later synthesis processes.
The testability analysis carried out at high-level abstraction will also reduce
the computational complexity, since the complexity of a design at this level is
significantly lower.

The objective of testability metrics is to analyze and quantify BIST testa-
bility for a given register transfer level design. Basically, our BIST testability
metrics quantify two important testability aspects, namely controllability and
observability. In our approach, we mainly follow the test scheme, namely min-
imal behavioral BIST originally proposed in [10]. Both of controllability and
observability are further divided into two factors: combinational factor and se-
quential factor. The combinational factor is measured in terms of the quality of
pseudo-random values as they propagate through embedded modules and regis-
ters, and the sequential factor is used for the estimated number of steps or clock
cycle to control under test. Similarly the combinational observability is mea-
sured in terms of sensitivity of embedded modules and registers to erroneous
value propagation, i.e. in terms of how difficult it is to propagate an erroneous
value through to an observable output, and the sequential factor is used for the
estimated number of steps or clock cycle to observe under test. As a result, our
testability metric consists of, therefore, four measures:combinational controllabil-

18 Laurence T. Yang and Jon Muzio

ity (CC), sequential controllability (SC), combinational observability (CO) and
sequential observability (SO) [31] based on Markov chain model [3], and provides
a means of measuring the effect of test improvement with regards to BIST test
quality.

2.3 State Reachability Analysis

Besides the data path testability metrics, we also have developed state reachabil-
ity metrics which are used to characterize the testability of the given controller
in term of a ETPN [23,25]. It is defined by the difficulty of reaching a state from
an initial state. This measurement is associated with each state in the control
part. The state reachability consists of two measurements, namely combinational
state reachability (CSR) and sequential state reachability (SSR) [7]. The com-
binational state reachability measures the probability to reach the current state
from an initial state, and the sequential state reachability measures the number
of cycles (transitions) needed to reach the current state from the initial state.

2.4 Incremental Testability and Reachability

Due to the large computational complexity of testability and state reachability
analysis and the need to perform such analysis after each synthesis steps, we
have applied a similar systematic technique used for ATPG technique for the
present BIST technique to approximate accurately the repeated testability and
state reachability calculation and evaluation [23,25].

First of all, the global testability of a data path is based on a cost function in
[9] and is used to estimate the global testability of an entire design. Based on the
above global testability measurement, we propose a new and efficient estimation
method [23,25] which is based partially on explicit re-calculation and partially on
gradient techniques for incremental testability and state reachability to update
the test property.

2.5 BIST Partitioning

Based on the above testability measurements, we develop a new improvement
method with BIST technique at register transfer level(RTL). RTL circuits con-
sist of interconnections of registers, functional units (ALUs), multiplexors and
buses. Both conventional BIST [1] and circular BIST [15,16] are well-suited for
automatic circuit improvement at the register transfer level. Traditionally, each
ALU in a circuit is made directly testable by placing test registers to generate
test patterns at the ALU’s inputs, and the test registers to compact the responses
at the ALU’s output. However, it may not be necessary to add this many test
registers [4]. For example, suppose that the input registers to the ALU are not di-
rectly controllable, but they still can generate patterns that are random enough
to efficiently test the ALU; in this case, there is no need to replace the normal
system registers with more expensive, slower test registers. Thus, an efficient

Testing Methodologies for Embedded Systems and Systems-on-Chip 19

partitioning technique, which decide either which registers should be configured
as test registers (conventional BIST) or which registers should be linked in the
circular scan path (circular BIST), is necessary.

Partitioning for a design can lead to the simplifications of many design pro-
cedures such as synthesis and test. Partitioning for testability will lead to the
simplification of test efforts and the ability to apply different test strategies to
different partitions. The proposed partitioning technique in the paper [23,25]
transforms some hard-to-test registers and/or lines to boundary components.
These components act as normal registers and/or lines in the normal mode and
serve as partitioning boundaries in test mode or test registers. Therefore, a de-
sign is partitioned into several sub-circuits and each of them can be tested and
controlled based on BIST test schemes. It is, therefore, possible to apply differ-
ent test strategies, such as scan for deterministic and BIST for random test to
different partitions.

The circuit partitioning problem can, in general, be formulated as a graph
partitioning problem. Given a graph with nodes and arcs, the objective is to
partition the nodes into several subsets, such that the total costs of the arcs be-
tween nodes in different partitions is minimized. Optimal partitioning is known
to be NP-complete [6]. In our research work, we present an efficient and eco-
nomic BIST partitioning approach [23,25]. It is based on a BIST testability
analysis algorithm with an incremental testability analysis approach for data
path and a state reachability analysis algorithm with its incremental analysis
approach for control path at register-transfer level. Initially we use the testa-
bility algorithm for data path and state reachability algorithm for control part
to find partitioning boundaries. Then the partitioning procedure is performed
quantitatively by a clustering algorithm which clusters directly interconnected
components excluding boundary components based on the global testability of
data path and global state reachability analysis of control part. After each se-
lection step, we use the proposed new and efficient estimation method which is
based partially on explicit re-calculation and partially on gradient techniques
for incremental testability and state reachability to update the test property.
This process will be iterated until the design is partitioned into several disjoint
sub-circuits and each of them can be tested independently. Therefore, the design
is fully self-testable.

2.6 Resource Optimization

Applying BIST techniques for resource optimization before going to RTL imple-
mentation or performing high-level synthesis involves modification of the hard-
ware on the chip so that the chip has the capability to test itself. Table 1 in
[20] shows different types of test registers that can be used. Concurrent built-
in logic observation (CBILBO) and built-in logic observation (BILBO) registers
can both generate test pattern and compress test response, and ensure high
fault-coverage. BILBO registers need more test sessions while CBILBO registers
require more hardware area. Note that a test register usually has larger hardware
area than a normal register (see Table 1 in [20] where ω is the area scaling factor

20 Laurence T. Yang and Jon Muzio

over normal register). For example, CBILBOs have an area approximation twice
that of the normal registers. One of the main considerations for BIST resource
optimization is, therefore, the extra area for the test circuitry. Here we would
like to describe an optimal modification approach [21] based on Integer Linear
Programming formulation [11] to find BIST embeddings in the data path pre-
pared for the synthesis algorithm or before going to RTL implementation such
that the cost of modification is minimum.

2.7 Data Path Allocation

It has been shown that MISR registers can also be used to generate pseudo-
random test patterns [8,18]. This results in both reduction of testing times and
reduction of extra registers which reduces hardware area. However, since the ac-
tual time required for a MISR register to obtain exhaustive pattern coverage is
exponential with respect to the number of bits in the register, as shown in [20],
the test quality might be reduced. How to reduce this area overhead without
sacrificing the test quality is one of the major concern of our research work.

Considering testability issues at high-level synthesis can lead to a more ef-
ficient exploration of the design space, thus resulting in a digital circuit that
requires minimal BIST area overhead and has high test concurrency while guar-
anteeing the test quality.

The fact that the contents of signature registers (MISR) can be used as
test patterns leads to the following advantages. First, the algorithm produces
designs with high test concurrency which reduces the overall testing time due
to increased testing parallelism. Moreover, the number of extra registers for
implementing BIST can be reduced. However, since the actual time required for
a MISR register to obtain exhaustive pattern coverage is exponential with respect
to the number of bits in the register, we consider such template as incompletely
embedded module. We describe a high-level data path allocation algorithm in
[20] which generates highly testable data path designs while maximizing the
sharing of modules and test registers. Module allocation is guided by a testability
balance principle where incompletely embedded modules can be mapped into the
same function module that is completely embedded. In this way, the incompletely
embedded module after allocation will be fully testable. The register allocation
is mainly based on the sharing degrees of registers which reflects the number
of modules for which the register can be configured as RTPG and the number
of modules for which it can be configured as a MISR. Using this measure the
register allocation is guided by choosing mergers that result in large increases
in the sharing degrees of registers over those resulting in smaller increases. This
would result in registers with high sharing degrees, thereby requiring a smaller
number of BIST registers globally in the design.

However, the approach still has some drawbacks, for example, if an incom-
pletely embedded module can not find a match to be merged with a completely
embedded module during the iterative allocation algorithm. It probably will not
become fully testable. If there are several such modules un-mapped in the design,
the resulting testing quality will be not satisfactory. This motivates us to make

Testing Methodologies for Embedded Systems and Systems-on-Chip 21

use of two types of redundant transformations introduced in [11,12,13], which
add redundancy that improves test resources to be shared in the data path with-
out affecting the scheduling step (latency) and functional resource requirement
of the behavior, to improve our data path allocation algorithm and to make all
incompletely embedded modules become fully testable [27].

2.8 Integrated Synthesis Algorithm

After our system takes a VHDL behavioral specification of a digital system
and a set of design constraints as input, the design representation is always
unscheduled. Therefore, we need to consider not only operation scheduling but
also data path allocation.

In our research work, we describe a high-level test synthesis algorithm for
operation scheduling and data path allocation [24]. It generates highly testable
data path designs while maximizing the sharing of test registers, which means
that only a small number of registers is modified for BIST. The algorithm pro-
duces also designs with high test concurrency, thereby decreasing test time. The
algorithm is motivated by that if the contents of signature registers can be used
as test patterns, the overall testing time can be reduced due to increased test-
ing parallelism, moreover, the number of extra registers for implementing BIST
can be reduced. In our approach, module allocation is guided by a testability
balance principle where incompletely embedded modules can be mapped into the
same function module that is completely embedded. In this way, the incompletely
embedded module after allocation will be fully testable. The register allocation
is guided by an incremental sharing measurement which chooses merges that
result in large increases in the sharing degrees of registers. When two modules
are merged, the operations executed on these modules must be scheduled in
different control steps so that they can share the same component. Similar for
registers, the variables stored in these registers must be disjoint. We will present
the rescheduling transformation which is performed by a merge-sort algorithm.
These transformations change locally the execution orders of some operations in
the current schedule in order to improve the testability and satisfy the schedul-
ing constraints imposed by the merger. Contrary to other works in which the
scheduling and allocation tasks are performed independently, our approach inte-
grates scheduling and allocation by performing them simultaneously so that the
effects of scheduling and allocation on testability are exploited more effectively.

In [22], we also introduce some concepts and techniques to improve our pre-
vious work [24] during the operation scheduling part, specially to determine the
execution order of different operations when rescheduling transformations are
performed.

However, the above described integrated approach still has some drawbacks,
for example, during the module allocation, if an incompletely embedded module
can not find a match to be merged with a completely embedded module during the
iterative allocation algorithm. It probably will not become fully testable. If there
are several such modules un-mapped in the design, the resulting testing quality
will be not satisfactory. Similarly if a pair of operation in the same scheduling

22 Laurence T. Yang and Jon Muzio

step to be merged based on the allocation balance principle is decided, we have
to introduce dummy places which have negative impacts or increase the control
steps leading to longer execution time or slow performance. This motivates us
to make use of two types of redundant transformations introduced in [11,13],
which add redundancy that improves test resources to be shared in the data
path without affecting the scheduling step (latency) and functional resource
requirement of the behavior, to improve our data path allocation algorithm and
to make all incompletely embedded modules become fully testable [28]. Also this
can avoid the increase of scheduling steps because one of the operations can be
merged with the introduced redundant operations at different scheduling steps.
In [28] we have demonstrated the advantage of the approach by introducing the
redundant transformations for operation scheduling and data path allocation.

2.9 Testability Metrics-Based Synthesis

In [19], we also present a different BIST synthesis methodology, namely a BIST
testability metrics-based algorithm for operation scheduling and data path al-
location. It is based on the BIST data path testability analysis algorithm at
register-transfer level described in previous subsections. In the approach, mod-
ule and register allocation are guided by a testability balance technique. In our
approach, the selection of nodes to be merged is based on the testability measures
generated by the testability analysis algorithm. The main goal is to generate a
data path with good controllability and observability for all the nodes and with
as few loops as possible. The basic idea is to fold nodes with good controllability
and bad observability to nodes with good observability and bad controllability.
Note that the controllability of a node is defined as the best controllability of
any of its input lines. While the observability of a node is the best observability
of any of its output lines. In this way, the new node will inherit the good con-
trollability from one of the old nodes and the good observability from the other.
The synthesis algorithm introduces scheduling constraints imposed by data path
allocation and performs scheduling and allocation simultaneously in an iterative
fashion so that their effects on testability are exploited more effectively.

With the help of an incremental BIST testability analysis and a state reacha-
bility analysis with its incremental approach for control path at register-transfer
level, we mainly make use of some concepts and techniques to improve the above
work [19] not only during the data path synthesis part, but also during the op-
eration scheduling part [26].

Similarly redundant transformations have been introduced [29]. We add re-
dundancy that improves test resources to be shared in the data path without
affecting the scheduling step (latency) and functional resource requirement of the
behavior, to improve our data path allocation algorithm and to make all mod-
ules become fully testable. Also this can avoid the increase of scheduling steps
because one of the operations can be merged with the introduced redundant
operations at different scheduling steps [30].

Testing Methodologies for Embedded Systems and Systems-on-Chip 23

References

1. V. D. Agrawal, C. R. Kime, and K. K. Saluja. A tutotial on Build-in Self-test,
part 1: principles. IEEE Design and Test of Computers, March 1993.

2. R. Camposano and W. H. Wolf. High-Level VLSI Synthesis. Kluwer Academic
Publishers, 1991.

3. J. Carletta and C. A. Papachristou. Testability analysis and insertion for RTL
circuits based on pseudorandom BIST. In Proceedings of International Conference
on Computer Design, 1995.

4. S. Chiu and C. A. Papachristou. A design for testability scheme with applications
to data path synthesis. In Proceedings of Design Automation Conference, pages
271–277, June 1991.

5. D. D. Gajski, N. D. Dutt, A. C-H. Wu, and Steve Y-L. Lin. High-Level Synthesis:
Introduction to Chip and System Design. Kluwer Academic Publishers, 1992.

6. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Co., San Francisco, 1979.

7. X. Gu, E. Larsson, K. Kuchcinski, and Z. Peng. A controller testability and en-
hancement technique. In Proceedings of European Design and Test Conference,
pages 153–157, Paris, France, March 1997.

8. K. Kim, D. S. Ha, and J. G. Tront. On using signature registers as pseudorandom
pattern generators in built-in self-testing. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 7(8):919–928, August 1988.

9. R. Lisanke, F. Braglez, A. J. Degues, and D. Gregory. Testability-driven ran-
dom test pattern generation. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 6:1082–1087, 1987.

10. C. A. Papachristou and J. Carletta. Test synthesis in the behavioral domain. In
Proceedings of International Test Conference, October 1995.

11. I. Parulkar. Optimization of BIST resource during high-level synthesis. PhD thesis,
University of South California, May 1998.

12. I. Parulkar, S. Gupta, and M. Breuer. Introducing redundant computations in
a behavior for reducing BIST resources. In Proceedings of the 35th ACM/IEEE
Design Automation Conference (DAC-98), pages 548–553, San Francisco, USA,
June 15-18, 1998.

13. I. Parulkar, S. Gupta, and M. Breuer. Introducing redundant computations in RTL
data paths for reducing BIST resources. ACM Transactions on Design Automation
of Electronic Systems, 6(3):423–445, 2001.

14. Z. Peng and K. Kuchcinski. Automated transformation of algorithms into register-
transfer level implementations. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pages 150–166, 1994.

15. S. Pilarski, A. Krasniewski, and T. Kameda. Estimating testing effectiveness of the
circular self-test path technique. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 11(10):1301–1316, October 1992.

16. M. M. Pradhan, E. J. Brrien, S. L. Lam, and J. Beausang. Circular BIST with par-
tial scan. In Proceedings of International Test Conference, pages 719–729, October
1988.

17. L. Rosqvist. Application Specification Integrated Circuit (ASIC) Technology, chap-
ter 8, Test and testability of ASICs. Academic Press, San Diego, California, 1991.

18. L. T. Wang and E. J. McCluskey. Built-in self-test for sequential machines. In
Proceedings of International Test Conference, pages 334–341, 1987.

24 Laurence T. Yang and Jon Muzio

19. L. T. Yang and J. Muzio. A BIST testability metric-based algorithm to integrate
scheduling and allocation in high-level test synthesis. In Proceedings of the 9th
International Symposium on Integrated Circuits, Devices and Systems (ISIC-01),
pages 409–413, Singapore, September 3-5, 2001.

20. L. T. Yang and J. Muzio. Built-in self-testable data path synthesis. In Smailagic A.
and De Man H., editors, Proceedings of the 2001 IEEE Computer Society Workshop
on VLSI (WVLSI-01), pages 78–84, Orlando, Florida, April 19-20, 2001.

21. L. T. Yang and J. Muzio. High-level data path synthesis for built-in self-testable
designs. In Proceedings of the IEEE Pacific Rim Conference on Communication,
Computers and Signal Processing (PARCIM-01), volume 1, pages 279–282, Victo-
ria, Canada, August 26-28, 2001.

22. L. T. Yang and J. Muzio. An improved high-level built-in self-test synthesis al-
gorithm. In Proceedings of the 8th IEEE International Conference on Electron-
ics, Circuits and Systems (ICECS-01), volume 1, pages 549–552, Msida, Malta,
September 2-5, 2001.

23. L. T. Yang and J. Muzio. An improved register transfer level built-in self-test
partitioning. In Proceedings of the 9th International Symposium on Integrated
Circuits, Devices and Systems (ISIC-01), pages 414–417, Singapore, September
3-5, 2001.

24. L. T. Yang and J. Muzio. An integrated high-level test synthesis algorithm for
built-in self-testable designs. In Proceedings of the XIV International Symposium
on Integrated Circuits and System Designs (SBCCI-01), pages 115–121, Brasilia,
Brazil, September 10-15, 2001.

25. L. T. Yang and J. Muzio. A register-transfer level BIST partitioning approach
for ASIC designs. In Proceedings of the 2001 IEEE Pacific Rim Conference on
Communication, Computers and Signal Processing (PARCIM-01), volume 1, pages
275–278, Victoria, Canada, August 26-28, 2001.

26. L. T. Yang and J. Muzio. An improved BIST testability metric-based high-level
test synthesis approach. In Proceedings of the 2002 International Conference on
VLSI (VLSI-02), pages 78–85, Las Vegas, USA, June 24-27, 2002.

27. L. T. Yang and J. Muzio. Introducing redundant transformations for built-in
self-testable data path allocation. In Proceedings of the 2002 IEEE International
Conference on Communications, Circuits and Systems (ICCCAS-02), volume 2,
pages 1346–1350, Chengdu, China, June 29-July 1, 2002.

28. L. T. Yang and J. Muzio. Introducing redundant transformations for high-level
built-in self-testable synthesis. In Proceedings of the 9th IEEE International Con-
ference on Electronics, Circuits and Systems (ICECS-02), volume 2, pages 475–479,
Dubrovnik, Croatia, September 15-18, 2002.

29. L. T. Yang and J. Muzio. Redundant transformations for the testability metrics-
based built-in self-testable data path allocation. In Proceedings of the 2002 IEEE
Asia-Pacific Conference on Circuits and Systems (APCCAS-02), volume 2, pages
119–123, Bali, Indonesia, October 28-31, 2002.

30. L. T. Yang and J. Muzio. Redundant transformations for the testability metrics-
based high-level built-in self-testable synthesis. In Proceedings of the XVII In-
ternational Conference on Design of Circuits and Integrated Systems (DCIS-02),
Santander, Spain, November 19-22, 2002.

31. T. Yang and Z. Peng. Register-transfer level testability analysis and improvement
with pseudorandom BIST. In Proceedings of the 1st IEEE International Workshop
on Design, Test and Application (WDTA-98), pages 117–120, Dubrovnik, Croatia,
June 8-10, 1998.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 25-29, 2005.
 Springer-Verlag Berlin Heidelberg 2005

China Putian Promote Commercial TD-SCDMA Services

Qingfang Chen

CHINA PUTIAN Institute of Technology
The 2nd Street, Shangdi Information Industry Base Haidian District, Beijing, 100085 China

cqf@rd.china-putian.com

Abstract. TD-SCDMA is a 3G standard and its IPRs are owned by China
which eventually will be one of the world’s major Third Generation (3G)
mobile markets. As the largest telecom manufacturer in China, China Putian
has played an important role in the research and development of domestic TD-
SCDMA sector. The industrialization of TD-SCDMA is driving along a fast
lane, China Putian and TD-SCDMA Industry Alliance will try our best to make
TD-SCDMA be one successful commercial system as planned.

China Putian Profile

China added 55.08 million mobile phone users in the first 10 months of this year,
bringing the total number of subscribers to 325.03 million by the end of October.
Eventually China will be one of the world’s major Third Generation (3G) mobile
markets and this is an great opportunity for all telecom manufacturers.

As we know, China Putian is the largest telecom manufacturer in China with 7
wholly-owned manufacturing facilities, 28 subsidiaries, 50 joint ventures and 40
alliances. The company was founded in 1980. It is a key enterprise directly under the
leadership of the State-owned Assets Supervision and Administration Commission of
the State Council (SASAC). Its available communication equipment and terminal
products mainly include: mobile communication network equipments and handsets,
optical transmission equipment, microwave communication equipment, videophones
and IC card payphones, PHS handsets, etc.

Headquartered in Beijing, China Putian employs 50,000 people and has revenues
of 64 billion RMB ($US 7.8B) for 2003.

China Putian ranked consecutively No. 1 among Top 100 Chinese Electronic &
Information Enterprises in 2001 and 2002. In 2003, China Putian ranks No. 1 among
the overall listing of China's largest enterprise groups in the manufacture sector of
electronic and communication equipment. It ranks No. 5 both in the listing of the 500
largest import & export enterprises and in the listing of the 200 largest export
enterprises.

China Putian Institute of Technology is funded directly by China Putian
Corporation in 2002, with focus on the R&D works and the all-around management
for new technologies and new products.

26 Qingfang Chen

China Putian has been a front-runner in the development and commercialization
of TD-SCDMA technology and products. China Putian has a directorship in and is the
incumbent chairman by rotation in China’s TD-SCDMA Industry Alliance.

Introduction of TD-SCDMA

TD-SCDMA, or "Time Division Synchronous Code Division Multiple Access," is
China‘s contribution to the ITU‘s IMT-2000 specification for 3G wireless mobile
services. The dominant IPR holder behind the TD-SCDMA standard is Datang.

As one of three popular 3G standards, when TD-SCDMA is designed, the
compatibility is considered, besides the advanced smart antenna, joint detection and
synchronous CDMA techniques are adopted; the network structure is kept the same as
3GPP. So its outstanding advantages are shown in large system capacity, high
spectrum efficiency, high ability to mitigate interference and low cost, flexibility and
applicability; the core network can be shared with other systems, for example
WCDMA. It can construct a network independently or construct a network with other
mobile networks.

According to China‘s 3G planning, TD-SCDMA technology shall achieve
commercialization by June of 2005. Assuming a theoretical commercial launch of all
three 3G technologies by the end of next year, TD-SCDMA could account for 15% of
the 3G market.

Fig. 1. Dr. Tao Xiongqiang - Chairman of the TD-SCDMA Industry Alliance

The TD-SCDMA standard is promoted by the TD-SCDMA Forum, an industry
group founded in late 2002, the target of TD-SCDMA Forum is to promote the
industrialization, commercialization and internationalization of TD-SCDMA. Now Dr.
Tao Xiongqiang is chairman of the TD-SCDMA Industry Alliance, and he is Vice
President of China Putian Corporation and President of the China Putian Institute of
Technology.

China Putian Promote Commercial TD-SCDMA Services 27

TD-SCDMA has got strong supports from Chinese government. Simulative 3G-
launch Project has been started by CATT of MII which is supported by government
with a investment of RMB 1986 millions Yuans. It also is used for TD-SCDMA R&D
and industrialization.

Vice- Chairman Mr. Zeng Qinghong, Primer Mr. Wen Jiabao, vice-Premier Mr.
Huang Ju, Commissary of State Ms. Chen Zhili, Pre vice-Chairman of NPC Standing
Committee Mr. Zou Jiahua and Mister of MII Mr. Wang Xudong visited TD-SCDMA
booth in “PT/EXPO COMM CHINA 2004” exhibition on Oct. 27th. 2004. National
leaders give a positive evaluation to TD-SCDMA fast development.

Fig. 2. Strong supports from Chinese government

The past year has seen a rapid development of the TD-SCDMA value chain, but in

China‘s 3G planning, TD-SCDMA technology shall achieve commercialization by
June of 2005. So the coming months will mark a crucial period for TD-SCDMA and
will decided whether the standard achieves success.
The industrial chain for the TD-SCDMA standard has already been formed including
system networks, chips and handsets. Telecom equipment providers such as China
Putian, Datang Mobile, ZTE Corporation and Huawei Technologies are able to
construct the TD-SCDMA networks. Many members of the alliance are working on
chipsets such as T3G, Commit, Chongqing Chongyou Information Technology Co Ltd
(CCIT), and Spreadtrum. More and more handset makers are manufacturing handsets
supporting TD-SCDMA system, such as China Putian, Lenovo, Huawei, Amoi,
DBTEL and Quanta.

Test network for TD-SCDMA is to be jointly constructed by four manufacturers:
China Putian, ZTE, Datang and Nortel Networks. China Putian will work with Nortel
to build a network for TD-SCDMAMTNET, a core net for the TD-SCDMA
technology, in Beijing. Datang will join forces with ZTE to build a similar net in
Shanghai.

28 Qingfang Chen

China Putian’s TD-SCDMA Strategy and Progess

As the chairman in China’s TD-SCDMA Industry Alliance, China Putian has put
heavily investment and efforts in R&D for TD-SCDMA. The R&D team of China
Putian comes from China Putian Institute of Technology, which now has more than
300 full time TD-SCDMA R&D engineers.

China Putian will provide end-to-end TD-SCDMA solution: system (own UTRAN,
cooperation with Nortel on core network), chipset (cooperation with COMMIT),
terminal (cooperation with Bird), network planning and mobile applications. During
“PT/EXPO COMM CHINA 2004”, China Putian exhibits our TD-SCDMA solution.
In 2005, China Putian will provide pre-commercial products that can be used in field
trials in Beijing with China Telecom and China Satcom.

Fig. 3. Infrastructure of TD-SCDMA Total Solution

About TD-SCDMA terminal, Bird has involved in TD-SCDMA terminal activities.

Totaling 230 million RMB in capital investment, COMMIT is funded by China Putian
and other five globally acknowledged companies, and is developing a complete TD-
SCDMA terminal chipset solution which includes: Digital Base Band (DBB),
Analogue Base Band (ABB), Radio Frequency (RF), and SW protocol stack.
COMMIT’s TD-SCDMA terminal chipset will be launched at the end of this year.

And China Putian involved in developing two important national terminal
technology standards: China Mobile Storage Standard(CMSS), Mobile Multimedia
Technology Alliance(MMTA) and China Mobile Software Alliance Operating System
API Standard.

China Putian Promote Commercial TD-SCDMA Services 29

Fig. 4. China Mobile Storage Standard

Conclusion

2004 is the most important year in TD-SCDMA developing history. In this year, TD-
SCDMA industrialization has made great progress. Government officers, experts and
carriers give a high evaluation to TD-SCDMA progress with one voice. The
industrialization of TD-SCDMA is driving along a fast lane, China Putian and TD-
SCDMA Industry Alliance will try our best to make TD-SCDMA be one successful
commercial system as planned.

Agent-Oriented Approach to Ubiquitous

Computing

Makoto Amamiya

Faculty of Information Science and Electrical Engineering
Kyushu University

Kasuga, Fukuoka, Japan 816-8580
amamiya@is.kyushu-u.ac.jp

Abstract. With today’s developments in device miniaturization, wire-
less networking, such as PCs, PDAs, Cell phones, RFID tags and so on,
we are facing great opportunities and challenges to realize the ubiquitous
computing vision. In this paper, we first identify the key characteris-
tics of ubiquitous computing systems; then argue that agents and agent
networks are the right metaphor for managing the dynamism and com-
plexity of system integration and on demand interactions in ubiquitous
computing systems.

1 Introduction

As the 20th century turned into the 21st century, hardware technologies are
further advanced by device miniaturization, wireless networking, mobile devices
and many others. With this background, the new challenges for software tech-
nologies are the realization and exploitation of the ubiquitous computing vision
of “the network and computer are everywhere,” which is beyond the scope of
Web technologies.

The drawback of Web technologies is that they are typically described in
terms of protocols on top of the TCP/IP stack. Some well-known examples in-
clude World Wide Web (HTTP), electronic mail (SMTP), file transfer (FTP),
virtual terminal (TELNET), etc. Thus different applications use different pro-
tocols and interoperability between them is hard, if not impossible. Even worse,
those tailor-made protocols are hard to be enhanced or replaced because they
require worldwide changing of independently written implementations. Defin-
ing protocols and testing their compatibility on different system platforms are
no longer rational and feasible for ubiquitous computing systems in which on-
demand integration and interactions are involved all the time.

Our solution lies in the development of a global computing architecture based
on agent-oriented programming paradigm. Rather than developing applications
directly in terms of protocols, agents are basic building blocks from which di-
verse application systems can be abstracted, organized and constructed. This
paradigm, compared with more traditional approaches, can be best character-
ized by autonomous software agents, agent organizations and agent interactions.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 30–37, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Agent-Oriented Approach to Ubiquitous Computing 31

Through our work, we concentrate on enabling technologies for building a scal-
able, flexible and secure agent networks that provides us with a convenient pro-
gramming model, sufficient transparency and interoperability.

The argument presented in this paper examines the new challenges in ubiq-
uitous computing, and concentrates on the approaches we take to formalize the
agent-based global software infrastructure.

2 New Challenges

We base our analysis of ubiquitous computing, or ubicomp, on common scenarios
that Mark Weiser [1] and others presented [2,3,4,5] as the followings:

Specialized elements of hardware and software artifacts — connected by wired
or wireless networks — interact to support human-centered activity seamlessly.

The underlying challenges of ubiquitous computing software, therefore come
in seven parts [6]:

– integration: Due to the inherent openness, components of ubicomp systems
changes constantly and it is thus impossible to have prior knowledge of
their ultimate size. They should be dynamically configured and integrated
on demand.

– self-adaptation: Some computing contexts of ubicomp vary physically — such
as device characteristics, resources and access methods [7]. Others vary log-
ically — such as personal preferences, current session state, and history of
interactions. This requires the capability of supporting self-adaptation.

– discovery: When a component enters an environment, mutual discovery takes
place between it and other available services and devices, and find out to
whom the interaction is appropriate.

– location-aware: Ubicomp systems are usually divided into environments with
boundaries, which often, but not necessarily, specified by their physical lo-
cation, such as homes, offices, or museums.

– interaction: In a ubiquitous system, components must spontaneously interact
with each other to make their resources and services accessible in changing
environments because they all vary unpredictably from moment to moment.

– robustness: Compared to wired distributed systems, ubiquitous systems are
supposed to face much more transient failures, especially those in wireless
networking. When failure is a common case, system designers should clearly
indicate which operations are failure-free or failure-prone.

– security: Security is so critical in open environments that no one can ignore
it. Our experiences also confirm that security issues, such as the protection of
components’ resources and privacy, trust and authentication, system avail-
ability, data confidentiality, and data integrity, should be carefully considered
at the stage of design.

32 Makoto Amamiya

3 Agent-Based Approach

Nowadays, software agent (or agent for short) has been advocated by many
researchers and software developers as a promising and innovative way to model,
design and implement complex distributed systems [8,9]. The key notion behind
this new paradigm is a self-directed behavioral structure [10]. In effect, it is a new
programming tool that emphasizes the idea of interaction, as well as the idea of
choice and options at the time of action, rather than at the time of programming.

On analogy with object-based concurrent programming (OBCP), our ap-
proach is based on agent-based concurrent programming (ABCP). Basically, agent-
based systems are more difficult to correctly design and implement than other
non-agent systems. This is mainly because agents are computational entities
that perceive their environment through sensors and act upon their environ-
ment through efforts. In this diagram, three aspects of an agent are identified.

– An agent has to have a repertoire of possible actions available to it which
constitute its ability to modify its environments.

– An agent has to have some interaction with the world around it and get
feedback about its choice, whether it is successful or not. Interaction can
take place indirectly through the environment (e.g., by carrying out an ac-
tion that modifies the environmental state) or directly (e.g., by exchanging
information with other agents) through a shared language.

– An agent has to have a continuous operating engine that persistently strives
for success without any need to account at the outset for all possible con-
ditions it will face or in what order it will face them. What programmers
provide to an agent is a goal or a utility function and a collection of building
blocks for getting there and, in some advanced cases, even a way to learn
something new that is needed.

3.1 Layered Architecture

In an instance of the idea that “the network and computer are everywhere,” agent
technology emphasizes the ability to reach out, discover and interact with others.

Table 1. Examples of logic at each layer

problem solving
application choice and options

self-learning

interaction pattern
social relationship

agent name addressing (agent world)
security policy (agent world)

agent name resolution (network world)
agent message deliver

network quality of service management
network security (network world)

Agent-Oriented Approach to Ubiquitous Computing 33

Such an emphasis raises a number of challenging issues that all are centered
around an elementary question of what, when and how to interact with whom.

Through our work on the KODAMA (Kyushu University Open & Distributed
Autonomous MultiAgent) project [11], we have established a separation principle
that mandates the separation of application-level logic from agent-level logic and
the separation of agent-level logic from network-level logic. Some examples of
logic at different layers are given in Table 1.

In accordance with the separation principle, a layered architecture has been
adopted. This layered architecture makes higher-level (i.e. application-level and
agent-level) logic to deal with the problem of what, when and with whom to
interact, while low-level (i.e. network-level) logic concentrates on the problem of
how to interact.

By detaching data exchange activities from agent programmes, it is possible
to build generic agent communication facilities in the network layer. This helps
improve productivity in several ways.

– First, agent programmers can focus on higher-level abstractions only, and
leave the low-level details of communication to network layer programmers.
They do not need to write special software to move data between each pos-
sible pair of agents.

– Second, agent development is not restricted to a particular architecture,
thus keeping the entire system flexible. Agents, for example, can remain
unchanged while the network layer are reconfigured or updated and vice
versa.

– Third, low-level logic handles agent communication traffic without under-
standing the applications that use it. The specification of the network layer
can be publicly available and it accommodates a wide variety of underlying
hardware, communication technologies and contents of agent communica-
tion.

It is important to note that both agent-layer logic and network-layer logic are
application independent. The main purpose of having these two levels, therefore,
is to integrate a set of common distribution services that forms a uniform de-
veloping platform upon which various applications can be efficiently built with
inherent support of cooperation.

Furthermore, a plug-and-play standard has been deployed to separate the
application-level logic from the agent-level logic within an agent. More precisely,
an agent is made up of a kernel unit, which encapsulates the common modules,
and an application unit, which encapsulates the application-dependent modules
[11]. In this way, the implementation aspects of data sharing, exchange and
management among agents are made transparent to application programmers.

On the other hand, the wired or wireless network itself is full of latencies,
congestion, overload and unforeseen failure. In the layered architecture, there
is a specific layer, we call it agent communication infrastructure (or agent in-
frastructure for short), on which agents running in different physical spaces can

34 Makoto Amamiya

Table 2. Layered architecture

level layer

application agent application unit

agent agent kernel unit

agent infrastructure (middleware)
network networking

Table 3. Agent/Infrastructure interface (registration and de-registration)

method time parameter return value

creation, agent logical name message queue
register

immigration (in agent layer) false

deletion,
remove

emigration
agent logical name void

communicate with each other easily, freely and without concern about the inter-
connection issues. Actually, this is another separation between agent-level logic
and network-level logic.

In sum, from the highest layer to the lowest level, the layered architecture
consists of agent application unit layer, agent kernel unit layer, agent infrastruc-
ture layer and networking layer. The relations between the separation principle
and the layered architecture are summarized in Table 2.

3.2 Agent Layer

The agent layer stays on the top, which can be further divided into application
unit sub-layer and kernel unit sub-layer. Typically, all agents speak one or more
languages called agent communication language (ACL). ACL itself only spec-
ifies the format, or syntax, of the information being transfered. The meaning,
or semantics of the information on the other hand, is specified by application
logic. Such considerations are also reflected in our plug-and-play architecture
of agents. That is, the basic support of ACL, such as message validating and
message parsing is integrated into the kernel unit. On the other hand, message
contents and message interpretation are open to different application units. As a
consequence, once the kernel unit is finished, it can be used by all agents, whereas
various application units need to be developed to meet the exact requirements
of various applications.

Table 4. Agent/Infrastructure interface (agent message delivery)

method time parameter return value

put send message agent message void

get receive message void agent message

Agent-Oriented Approach to Ubiquitous Computing 35

However, agent interaction is more complex than interactions in conventional
models, such as client-server or publish-subscribe. This is because data is trans-
mitted among agents (sometimes users), regardless of whether a prior relation-
ship exists. At the time of design, for example, nobody knows how many agents
will be created, where agents will reside, or what agents will do. Rather, in a
practical, worldwide, distributed agent-based system, interaction may occur at
unpredictable times, for unpredictable reasons, between unpredictable compo-
nents [12].

To support the scenario of agent communication, all agents are usually logi-
cally organized and located into various agent communities, which in turn may
be linked together to form a unified agent society. As a consequence, an agent
system can be divided into a number of top-level communities and each one
may cover many agents or be partitioned into sub-communities. In this way, any
agent can be uniquely located and named by giving its community position. It
is also possible for agents to join two or more communities concurrently, so that
they can be found in different communities. Agent communities have a dynamic
membership because agents can join or quit from time to time. Social networks
of agents, as a whole, can develop in an evolutionary fashion.

3.3 Agent Infrastructure Layer

Next comes the agent infrastructure layer, which plays a vital role in connecting
the agent layer with the networking layer. Such connection is guaranteed and
realized by two well-defined interfaces, one between the agent layer and the agent
infrastructure layer, and the other between the agent infrastructure layer and
the networking layer.

Beyond physical interconnection, this layer provides additional services tailor-
made for agent communication over networks. Some examples of such services
include agent name resolution, agent message delivery, mobile computing sup-
port, quality of service management and information security. Additionally, this
layer absorbs the variety and complexity of communication processes, and make
the collection of agent systems appear to be a single large-scale and open system.

In practice, agents are self-contained entities that rely on the agent infras-
tructure layer to provide transparent support for on-line interactions. Once agent
messages are passed from agents to the agent infrastructure, they should be de-
livered to their destination without further interaction with agents. With the
relationship and interaction between the two layers clear, it is natural to define
the contents of their interface. Two examples are given in Table 3 and Table 4.

3.4 Networking Layer

The underlying layer below the agent infrastructure is the networking layer in
which the communication service is concretely realized. Currently, the TCP/IP
protocol suit is the de facto standard in the wired networks while wireless net-
working technologies include IEEE 802.11, bluetooth, infrared, etc.

36 Makoto Amamiya

In a layered system, each layer provides services to the layer above it and
serves as a client to the layer below it, and interfaces between adjacent layers
determine how layers will interact [13]. Usually, interfaces are well-defined so that
higher layers are hidden from lower ones. This approach has several desirable
properties.

– First, it supports designs based on increasing levels of abstraction.
– Second, it dramatically simplifies system enhancement and maintenance.

Changes to the function or interface of one layer, for example, affect at most
two other layers (below and above).

– Third, it supports component reuse. Whenever the interfaces are the same,
different implementations can be built and used interchangeably.

4 Conclusions

This paper addressed the importance of the agent-based approach to ubiquitous
computing, and gave a general introduction to an agent-based software architec-
ture. In particular, the discussion was focused on the layered architecture which
is configured with agent application unit layer, agent kernel unit layer, agent
infrastructure layer and networking layer.

We have conducted several work on applications (see [14,15,16,17]), and we
are convinced that agent-based approaches to information management are both
scalable and cost-effective for real-world ubiquitous applications. However, our
work is still relatively simple and has some limitations. Instead of in-house pro-
gram development, for example, a formal specification of agent roles and interac-
tion protocols is needed to close the gap between analysis phase and subsequent
development and verification phases. Another important issue for real-world ap-
plications is security management in message communication between agents.

References

1. M. Weiser. The computer for the 21st Century. Scientific American, Vol. 265, no.
3, pages 94–104, September 1991.

2. M. Fleck, M. Frid, T. Kindberg, E. O’Brien-Strain, R. Rajani, and M. Spasojevic.
From Informing to Remembering: Ubiquitous Systems in Interactive Museums.
IEEE Pervasive Computing, 1(2):13–21, April–June 2002.

3. V. Stanford. Using Pervasive Computing to Deliver Elder Care. IEEE Pervasive
Computing, 1(1):10–13, January–March 2002.

4. M. Beigl, H. W. Gellerson, and A. Schmidt. MediaCups: Experience with De-
sign and Use of Computer-Augmented Everyday Objects. Computer Networks,
35(4):401–409, March 2001.

5. Joseph M. Kahn, R. H. Katz, and Kristofer S. J. Pister. Mobile Networking for
Smart Dust. In Proc. of Int’l Conf. Mobile Computing and Networking, pages
271–278, ACM Press, 1999.

6. T. Kindberg, and A. Fox. System Software for Ubiquitous Computing. IEEE
Pervasive Computing, 1(1):70–79, January–March 2002.

Agent-Oriented Approach to Ubiquitous Computing 37

7. P. Bellavista, A. Corradi, and C. Stefanelli. The Ubiquitous Provisioning of Inter-
net Services to Portable Devices. IEEE Pervasive Computing, 1(3):81–87, July–
September 2002.

8. G. Weiss, editor. Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. MIT Press, Cambridge, USA, 2000.

9. F. Zambonelli, N. R. Jennings, A. Omicini, and M. Wooldridge. Agent-oriented
software engineering for Internet applications. In Coordination of Internet Agents,
pages 326–346. Springer-Verlag, New York, USA, 2001.

10. L. Gasser. Agents and concurrent objects. IEEE Concurrency, 6(4):74–77, 81,
October-December 1998. Interviewed by Jean-Pierre Briot.

11. G. Zhong, S. Amamiya, K. Takahashi, T. Mine, and M. Amamiya. The design and
implementation of KODAMA system. IEICE Transactions on Information and
Systems, E85-D(4):pp. 637–646, April 2002.

12. N. R. Jennings. Agent-based computing: Promise and perils. In Proc. of Sixteenth
International Joint Conference on Artificial Intelligence, pp. 1429–1436, July 1999.

13. E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

14. B. Hodjat and M. Amamiya. Introducing the Adaptive Agent Oriented Software
Architecture and its Application in Natural Language User Interfaces. In The First
Workshop on Agent Oriented Sftware Engineering (AOSE-2000), Lecture Notes in
Computer Science vol.1957, Springer-Verlag, pp.285-306, 2001.

15. T. Helmy, S. Amamiya and M. Amamiya. Collaborative Kodama Agents with
Automated Learning and Adapting for Personalized Web Searching. In Proceed-
ings of the Thirteenth Innovative Applications of Artificial Intelligence Conference
(IJCAI/IAAI-2001), Emerging Application, Technology, and Issue Paper, Seattle,
Washington, USA, pp. 65–72, 2001.

16. K. Takahashi, S. Amamiya, T. Iwao, G. Zhong, and M. Amamiya. An Agent-based
Framework for Ubiquitous Systems. In Proc. of the 2nd International Workshop
on Challenges in Open Agent Cities, pp. 49–52, July. 2003.

17. T. Iwao, S. Amamiya, K. Takahashi, G. Zhong, T. Kainuma, L. Ji and
M. Amamiya. Information Notification Model with VPC on KODAMA in an Ubiq-
uitous Computing Environment and its Experiment. In CIA2003, LNAI 2782, pp.
30-45, Aug. 2003.

Resource-Aware Programming�

Invited Paper

Walid Taha

Rice University, Houston, TX, USA
taha@rice.edu

Abstract. Traditional wisdom in programming language design sug-
gests that there is a trade-off between expressive power and static guar-
antees. We describe a novel schema for designing a class of languages
that we call Resource-aware Programming (RAP) languages. By taking
into account the natural distinction between the development platform
and the deployment platform for embedded software, RAP languages
can alleviate the need for drastic trade-offs between expressive power
and static guarantees. We describe our preliminary experience designing
and programming in a RAP language for hardware design, and give a
brief overview of directions for future work.

1 Introduction

Designers of embedded and real-time software must attend not only to functional
specifications, but also to a wider range of concerns, including resource consump-
tion and integration with the physical world. In current practice, the dominant
medium for programming is various dialects of C. This is a puzzling state of
affairs, given that: First, C is now over thirty years old, has many well-known
limitations, including several well-known safety problems, and has a limited set
of abstraction mechanisms; second, since then the programming languages com-
munity has produced new languages that address many of these safety problems,
and developed several powerful abstraction mechanisms. Today, there is pressing
need for addressing this issue. In particular, as new embedded hardware plat-
forms continue to flow into the embedded systems market, the need for effective
techniques for producing reliable software in a cost-effective manner becomes
more pressing.

Real, technical challenges have hampered the adoption of language innova-
tions in the embedded software domain. Possibly the most important reason is
that it often appears as if a choice has to be made between expressive power
and static guarantees. Expressive programming languages, often referred to as
high-level languages, generally offer powerful abstraction mechanisms like higher-
order functions, managed dynamic data structures, and general recursion. At the

� Supported by NSF ITR-0113569 “Putting Multi-stage Annotations to Work” and
Texas ATP 003604-0032-2003 “Advanced Languages Techniques for Device Drivers.”

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 38–43, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Resource-Aware Programming 39

same time, these languages provide little or no guarantees about resource uti-
lization. Because such languages tend to deprive the programmer of control over
resources that she must take full responsibility for, they are generally not well-
suited for building embedded applications. Resource-bounded languages, such
as state charts or synchronous languages, provide strong guarantees about the
runtime behavior of programs. Because such languages generally deprive the
programmer of constructs that allow her to write concise, structured, modular,
and reusable programs, an unsafe language that provides more expressive power
can be significantly more attractive in practice.

While there are several important innovations as well as ongoing efforts in
the programming languages community to offer better trade-offs between these
poles, an important insight has long been overlooked. Our key observation is that
this apparent need to choose between expressive power and static guarantees can
be often be avoided. Resource-aware Programming (RAP) languages are a class
of languages aimed at addressing the problems described above by:

1. Providing a highly expressive untyped substrate supporting state-of-the-art
abstraction mechanisms such as dynamic data-structures, modules, objects,
and higher-order functions. The role of this substrate is to provide a com-
mon, unified model of the semantics of the whole computation, starting from
what happens on the platform used to design the software, and extended to
what must take place on the embedded platform where the software must
ultimately operate. Because of their simpler reasoning principles and the
wealth of results on statically checking them, our studies tend to use func-
tional programming languages as untyped substrate [5]. In principle, these
ideas should be applicable to any programming language.

2. Allowing the programmer to express the stage distinction between compu-
tation on the development platform and computation on the deployment
platform. Expressing the stage distinction is, in principle, achieved by any
language that can support program generation or that has a macro-expansion
facility. But mechanisms based on strings or s-expressions would be insuffi-
cient, as they would interfere with the possibility of automatic static checking
of programs before they are generated.

3. Using static checking to ensure that computations intended for execution
on resource-bounded platforms are indeed resource-bounded. In fact, the
ability to perform this kind of static checking is the most novel feature of
RAP languages. To get an appreciation for the importance and the challenge
involved in doing this, consider the analogous situation in the context of C:
It would correspond to statically checking the safety and resource usage of
C programs before they are pre-processed using configuration parameters for
various target platforms.

The combination of these three ingredients allows the programmer to use so-
phisticated abstraction mechanisms in programs that are statically guaranteed
to generate only resource-bounded programs. We expect that languages with
these features can provide a solid bridge between traditional software engineer-

40 Walid Taha

ing techniques on one side, and the specific demands of the embedded software
domain on the other.

For general-purpose programming, the idea of statically checked generators
has been studied extensively, largely in the context of multi-stage programming
[3]. For general-purpose software, statically checked generators provide a mech-
anism for avoiding the runtime overhead typically associated with abstraction
mechanisms such as functions and objects. For embedded software, the primary
role of such generators will be to allow powerful abstraction mechanism to co-
exist with statically checkable properties on resource usage.

To date, our preliminary efforts to explore the idea of RAP languages have
consisted of two main efforts: First, we have shown how a heap-bounded pro-
gramming language can be extended with higher-order features [4]. Our expe-
rience in this study suggests that the static checking problems that arise in
designing a RAP language can be non-trivial but nevertheless tractable. Second,
we have shown how to use a two-stage language to concisely express Cooley and
Tukey’s recurrence that defines the Fast Fourier Transform (FFT) [1,2]. These
definitions are essentially program generators which can be used to generate
exactly the butterfly circuit for FFT for any size 2n. Our experience with this
effort is discussed in the following section.

2 A RAP Hardware Description Language

RAP languages can play an important role in hardware design because, except for
very high-end applications, verifying the correctness of hardware systems can be
prohibitively expensive. In contrast, software languages are primarily concerned
with issues of expressive power, safety, clarity, and maintainability. Software
languages can provide abstraction mechanisms, which make designs more main-
tainable and reusable. They can also keep programs close to the mathematical
definitions of the algorithms they implement, which helps with ensuring correct-
ness. Hardware description languages such as VHDL and Verilog provide only
limited support for such abstraction mechanisms. A RAP language for hardware
circuits would allow us to capture the schema (or generator) for a family of cir-
cuits in an executable form. With such a schema, rather than having to verify
circuits on a case-by-case basis, a unified substrate for the full process would
enable the verification of a whole family of circuits en bloc.

A basic method for building a circuit schema in a RAP language has been
proposed [1]. In addition to allowing us to implement a schema for FFT cir-
cuits concisely, following this systematic approach also yielded new insights into
the relation between the FFTW and Split-radix implementations [2]. In this
method, we start with naively-generated circuits that are correct by construc-
tion. In the case of FFT, this becomes evident because the schema is almost a
literal transliteration of a textbook definition of the recurrence defining FFT.
Then, more efficient circuits are correct as long as they are produced by system-
atic, verified improvements on a correct but naive generator. Note that these
improvements can be carried out by improvements on the schema. Note also

Resource-Aware Programming 41

that correctness is not achieved by verifying a naive generator and verifying a
posteriori (post-generation) optimizations that fix up the result of the generator.
This means that we replace the problem of verifying transformations to one of
verifying modifications to one program: the generator.

2.1 Manifest Interfaces, Composition and Static Checking

As noted briefly in the introduction, statically checking generators can be hard
to achieve using traditional type systems. For example, if strings, algebraic
datatypes, parse trees, or even graphs are used to represent the generated pro-
gram, they would only allow us to express a manifest interface with a type such
as: gen_fft : int -> circuit, where circuit is the type we choose to rep-
resent circuits with. The static type int -> circuit says that gen_fft is a
function that can only take an integer and can only produce a circuit. As soon
as we start composing generators — for example, if we want to build a circuit
that computes the FFT, performs a multiplication, and then computes the in-
verse FFT — we run into a problem: The type circuit does not provide any
static information or guarantees about the consistency or well-formedness of the
composite circuit. This is an instance of a general need for manifest interfaces
that would provide us with enough static information to allow us to guarantee
some degree of well-formedness on the result of the composite program. To il-
lustrate, assume we are given two trivial generators which take no inputs and
produce an AND-gate and an inverter:

and : circuit
inv : circuit

A meaningless composition arises if we write let bad = inv --> and, where
the connect operator --> is an infix operator that has the type

circuit \times circuit -> circuit

and which wires the output of its first circuit to the input of the second circuit.
The problem is that the second circuit does not have just one input but two, and
the type system does not prevent this error: All circuits just have type circuit.

It is generally desirable that the circuit type be as expressive as possible,
but at the same time only express values that are circuit-realizable. For example,
the programmer might want to use abstractions such as lists (or any other dy-
namic data structure) in describing the circuit, but will need to know as early as
possible in the development process that these uses can be realized using finite
memory [4].

2.2 Better Static Checking

Rather than using one concrete type to represent circuits, a RAP language pro-
vides an abstract datatype parameterized by information about the generated
circuit. The type of the two trivial generators above would be:

42 Walid Taha

and : (bool × bool -> bool) circuit
inv : (bool -> bool) circuit

The type of the connect operator --> would be refined from being

circuit × circuit -> circuit

to being

(α -> β) circuit × (β -> γ) circuit -> (α -> γ) circuit

where α, β, and γ are generic type variables that must always be instantiated
consistently. With this extra information, the type system can reject the above
bad declaration, because the type variable β cannot be instantiated to both the
output of inv (which is bool) and the input of and (which is bool×bool). Note
that the type of this function is similar to the type of the standard mathematical
function composition operation of type (α -> β) × (β -> γ) -> (α -> γ).

2.3 Safe Implementations of Domain-Specific Optimization

To ensure that generated programs are well-typed and resource-bounded be-
fore they are generated, the circuit type constructor in a RAP language must
remain abstract, meaning, that there is no mechanism within the language to
allow the programmer to de-construct code once it has been generated. Provid-
ing constructs for traversing values of this type jeopardizes the soundness and
decidability of static typing, and complicates reasoning about the correctness
of programs written in these languages. At the same time, not being able to
look inside the generated circuit descriptions means that a posteriori optimiza-
tions cannot be expressed within the language. While such optimizations can
still be implemented as stand-alone source-to-source transformations outside the
language, doing so invalidates the safety and resource-boundedness guarantees.

We distinguish two forms of a posteriori optimizations: Generic ones that
are independent of the application, and ones that are specific to the application.
Generic optimizations are generally well-tested and are less likely to invalidate
the guarantees provided by the RAP setting. Such optimizations can be provided
as special extensions of the language as long as they have been proven to preserve
all guarantees. But domain-specific optimizations written by the programmer for
a particular application are less likely to have been tested as extensively, and are
therefore more problematic. At the same time, systems such as FFTW make a
strong case for the practical importance of such domain-specific optimizations.

We were able to show that abstract interpretation on program generators
can be used to avoid the need for a posteriori optimization [1]. This allows us
to generate the desired circuits without losing the guarantees provided by RAP
languages. The benefits of the proposed technique extend to the untyped setting,
as it avoids the generation of large circuits in the first place, thus reducing the
overall runtime needed to generate acceptable circuits. From the verification
point of view, this approach replaces the problem of verifying a source-to-source
transformation to that of verifying the correctness of a finite set of optimizations
on one specific program: the generator.

Resource-Aware Programming 43

3 Key Directions for RAP Research

The design space for RAP languages is huge, primarily because there are numer-
ous notions of resource-boundedness and languages that can be considered for
the deployment platform, as well as the numerous abstraction mechanisms that
may be desirable on the development platform. A systematic survey is therefore
beyond the scope of this paper. However, there are a number of broad directions
that we expect to be important to progress in this area:

– Extensions of traditional static analysis techniques (including type systems)
to work in a generative setting. We expect our own efforts to focus on analysis
that have direct applications in challenging domains, such as device drivers,
control systems, and hardware description languages.

– Better understanding of the process of writing RAP programs, including
further study of the use of program structuring mechanisms such as monads,
as well as the use of abstract interpretation as a programming technique for
implementing domain specific optimizations.

– Support for certification. In particular, while previous work on RAP lan-
guages have so far focused on static guarantees, the execution model on the
development platform can be naturally extended to preserve the proof behind
this guarantee, and this proof can then be produced along side the deploy-
ment platform computation. Such a certificate can be verified independently
of the generation process, much in the same way as proof-carrying-code is
used to verify the safety of software received from an untrusted source.

Acknowledgment: Anthony Castanares, Emir Pašalić and Kedar Swadi have
kindly read and commented on drafts of this paper.

References

1. Oleg Kiselyov, Kedar Swadi, and Walid Taha. A methodology for generating ver-
ified combinatorial circuits. In the International Workshop on Embedded Software
(EMSOFT ’04), Lecture Notes in Computer Science, Pisa, Italy, 2004. ACM.

2. Oleg Kiselyov and Walid Taha. Relating FFTW and Split-Radix. In Proceedings of
the International Conference on Embedded Software and Systems, 2004. Appears in
this volume.

3. Walid Taha. A gentle introduction to multi-stage programming. In Don Batory,
Charles Consel, Christian Lengauer, and Martin Odersky, editors, Domain-specific
Program Generation, LNCS. 2004.

4. Walid Taha, Stephan Ellner, and Hongwei Xi. Generating Imperative, Heap-
Bounded Programs in a Functional Setting. In Proceedings of the Third International
Conference on Embedded Software, Philadelphia, PA, October 2003.

5. Walid Taha, Paul Hudak, and Zhanyong Wan. Directions in functional programming
for real(-time) applications. In the International Workshop on Embedded Software
(EMSOFT ’01), volume 2221 of Lecture Notes in Computer Science, pages 185–203,
Lake Tahoe, 2001. Springer-Verlag.

In-House Tools for Low-Power Embedded Systems

Naehyuck Chang

School of CSE, Seoul National University, Korea
naehyuck@snu.ac.kr

Abstract. Power consumption emerged as a distinct axis for system optimiza-
tion especially for battery operated applications. Most of all, circuit and device
level low-power design has leveraged battery-operated embedded systems over
dozens of years. As of today, high-level or system-level power reduction is be-
lieved for another significant power saving opportunity. Nevertheless, existing
power-related tools are not familiar with system and software designers, who
have to pay more attention to power consumption than other optimization fac-
tors.
In this paper, we introduce a series of power measurement and estimation tools
that differentiate the quality and effectiveness of high-level power reduction prac-
tices for embedded systems. To fulfill necessary requirement for high-level power
reduction, we have developed a cycle-accurate energy measurement technique
using switched capacitors. This new technique enabled us to develop innovative
power measurement tools for memory devices, FPGAs and CPUs. This individual
power measurement tools contribute quality energy characterization of compo-
nents, and eventually come up with an integrated system-level power estimation
tool: SEE (Seoul National University Energy Explorer, http://see.snu.ac.kr).

1 Introduction

Together with speed and cost, energy consumption is now a primary performance met-
ric for battery-operated embedded systems. A well-designed embedded system should
be globally optimized to the target application, from user interface right through to de-
vice technology. This kind of global optimization over many layers of software and
hardware is challenging, due to the need for extensive inter-disciplinary collaborations.
Energy estimation is a routine job in low-level hardware design. Unfortunately, at this
stage, the specific application of most hardware components is not known, and de-
signers cannot perform an application-specific optimization. Another opportunity for
optimization is given to software and system designers; but they are often unfamiliar
with hardware-related energy issues. This problem is compounded because traditional
energy estimation tools like SPICE and PowerMill [1] are designed for use by low-
level hardware engineers, which can discourage designers working at a higher level to
attempt global optimization.

With the increasing trend towards low-power design, a higher-fidelity, system-level
energy estimation environment is demanded. In this paper, we propose a series of energy
measurement, estimation and exploration tools, which overcome limitations of existing
tools.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 44–58, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

In-House Tools for Low-Power Embedded Systems 45

2 Related Work

A simple approach is to analyze actual measurements from a hardware platform. Tools
like Powerscope [2] and Itsy [3] use computer-controlled multi-meters or A/D convert-
ers to measure energy consumption. Other studies adopt software energy estimation
methodology, which has been an important aspect of embedded systems design since it
was first introduced by [4]. While the early literature [4] focuses on the possibility of
software optimization, recently proposed tools extend the methodology to support high-
level hardware optimization [5,6,7,8]. JouleTrack [5] is a publicly available web-based
software energy profiling tool for processor cores. SimplePower [6] and Wattch [7]
estimate the power consumption of processors including the on-chip cache, on-chip
bus and on-chip SRAM, but still excluding off-chip subsystem. JouleTrack and sim-
ilar systems [5,6,7] are good for architecture-level analysis since they only consider
processors. On the other hand, a power estimation framework [8] presents a system-
level energy estimation that includes a processor, L1/L2 cache, off-chip memory, and
DC-DC converter. However, energy models for off-chip memory devices are too simple
to support a cycle-level analysis. A simple power characterization is taken and devices
are assumed to have only two modes: active and idle. Consequently, most high-level
energy estimators are not incapable of cycle-accurate analysis of each important com-
ponent, since energy consumption is averaged out over the entire execution time, which
means that they are not suitable for high-level power reduction but for high-level power
estimation.

3 Power Characterization for High-Level Power Reduction

High-level design such as RTL and behavior levels, overcome explosive complexity by
proper abstraction that hides low-level design details. In that sense, high-level power
saving may not have to consider microscopic power changes. This is true for high-
level power estimation. Suppose we have three different characterization schemes of
gas consumption of a vehicle as shown in Table 1. All the three different characteriza-

Table 1. Characterization of gas consumption of a vehicle (G,S, I,R,n,c: gas consump-
tion, vehicle speed, idle gas consumption, engine restarting cost, number of engine
starts, and a constant, respectively).

Characterization 1 Linear mode G = cS
Characterization 2 Non linear model G = cS+ I
Characterization 3 Including restarting cost G = cS+ I +nR

tion schemes are useful for high-level gas consumption estimation. Of course, Charac-
terization 3 is more accurate than Characterization 2, and Characterization 2 is better
than Characterization 1. However, if a vehicle stops only a few minutes and the engine
is never turned off during the entire trip, all the characterization schemes may show sim-
ilar accuracy. Now, suppose we need to devise a gas consumption saving scheme that

46 Naehyuck Chang

is useful when a vehicle temporary stops at a parking space. Characterization 1 shows
that the vehicle does not consume any gas when the speed is zero, i.e. the vehicle stops.
Thus, there is even no need to devise such a gas consumption saving technique. Char-
acterization 2 shows that I is still consumed while the vehicle stops. Thus, the best way
to save gas consumption from Characterization 2 is turning off the engine whenever the
vehicle stops even for just a second. Characterization 3 considers the engine restarting
cost, and thus we better keep the engine running during a short stop, which is a practi-
cal solution while previous ones are not applicable to real situation. Consequently, for
the derivation of a power saving policy, we must be extremely careful in abstraction of
low-level behaviors even for high-level approaches, unlike in case of high-level power
estimation.

4 Energy State Machine

In this paper, we introduce an energy state machine to describe accurate energy con-
sumption behavior of digital systems where each node and each transition describe
the static power and the dynamic energy, respectively. A finite state machine M is four-
tuple (S,Σ,δ,s0) where S = (s0, ...,sn) is a set of finite states, Σ is a finite input alphabet,
δ : Σ×S → S is a state transition function, and s0 is the initial state. Each arc, that de-
notes state transition δ, is labeled with a finite set of state transitions T = (t0, ...,tm).
Fig.1 illustrates the variation of power supply current idd in asynchronous and syn-
chronous devices. It also justifies the static and the dynamic energy association of the
energy state machine. Asynchronous devices consume the dynamic energy when strobe

s2 to s2

iddidd

s0 to s1

s0 to s1 s1 to s2
s1 to s2 s0 to s0

s0

s0

s0

s1

s1

s2

s2

s2

dynamic

dynamic

dynamic

dynamicdynamicdynamic

leakage

leakageleakageleakage

leakageleakage
leakage

leakage

time clock

(a) idd of an asynchronous device (b) idd of a synchronous device

Fig. 1. idd variation due to state change.

signals are issued. The strobe signal changes the device state leading to variation of the
static energy consumption. Synchronous devices consume the dynamic energy at each
clock edge rather than logical state change.

Definition 1. Energy state machine Π is three-tuple (M,Φ,Ξ) where M is a finite state
machine, Φ = (φ0, ...,φn) is leakage energy associated with state S = (s0, ...,sn), and
Ξ = (ξ0, ...,ξm) is the dynamic energy associated with transition T = (t0, ...,tm).

In-House Tools for Low-Power Embedded Systems 47

s0/s0/

s1/s1/

s2/s2/

φ0φ0

φ1φ1

φ2φ2

ξ0

ξ0 ξ1

ξ1 ξ2

ξ2 ξ3

ξ3 ξ4
ξ5

ξ6

(a) Asynchronous energy state (b) Synchronous energy state

machinemachine

Fig. 2. Energy state machine.

5 Cycle-Accurate Energy Measurement

To complete the energy state machine, we have to annotate the energy values Φ and
Ξ. At first, we need to distinguish energy consumption behavior of target devices be-
fore deciding a characterization method. While synchronous energy FSM is ideal for
high-fidelity characterization of energy consumption for synchronous digital systems,
a special technique is required to annotate energy values for transitions and states. As
shown in Fig. 1, dynamic energy consumption represented by the idd current only occurs
during the propagation time, which is usually a matter of nanoseconds. The propagation
delay is not determined by the operating frequency but by the physical design, and thus
the power spectrum of idd reaches well over several hundred MHz, regardless of the
operating frequency. This seriously discourages us from trying to distinguish idd from
the cycle-by-cycle dynamic energy using conventional equipment such as an ammeter
[9].

Since cycle-accurate energy measurement is essential to annotate a synchronous en-
ergy FSM, we have developed a special technique to handle the cycle-by-cycle energy
measurement of high-speed digital systems [9]. Fig. 3 shows a schematic diagram of
the measurement setup. We transfer charges to the capacitor and operate the target de-
vice using these charges. By simply measuring the initial and the final voltage at the
capacitor, we can derive the exact energy consumed by the target device.

There are on-chip bypass capacitors for mitigating power supply fluctuation in most
modern devices, which make energy calculations complex. We will denote this capaci-
tance by CB in Fig. 3: its value is determined by the charge-sharing rule [10]. In addition,
modern high-performance devices are not generally free from leakage current. We add
RS into the device model to represent the leakage current. While most system-level en-
ergy simulators are primarily concerned about CL, we use fairly realistic energy models
for both measurement and characterization.

Fig. 4 shows a waveform captured by a DSO for demonstration purposes, using
high-speed, pipelined analog-to-digital converters. Depending on the design, the volt-
age drop is variable. We minimize the quantization error of the analog-to-digital

48 Naehyuck Chang

Load capacitance
(CMOS gates)

On-chip bypass
capacitor

Target device
CS1

CS2

VC1

VC2
IS CLCB RS

SW1

SW2

Fig. 3. Cycle-accurate energy measurement using switched capacitors.

Clock
SW1

SW2

Voltage dropVoltage dropVoltage drop

due to CL +RS due to RS due to CB

VC1(i−−)

VC1(i−)

VC2(i−−)

VC1(i+)

VC1(i++)

Δt

sw(i) c(i)

Fig. 4. Voltage across the two switched capacitors in Fig. 3.

converter by adjusting the capacitance of CS1 and CS2 to correspond to the full-scale
voltage swing of the analog-to-digital converters. This explains why the measurement
tool must be customized to a target device, which is one of the motivations for a web-
based tool.

Dynamic energy consumption causes the major voltage drop that appears on the
switched capacitors. The slope of the continuous voltage drop corresponds to the leak-
age power consumption. The voltage across the two capacitors, CS1 and CS2 in Fig. 3, is

In-House Tools for Low-Power Embedded Systems 49

denoted by VC1(·) and VC2(·) respectively. The argument, (·), denotes the four different
states of the capacitor supplying power (CS1) to the target circuit. These are (−−), (−),
(+) and (++) which denote fully charged, connected to the on-chip bypass capaci-
tor CB, discharged by leakage energy consumption, and discharged by dynamic energy
consumption. At the same time, CS2 is discharged during (−−) and remains in a fully
charged state during (−), (+) and (++) [10].

The static or leakage energy consumption is denoted by the slope of the waveform
[11]. Let us denote the static energy of the i-th clock cycle by Es(i):

Es(i) =
1
2
(CS1 +CB)

VC1(i−)2 −VC1(i+)2

Δt
. (1)

We eliminate Δt by converting the static power to energy consumption over the clock
period τ. The dynamic energy of i-th clock cycle, Ed(i), is denoted by

Ed(i) =
1
2
(CS1 +CB)(VC1(i+)2 −VC1(i++)2). (2)

Finally, the total energy consumption is given as

E =
n∑

i=0

(Ed(i)+ τEs(i)) =
n∑

i=0

Ed(i)+ nτEs. (3)

It is not easy to determine the exact time that delimits the period for the dynamic
energy, i.e., VC1(i ++). Improper division into dynamic and static energy may cause
severe errors if there are major changes in clock frequency. To avoid this, we measure
the cycle-accurate energy at various clock frequencies. We cross-check the dynamic
energy values measured at different clock frequencies and thus confirm the dynamic
energy values [10].

6 Energy Measurement and Characterization of Memory Devices

As an example of memory device energy characterization, we introduce an SDRAM
device, which are popular in everything from hand-held devices to desk-top computers.
There are various operation methods, but we choose two major operations: burst-mode
access and auto refresh (Fig. 5).

Table 2 shows Ξ of the SDRAM. Let f1(·) be the number of 1s in ·. Among Ξ, the
CD is the most dominant component. Table 3 shows the CD energy of K4S280832B-
TC1L which are from a major vendor, Samsung. This has 128Mbit capacity with 4M
address space (12 × 10) × 8bit data × 4 banks.

7 Energy Characterization of Off-Chip Buses

The energy consumption of synchronous off-chip buses is denoted by the energy state
machines shown in Fig. 6. The driver specification is an LVT (Low-voltage TTL or
BiCMOS, 3.3V) bus with 2.7pF transmission line capacitance. Low-voltage CMOS

50 Naehyuck Chang

I

CA3

CA2 CA1

CA0

EOB

RBA

bank active
& row address CL2

read (write) &
column address

nop

nop
nop

nop

nop

precharge

nop

active page
mode

precharge

AR1

AR2

AR3

ARn auto refresh

nop
nop

nop

nop

read (write) &
column address

nop

ξ0

ξ1 ξ2

ξ3

ξ4

ξ5

ξ6

ξ7

ξ8

ξ9

ξ10

ξ11

ξ12

ξ13

ξ14

ξ15

ξ16

ξ1n

/φ0 /φ1

/φ2

/φ3

/φ4/φ5

/φ6

/φ7

/φ8

/φ9

/φ10

/φn

Fig. 5. Energy state machine of an SDRAM.

and other bus drivers such as SSTL (Stub-Series Termination Logic) will be provided
in future [12]. To prevent the data bus from floating during a high-impedance state,
bus-hold logic is selectable. Passive pull-up is not suitable for quality systems due to
excessive static current, but we plan to include it anyhow. Bus-invert coding by the
transition activities or by the logic-low state [12] can also be selected.

The set of states (s0,s1) in Fig. 6 (a) represents driven-low and driven-high states
respectively. Fig. 6 (b) includes s2 and s3 to represent bus hold states. The power con-
sumption of LVT and GTL+ bus and bus drivers have already been studied [12]. We
compose an energy state machine for an LVT bus (these are commonly used high-
performance memory buses for embedded systems) by converting the power values to
cycle-accurate energy values. The bus hold logic acts like a small capacitance (typi-
cally 0.5pF) and consumes negligible DC current. We control the output enable no later
than the input change in order to keep the rise and fall time constants. Thus no state
change, such as s0 → s3 → s1, is allowed. This guarantees that e4 = e5 = e6 = e7 = 0.
In addition, p2 = p3 = 0.

When we composed a 2-inch bi-directional bus using a Fairchild 74LVT245, with
e0 = e1 = 0.55, e2 = e3 = 0, p0 = 0.0053τ, and p1 = 0 for Fig. 6 (a). The units are

In-House Tools for Low-Power Embedded Systems 51

Table 2. Dynamic energy consumption of SDRAM, Ξ (nJ/bit).

Ξ Energy Cost
ξ0, Θra +cra f1(Ar)

ξ1 = ξ2 = ξ7 Θa

read: Θcar +cdo f1(D0)+ccar f1(Ac)ξ3 = ξ8 write: Θcaw +cdi f1(D0)+ccaw f1(Ac)
read: Θcarb +cdo f1(Di)ξ4 = ξ5 = ξ6 write: Θcawb +cdi f1(Di)

ξ9 = ξ10 Θpr

ξ11 = ξ12 Θi

ξ13 + ...+ξ1n Θr f

Table 3. Common Mode Dynamic Energy, Θ (nJ/bit).

Symbol Description Value
Θra row active 1.500
Θcar column active (read) 0.800
Θcarb column active (read, burst) 0.186
Θcaw column active (write) 0.522
Θcawb column active (write, burst) 0.033
Θpr precharge 0.515
Θr f refresh 4.941
Θa active 0.021
Θi idle 0.018

nJ/bit, and τ is the clock period of the synchronous bus in nS. These energy values are
applied to address and data buses by using bus models described previously [13].

8 Energy Measurement Tool for FPGAs

As the gate counts of FPGAs increase, they become more widely used for complex SoC
design, of the final product as well as for rapid prototyping before taping out. As the
power consumption of FPGAs can represent a significant proportion of that of the whole
system, their power consumption behavior must be included in the primary characteris-
tics that are to be taken into account in system-wide power reduction. Chip vendors are

Table 4. Coefficient of Ξ (nJ/bit).

Coefficient Description Value
cra row address input 0.192
cdo data output (read) 0.097
cdi data input (write) 0.103
ccar column address input to read 0.145
ccaw column address input to write 0.161

52 Naehyuck Chang

Table 5. Static energy consumption, Φ (nJ/bit).

Φ Value
φ0 = φ8 = φ9 = φ10 = φn 0.0016τ

φ1 0.0051τ
φ2 0.0049τ

read 0.0017τφ3 write 0.0087τ
read 0.0145τφ4 = φ5 = φ6 write 0.0073τ

φ7 0.0016τ

(a) asynchronous bus (b) synchronous bus

(c) synchronous bus with bus hold

s0/

s0/s0/

s1/

s1/s1/

s2/s3/
p1

p1
p1

p0

p0
p0

e0

e0
e0

e1

e1
e1

e2

e2

e3

e3

e4

e5

e6

e7

p2p3

Fig. 6. Energy state machine of synchronous off-chip buses.

supposed to provide power consumption information for their products on the device
data sheets. However, it is not possible for vendors to specify the exact power consump-
tion of an FPGA design because of the dynamic power consumption. The device type,
operating temperature and process variations largely determine the static power, which
is fixed by the vendor during manufacture. In FPGAs, the main cause of static power
dissipation is leakage. On the other hand, dynamic power consumption is completely
design-dependent, and is determined by many factors including resource utilization and
low-level features such as logic partition, mapping, placement and routing. The dy-
namic power consumption is also affected by the system-level behavior of the FPGA as
it interacts with other devices, which is in turn determined by the microprocessor and
application programs. High-fidelity power estimation must take all these factors into
account.

The measurement circuit shown in Fig. 3 generates enormous data since it captures
the energy values every 20ns. Thus computer controlled measurement system is manda-
tory for practical use of the measurement circuit. We have developed an in-house energy
measurement tool for FPGAs. The tool is fully integrated with an automatic data acqui-
sition system consisting of pipelined A/D converters, a vector generator, a host interface

In-House Tools for Low-Power Embedded Systems 53

through USB 2.0 communication channel and PC-based control software. Table 6 sum-
marizes the specification of the in-house tool.

Table 6. Specification of the in-house measurement system.

Target FPGA: Xilinx Virtex-II XC2V1000FG456
and Spratan-II XC2S50TQ144
Target control FPGA: Xilinx Spartan-II XC2S150FG456
Data acquisition FPGA: Xilinx Spartan-II XC2S150FG456
Vector and configuration memory: Samsung SRAM 1MByte
Data acquisition memory: Samsung SRAM 1MByte
ADC resolution: 10 Bit ADC @50MS/s
Data transfer method: USB 2.0 communication

Fig. 7. SECF (SNU Energy Characterizer for FPGAs).

We have developed two different versions of tools. The first version is equipped
with a Spartan-II device of small capacity (50K gates). Recently, we upgraded the target
FPGA to a high-density Virtex-II device (1M gates). This requires replacement of the
switch device to accommodate high power supply current. Fig. 7 shows a photograph
of the tool. The tool has many convenient features such as bit-stream download without
the Xilinx XChecker or JTAG cables, which simplifies the measurement process and
enhances to ability to handle complex and repetitive measurements.

54 Naehyuck Chang

Table 7. Energy consumption for FIR filters (4 taps, dynamic: nJ/clock, static: mW,
device: XC2V1000FG456).

XPower Multimeter Our tool
Architecture Dynamic Dynamic Dynamic

Ave. Max. Static Ave. Max. Static Ave. Max. Static

Direct form 8.61 NA 150 2.39 NA 14.44 2.88 3.73 14.63TCS
Transposed form 5.47 NA 150 1.63 NA 14.59 1.67 2.83 14.82

Direct form 14.53 NA 150 4.40 NA 15.32 4.29 5.67 15.55RNS
Transposed form 11.58 NA 150 3.91 NA 15.46 3.94 5.08 15.50

Digital filters such as the IIR and FIR filters are widely used in signal processing.
Various architectures have been proposed to achieve high performance, small size and
low power. We measured and compared the energy consumption for FIR filters with
different architectures. Table 7 shows energy consumption of 4 types of FIR filters.
We targeted TCS (Two’s Complement System) as a traditional architecture and RNS
(Residue Number System) as an advanced architecture. Generally, an RNS architecture
is known to consume less power when the number of taps is greater than n, due to
the extra logic needed for binary to RNS converters and vice versa. Since the energy
consumption is linearly proportional to the number of taps, we could estimate the energy
consumption of an FIR filter with larger n through repeated experiments, and on this
basis the minimum number of taps turned out to be 18. We were also able to confirm that
transposed forms are superior to directed forms, both for TCS and RNS architectures.
As described in the previous experiment, XPower produces higher estimates, for similar
reasons.

9 Energy Measurement Tool for a RISC Processor

The Seoul National University energy scanner (SES) is a highly integrated, energy mon-
itoring tool for ARM7TDMI RISC processors that collects power consumption data in
a cycle-by-cycle resolution and associates the collected power data with C program
and assembly language source code. SES does not require any additional measurement
equipment because the power measurement circuitry is embedded in its board. By pre-
senting energy-monitoring results at the C source or assembly language levels using
the GNU project debugger (GDB)-like user interface, SES helps users identify poten-
tial energy hot spots in embedded programs. The current version of SES works for
ARM7TDMI-processor-based embedded systems. However, the proposed power mea-
surement technique and its overall energy-monitoring methodology are both platform
independent.

SES has three logical modules: energy estimation, energy analysis, and user in-
terface. The energy estimation module consists of the energy measurement board and
the memory energy estimator. The board is a peripheral component interconnect (PCI)
bus expansion card that uses a real-time profile acquisition module to collect a tar-
get application’s cycle-accurate system traces. The PCI local-bus interface transfers the
collected system traces to the host PC, which runs a Linux operating system. The en-

In-House Tools for Low-Power Embedded Systems 55

Fig. 8. SES (SNU Energy Scanner).

ergy measurement board includes the ARM7TDMI processor core with its controller,
profile acquisition module, program memory, and PCI controller, as Fig. 8 shows. The
profile acquisition module consists of the cycle-accurate energy measurement circuit,
acquisition memory, and profile controller. The energy measurement board works as
an ARM7TDMI emulator equipped with the cycle-accurate energy measurement cir-
cuit. A system trace collected from the board includes a cycle-level energy trace of the
processor core and a cycle-level memory trace. The memory energy estimator running
on the host PC is a software memory simulator with cycle-accurate energy models for
various caches, memory buses, and memory devices. The measurement board transfers
the memory traces as inputs to the memory energy estimator and the estimator produces
the cycle-level energy profile of the off-chip memory system and cache memory. The
energy analysis module matches the cycle-level energy profile of the target processor
and memory system to the program’s source code. The module associates the energy
profile with the source code at three different levels: C source, assembly language, and
C function.

10 Integrated Energy Estimation Tool

SNU Energy Explorer (SEE) is an in-house system-level energy exploration tool that
executes real application software on a testbench based on SES [14] With the increasing
trend towards low-power design, a higher-fidelity, system-level energy estimation envi-
ronment is demanded. In this paper, we propose a web-based energy exploration tool,
SEE Web [15], which overcomes limitations of existing tools. For cycle-accurate energy

56 Naehyuck Chang

estimation, a FSM (Finite-State Machine) model that isolates dynamic and leakage en-
ergy consumption has been developed with the aid of a cycle-accurate measurement
technique [13], [11]. Additionally, the ISS (Instruction Set Simulator) is built in hard-
ware to increase the simulation speed, and the tool is now available to the public on
the Web. To achieve a wider design space, SEE Web leaves many things available to be
configured by users. Some of the configurable parameters are the processor clock fre-
quency, cache organization, and the SDRAM control policy. Although SEE is a useful
tool, it has serious limitations for open use because it includes custom hardware. SEE
Web has overcome this limitation through web technology, providing a high-fidelity
energy estimation environment to any Internet user.

Programs
under test

Hardware

VDD Switched
capacitor

Software

Energy/timing profile

Energy/timing profile

Energy/timing profile

Energy/timing profile

Energy/timing profile

S
im

ul
at

io
n

M
an

ag
er

Energy model

Energy model

Energy model

Energy model

Configuration

Configuration

Configuration

Configuration

Download

Web server

Cache

SDRAM/
Flash

controller

Off-chip
memory

bus

SDRAM

User
profiles

Trace
formatter

Program
upload

Architecture
configuration

Energy/timing profile

Energy model
Configuration

NOR
Flash

ISS
ARM7TDMI

Fig. 9. SEE Web (SNU Energy Explorer Web).

SEE Web is expandable, and a new IP can be added in the form of a behavioral-
level C code function. Such a function will include an energy consumption model at the
clock-cycle level, in the form of an energy FSM; this is a distinct feature of our tool and

In-House Tools for Low-Power Embedded Systems 57

enables design space exploration with complete freedom. Fig. 9 shows the architecture
of SEE Web. A typical embedded system composed of a CPU, cache, off-chip bus,
SDRAM controller and SDRAM is connected to a web server through the simulation
manager. Users can configure the system architecture, upload a program to simulate,
and see the simulation result through the web interface.

11 Conclusions

We have presented a high-fidelity energy exploration tool aimed at over-layer energy
optimization of embedded systems. System components are modeled as finite-state ma-
chines, associating transitions with dynamic energy and states with leakage power. The
superior modeling ability of the energy state machine enables precise energy estimation
while providing a fast and user-friendly environment for system designers who are not
familiar with device technologies. The series of energy measurement and estimation
tools are easy and free energy exploration environment which encourages users without
detailed knowledge to perform a system-level energy optimization. Among them, SEE
Web is the publicly promoted version of our accurate in-house energy estimation tool
SEE and is now available on the web at http://see.snu.ac.kr. Our tool development is an
active project and will be regularly maintained and upgraded.

References

1. C. X. Huang, B. Zhang, A.-C. Deng, and B. Swirski, “The design and implementation of
powermill,” in Proceedings of International Workshop on Low Power Design, pp. 105–110,
Apr. 1995.

2. J. Flinn and M. Satyanarayanan, “Powerscope: a tool for profiling the energy usage of mobile
applications,” in Proceedings of the Second IEEE Workshop on Mobile Computing Systems
and Applications, pp. 2–10, Feb. 1999.

3. W. R. Hamburgen, D. A. Wallach, M. A. Viredaz, L. S. Brakmo, C. A. Waldspurger, J. F.
Bartlett, T. Mann, and K. I. Farkas, “Itsy: Stretching the bounds of mobile computing,” IEEE
Computer, vol. 34, pp. 28–37, Apr. 2001.

4. V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded software: A first step to-
wards software power minimization,” IEEE Tranactions on Very Large Scale Integration
(VLSI) Systems, vol. 2, pp. 437–445, Dec. 1994.

5. A. Sinha and A. Chandrakasan, “Jouletrack - a web based tool for software energy profiling,”
in Proceedings of ACM/IEEE Design Automation Conference, pp. 220–225, June 2001.

6. W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, “The design and use of simplepower:
a cycle-accurate energy estimation tool,” in Proceedings of ACM/IEEE Design Automation
Conference, pp. 340–345, June 2000.

7. D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for architectural-level power
analysis and optimizations,” in Proceedings of International Symposium on Computer Archi-
tecture, pp. 83–94, June 2000.

8. T. Simunic, L. Benini, and G. de Micheli, “Energy-efficient design of battery-powered em-
bedded systems,” IEEE Tranactions on Very Large Scale Integration (VLSI) Systems, vol. 9,
pp. 15–28, Feb. 2001.

9. N. Chang, K.-H. Kim, and H. G. Lee, “Cycle-accurate energy measurement and charac-
terization with a case study of the ARM7TDMI,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 10, pp. 146–154, Apr. 2000.

58 Naehyuck Chang

10. H. G. Lee, S. Nam, and N. Chang, “Cycle-accurate energy measurement and high-level en-
ergy characterization of FPGAs,” in Proceedings of 4th International Symposium on Quality
Electronic Design (ISQED 2003), pp. 267–272, Mar. 2003.

11. A. Sinha and A. Chandrakasan, “Energy aware software,” in Proceedings of the 13th Inter-
national Conference on VLSI Design, pp. 50–55, Jan. 2000.

12. N. Chang, K.-H. Kim, J. Cho, and H. Shin, “Bus encoding for low-power high-performance
memory systems,” in Proceedings of ACM/IEEE Design Automation Conference, pp. 800–
805, June 2000.

13. H. Shim, Y. Joo, Y. Choi, H. G. Lee, and N. Chang, “Low-energy off-chip sdram memory
systems for embedded applications,” ACM Transactions on Embedded Computing Systems,
vol. 2, pp. 98–130, Feb. 2003.

14. D. Shin, H. Shim, Y. Joo, H.-S. Yun, J. Kim, and N. Chang, “Energy monitoring tool for
low-power embedded programs,” IEEE Design and Test of Computers, vol. 19, pp. 7–17,
July-Aug. 2002.

15. I. Lee, Y. Choi, Y. Cho, Y. Joo, H. Lim, H. G. Lee, H. Shim, and N. Chang, “Web-based
energy exploration tool for embedded systems,” IEEE Design and Test of Computers, vol. 21,
pp. 572 – 586, November – December 2004.

CODACS Project: A Development Tool for

Embedded System Prototyping

Lorenzo Verdoscia

Institute for High Performance Computing and Networking (ICAR) - CNR
Via Castellino, 111 - 80131 Napoli, Italy
lorenzo.verdoscia@na.icar.cnr.it

Abstract. The advent of FPGAs and Intellectual Property core avail-
ability allow great freedom in the customization of platform processors
for embedded systems. One of the new challenges that such technolo-
gies present is how to implement a high performance application on
devices with hundreds coarse-grained computing units running at 200
MHz, rather than on one processor running at 20 GHz. Consequently,
to profit by spatial parallelism that such devices offer becomes a non
marginal issue. From the architectural point of view, at least two ques-
tions arise: how to exploit such spatial parallelism; how to program such
platforms. The first one brings us to seriously reconsider the dataflow
paradigm, given the fine grain nature of its operations. The second one
brings us to seriously reconsider the functional programming style, given
its inherent simplicity in writing parallel programs. In this paper we will
discuss our experience in combining these two approaches inside CO-
DACS (COnfigurable DAtaflow Computing System) demonstrator. The
resulting architecture offers interesting properties not only as stand-alone
computing system but also as development tool for Application Specific
Processor (ASPs) prototyping activities.

Key words: FPGA, dataflow computing, functional programming, Ap-
plication Specific Processor (ASP), embedded system.

1 Introduction

In several real-time applications, custom processors based on application-specific
or domain-specific instruction sets are gaining popularity to speed up the appli-
cation and are often used to implement critical architectural blocks in complex
system-on-chips (SoC). Improvements in semiconductor fabrication technologies
promise to make it feasible to replace logic gates or hardware macro-blocks with
microprocessors as building blocks for integrated circuit (IC) design. Such pro-
grammable solutions will provide the ability to meet short product cycles and
cope with changing application functionality (e.g., in areas with evolving stan-
dards). However, the rapid expansion in the market for embedded systems with
tight constraints on cost, performance, size, and power consumption implies that
the need to customize the architecture to the application or application domain
will continue to be a primary driving requirement in system-on-chip design.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 59–64, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

60 Lorenzo Verdoscia

While several advances have been made in custom processor architectures [6,3,8],
tools [13], and design methodologies [1], designers are still required to manually
perform some critical tasks, such as selection of the custom instructions best
suited to the given application and design constraints. This is a highly fallible
undertaking and may require formidable resources.
Even if development is completed on time, considerable consistency problems
may appear between hardware implementation and software development tools.
Furthermore, a small change in design requirements or a bug during later stages
can ensue in daunting amounts of labor. Consequently, the prototyping phase is
crucial in the development of such processors, and adequate hardware/software
development tools become often requires.

In this paper, we present our experience with CODACS demonstrator [10]
as prototyping tool for custom processor design. It combines the functional pro-
gramming paradigm [11] and the dataflow execution model [12] for reconfig-
urable computing that is decoupled from details of the underlying platform.
Application-level programmers should be liberated from reconfigurable hard-
ware accelerator details. Dually, hardware designers should not be exposed to
interfacing details. This is the way we believe reconfigurable computing must
take in order to become mainstream.

2 CODACS Demonstrator

Fig. 1. CODACS Architecture connected as WK-recursive with Nd = 5 and
Level = 1.

CODACS (COnfigurable DAtaflow Computing System) project goal is to
build up a high performance reconfigurable computing system demonstrator
able to efficiently execute dataflow processes obtained compiling programs writ-
ten in CHIARA language [11] (a Backus’FP [5] functional programming lan-
guage dialect) and oriented to make easier the Application Specific Processor de-
sign. Main features of CODACS are: highly scalable architecture, reconfigurable
dataflow computing environment (platform-processor), and functional assembly
language to program it. Figure 1 shows CODACS architecture. The prototype
is constituted by a Gidel PROC20KE board [7] with 5 Altera APEX20K15-3C
[4] FPGA components. Each node has been partitioned into three concurrently
operating subsystems:

CODACS Project: A Development Tool for Embedded System Prototyping 61

- Processing Subsystem (called Platform-Processor), devoted to execute the
dataflow graph assigned to the node on the basis of information received
from the Kernel Subsystem;

- Kernel Subsystem, devoted to unpack a message, manage processor config-
urations and related I/O data tokens, and prepare new messages for the
Routing Subsystem;

- Routing Subsystem, devoted to provide all routing functions for incoming
and outgoing messages. When a message reaches this module, its header is
processed to be routed towards either the appropriate output link or the
Kernel Subsystem.

2.1 Platform-Processor

The platform-processor is the reconfigurable core of CODACS prototype, and
it has been tailored to execute in hardware dataflow graphs obtained compiling
CHIARA programs. Its design process, schematized in Figure 2, has been based
on the language first approach in conjunction with the homogeneous High-Level
Dataflow System (hHLDS) model [12]. As result, we implemented a platform-

Fig. 2. Platform-Processor design methodology.

processor (Figure 3) composed of: a) 64 identical MultiPurpose Functional Units
(MPFU); b) the MPFU Interconnect that allows to connect any MPFU output
to any other MPFU input and each register of the Token Ensemble Buffers to
the corresponding MPFU; c) the Control; d) three banks of I/O buffers for to-
ken transfer respectively named TOKEN IN A and B (to store, for each MPFU,
respectively the right and left token coming from the Kernel Subsystem) and
TOKEN OUT (to transfer results to the Kernel Subsystem); e) the Graph Set-
ter that stores the Graph Configuration table ready to be executed.

62 Lorenzo Verdoscia

As token loading can be overlapped to computation operations, a platform-
processor can, when different tokens are applied to the same configuration, exe-
cute pipeline activities simply checking data flow from/to the Kernel Subsystem.
MPFUs only compute binary operations belonging to the functionally complete
set of elementary CHIARA operators. Such operators include commonly used
arithmetic and logic operators and the new operators LST (loop start), SL (se-
lect left), and SR (select right). Furthermore, it executes dataflow graphs a)
without using memory to store intermediate tokens when they flow from a Com-
puting Unit to another, reducing thus continual LOAD and STORE operation
and memory latency problem; b) in a completely asynchronous manner, dispos-
ing of a straightforward data flow control and an operation firing mechanism
at a minimal hardware cost. We have augmented the token with the concept of
validity, coded by one bit, that denotes whether data is ready to be processed
or not.

MPFU INTERCONNECT

MPFU
1

MPFU
64

TOKEN OUT
ENSEMBLE BUFFERS

TOKEN_IN A
ENSEMBLE BUFFERS

TOKEN_IN B
ENSEMBLE BUFFERS

10 10

768

GRAPH SETTER

Control Section

Graph
Configuration

table

64

1

641641 641

Interconnect
code

MPFU operating
codes

/ /

/

Fig. 3. Platform-Processor block scheme.

2.2 CHIARA Compiler

CHIARA language peculiarity is that it defines a set of elemental operators that
is functionally complete, i.e. able to generate any other more complex function
of the language. This set constitutes the assembly language for the platform-
processor and is directly implementable in hardware. After compiled, a CHIARA
program is translated in the Dataflow Graph Description (DGD) table that rep-
resents the program dataflow graph. This table details, for each node of the
graph, the following information: the number assigned; the operation code; a
tag to identify if the right and left input data is an initial value or the output
data of another node, reporting in this case the number of the sender node; a tag
to identify if the output data is a final or intermediate value. In the second case,
the number of the receiver node is reported. Figure 4.a and b. respectively shows
a piece of a DGD table produced by the compiler for a matrix multiplication

CODACS Project: A Development Tool for Embedded System Prototyping 63

A(4, 4)×B(4, 4) and the corresponding dataflow produced by aiSee [2] a software
tool based on the graph layout tool VCG (Visualization of Compiler Graphs)
[9] and designed to explore huge graphs (containing hundreds, thousands, and
sometimes even hundreds of thousands of elements).

Node# Func Apply Constr Insert Left Right Out

level level Level In In

..

43 MUL 1 0 0 %1 %30 47

44 MUL 1 0 0 %2 %30 47

45 MUL 1 0 0 %3 %30 48

46 MUL 1 0 0 %4 %30 48

47 ADD 0 0 1 43 44 49

48 ADD 0 0 1 45 46 49

49 ADD 0 0 2 47 48 out

50 MUL 1 0 0 %1 %40 54

51 MUL 1 0 0 %2 %40 54

52 MUL 1 0 0 %3 %40 55

53 MUL 1 0 0 %4 %40 55

54 ADD 0 0 1 50 51 56

55 ADD 0 0 1 52 53 56

56 ADD 0 0 2 54 55 out

..

a) b)

Fig. 4. Part of compiler outcome for a matrix multiplication A(4, 4) × B(4, 4):
a) DGD table; b) iSee visualization.

2.3 Program Running

A program execution takes place when the related dataflow graph is loaded onto
a platform-processor. To do this, the program dataflow graph is partitioned into
subgraphs wholly mappable onto a platform-processor, each subgraph is first
transformed into a Graph Configuration and Input Token Value table and then
stored in the GCL and ITTE of the Kernel Subsystem. Afterwards, these tables
are ready to be loaded into the platform-processor on the basis of the scheduling
policies. Since the Graph Configuration and Input Token tables of a subgraph
split the connection between data and related operations, subgraph run can
take place but the loading of the two tables can occur at a different time. An
immediate benefit is that we can overlap configuration loading activities and
processor execution.

3 Conclusions

Custom processor development is quite challenging for real-life applications be-
cause of tradeoffs involving during its design. The system described within this
paper represents an ambitious set of goals for a design tool. Our approach is
based on the usage of CHIARA functional language to describe the application
that the custom processor would execute, the homogeneous High Level Dataflow
System model to define the rules to obtain the application dataflow graph, and
finally CODACS platform-processor to validate the custom processor according
to application specifications.

64 Lorenzo Verdoscia

References

1. A. Abbas, S. Khan, and M. Usman. Optimal application specific processor and
development tool design methodology. In Proc. IEEE Intl. Multi Topic Conference
(INMIC), Karachi, Pakistan, dec 2002. IEEE Press.

2. AbsInt. aisee. www.AbsInt.com/aisee.
3. O.T. Albahama, P. Cheung, and T.J. Clarke. On the viability of FPGA-based

integrated coprocessors. In Pocek K.L. and Arnold J., editors, Proc. IEEE Symp.
FPGAs for Custom Computing Machines, pages 206–215, April 1996.

4. ALTERA Corporation. APEX 20K devices: System on a programmable chip so-
lutions. http://www.altera.com/products/devices/apex/apx-index.html, 2001.

5. J.W. Backus. Reduction languges and variable free programming. Technical Report
RJ-1010, IBM, Yorktown Heights, NY, April 1972.

6. K. Compton and S. Hauck. Reconfigurable computing: A survey of systems and
software. ACM Computing Surveys, 34(2):171–210, June 2002.

7. GIDEL LTD. PROC20KE board. www.gidel.com, May 1999.
8. S.D. Haynes, J. Stone, P.Y.K. Cheung, and L. Wayne. Video image processing

with the sonic architecture. Computer, 33(4):50–57, April 2000.
9. G. Sander. VCG visualization of compiler graphs. Technical Report A01-95, Uni-

versität des Saarlandes, FB 14 Informatik, 66041 Saarbrücken, Germany, February
1995.

10. L. Verdoscia. CODACS project: A demand-data driven reconfigurable architecture.
In Euro-Par 2002, volume 2400 of LNCS, pages 547–550, Paderborn, Germany,
August 27–30, 2002. Euro-Par Conference Series, Springer-Verlag.

11. L. Verdoscia, M. Danelutto, and R. Esposito. CODACS prototype: CHIARA lan-
guage and its compiler. In Proceedings of the First International Workshop on
Embedded Computing, Tokyo University of Technology, Hachioji, Tokyo, Japan,
March 23–26, 2004. IEEE Computer Society Press.

12. L. Verdoscia and R. Vaccaro. A high-level dataflow system. Computing, 60(4):285–
305, 1998.

13. M. Vuletic, L. Pozzi, and P. Ienne. Development Environment for Dynamically
Reconfigurable Embedded Systems. In 15th IEEE Intl. Conference on Application-
Specific Systems, Architectures and Processors (ASAP’04), pages 339–351, Galve-
ston, Texas, September 27–29, 2004. IEEE Press.

A Study on Web Services Selection Method

Based on the Negotiation Through Quality
Broker: A MAUT-based Approach

Young-Jun Seo1, Hwa-Young Jeong2, and Young-Jae Song1

1 Department of Computer Science, Kyung Hee University
1 Seocheon, Giheung, Yongin, Gyeonggi 449-701 KOREA

{yjseo, yjsong}@.khu.ac.kr
2 Department of Multimedia Design, Yewon Art University

271 Changinree Shinpyungmyun Eymshilgun JonrabukDo, KOREA
jhymichael@empal.com

Abstract. In web service area, which is growing fast recently, because
service discovery is restricted only by functional requirement, the opti-
mal web service selection method considering quality, a non-functional
element, is regarded as important. In this research, we suggested Web
Service Quality Broker Architecture including Quality Broker, which pro-
vides quality negotiation environment, and proposed web service selec-
tion method, which helps service requester find the service provider which
gives the maximum benefit and bind that service dynamically. We de-
scribed the internal negotiation procedure for quality attributes of user’s
point of view with Multi-Attribute Utility Theory (MAUT) and linear
programming.

1 Introduction

Recently the web service area providing lots of advantages like platform indepen-
dency, interoperability, easy service usability and so forth is rapidly burgeoning
as the next generation IT paradigm. Ovum estimates that the average growth of
the web service market will be at 118% per year and that the market, in 2006. It
will consist of 70% of Professional Service, web service consulting/construction
area, and 18% of Hosted Service, web service transfer area [1].

Web service consists of XML-based platform, component based distributed
computing technology independent of implementation language and three kinds
of roles performing publish-find-bind operations. Each role is performed by the
web service provider providing web service, the web service requester using web
service and UDDI registry helping service requester search the detailed specifica-
tions of public web services. In the existing web service model, the role of UDDI
registry is restricted as service finding for only functional requirement and there
is a defect that 48% of UDDI registry has a connection including lost, broken or
incorrect information [2]. Under these circumstances, optimal web service selec-
tion is a complicated problem to requester and lots of quality attributes must

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 65–73, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

66 Young-Jun Seo, Hwa-Young Jeong, and Young-Jae Song

be measured and evaluated simultaneously. Since many quality attributes are
related with each other, the improvement of one quality attribute may cause the
deterioration of the other quality attribute [3]. Patrick [4] presented the opti-
mal common gains between provider and requester using logrolling, negotiation
strategy about QoS and CoS attribute. But, in the negotiation stage, the only
quantity of QoS attribute was measured without consideration of sub-attributes
included in QoS attribute.

In this paper, we explain the concept about Web Service Quality Broker
Architecture with Quality Broker role, which provides the existing web service
architecture with negotiation environment, and proposes the web service se-
lection method, which, by calculating the maximum gains on the basis of the
utility function of mutual quality attributes between service requester and ser-
vice provider, finds the service provider with the optimal quality and helps bind
dynamically.

2 Related Works

2.1 WSLA (Web Service Level Agreement)

WSLA developed by IBM in 2001 is the framework to define and monitor obli-
gations to service providers and requesters [5,6]. It measures and monitors the
QoS parameters, checks the agreed-upon service levels, and reports violations to
the authorized parties involved in the SLA management process.

It comprises the Parties, Service Definitions, and Obligations sections. The
parties section, consisting of the signatory parties and supporting parties fields,
identifies all the contractual parties. The service definitions section specifies the
characteristics of the service and its observable parameters as follows. Examples
of such SLA Parameters are ”availability”, ”throughput”, and ”response time”.
Metrics describes the formula for the calculation about quality factors stated,
SLA Parameters are composed of (composite) Metrics, which, in turn, aggregates
one or more other (composite) metrics, according to a measurement directive or
a function. Obligations, consisting of the Validity Period, Predicate, Actions,
define various guarantees and constraints that may be imposed on the SLA
parameters.

2.2 Negotiation Strategy

Negotiation is a decision process in which two or more parties make individual
decisions and interact with each other for mutual gain [7]. Negotiation includes
a set of tasks, such as problem definition, generation of alternatives, evaluation
of alternatives, and preference modeling, that are executed by a set of parties.
In particular, each negotiation involves at least two parties. On the other hand,
negotiation involves a set of issues and every issue contains a set of alternatives.
Furthermore, the set of issues may also be constrained by a set of criteria.

A Study on Web Services Selection Method Based on the Negotiation 67

One of the strategies for achieving negotiation is called MAUT. MAUT
(Multi-Attribute Utility Theory) concretes utility function and attribute reflect-
ing individual stand for risks to the model and then identification for related
appropriate function’s form decides individual preference and utility function’s
form [8]. MAUT evaluates the gains, considering the multi-attribute for the sub-
ject of negotiation, and each attribute has a relative weight to other attributes.
In MAUT, utility function is represented using weight (wj) and evaluation func-
tion (vj(x[ji)) for each attribute. Utility function representing the gains of service
requester and provider can be described as equation (1) and (2).

RequesterUtility =
n∑

i=1

wr
jv

r
j (x[ji]) 0 ≤ RequesterUtility ≤ 1 . (1)

ProviderUtility =
n∑

i=1

wp
j vp

j (x[ji]) 0 ≤ ProviderUtility ≤ 1 . (2)

In order to standardize the satisfaction of suggested value about each at-
tribute within the value from 0 to 1, we propose the evaluation function having
request value and allowable value as the boundary like equation (3) and (4).

vk
j (x[ji]) =

x[ji] − allowable

request − allowable
if request ≥ allowable value . (3)

vk
j (x[ji]) =

allowable − x[ji]
allowable − request

if request < allowable value, (k = r, p) .

(4)
From equation (1) through (4), we set up the function maximizing the gains

of service requester and provider as the object function and the condition that a
difference between request and provider is in a certain aberration as a constraint,
and presented linear programming like equation (5) through (7). In this paper,
we refer to related work [9] in electronic commerce domain in order to set up the
linear programming model to obtain the optimal value and the utility function
for the suggested value between service requester and provider.

Object function : Max Z = RequesterUtility + ProviderUtility . (5)

Constraint : |RequesterUtility − ProviderUtility| ≤ threshold(= 0.01) . (6)

Boundary : min.ofcommonrange ≤ x[ji] ≤ max.ofcommonrange(i = 1, 2, 3) .
(7)

3 Web Services Selection Method

3.1 Web Service Quality Broker Architecture

Web Service Quality Broker Architecture proposed in this paper has different
characteristics from the architecture proposed in the related work [10]. Currently

68 Young-Jun Seo, Hwa-Young Jeong, and Young-Jae Song

there are two classes of Service Providers providing web services [11]. Services
from the first class are built with QoS support, referred to as QoS servers. They
have the ability to assign different amount of system resources to different clients
according to their QoS requirements. The QoS information supplied by QoS
servers includes service levels with corresponding costs, maximum service capac-
ities and currently available capacities at each service level. The other class of
Service Providers are not built with QoS support and called legacy servers. There
is no service quality level concept in legacy servers. In this paper, we considered
the Service Provider as the QoS server that supplies QoS service levels. Service
Requester can obtain the service providing the quality with requested level from
WSLA of Quality Broker created by pre-monitoring. Rough quality warranty
process including WSLA Service [6] in Web Service Quality Broker Architecture
is like follows.

Service
Provider

Service
Provider

UDDI
Registry

Quality Broker

publish

Service
Requester

request
service

request a list of
new services

get a list of services

request
and consent
to WSLA
agreement of
best service

Service
Provider

request service
description

send service
description

Invoke service

create
WSLA of
services

 WSLA

1. Parties
 - Signatory Parties
 - Supporting Parties
2. Service Description
 - SLA Parameters
 - Metrics
3. Obligations

monitor
quality of
registered
servicesexecute

negotiation
between QoS
attributes

Fig.1. Interactions between the four participating roles

A list of Service Providers registered newly in UDDI registry is sent to Qual-
ity Broker, and Quality Broker requests Service Provider’s service descriptions
(WSDL files) in the list. Quality Broker monitors quality attribute values of
registered service on the basis of the transferred service descriptions. The calcu-
lating result from monitoring and WSLA Metrics is stored in WLSA document,
and this step is repeated periodically. Service Requester requests the service to
Quality Broker with quality attribute value, and Quality Broker performs the
negotiation through investigating WSLA details of services with same function
and quality attributes of requester. When, from the result of negotiation, best

A Study on Web Services Selection Method Based on the Negotiation 69

service is decided, the fact is transmitted to Service Requester, and contract is
completed, if Requester agrees with WSLA of corresponding service. The out-
come of the negotiation process is a single SLA document comprising the rela-
tionship and obligations of all the involved signatory parties. The WSLA Service
distributes the SLA document available for deployment to the involved parties.
In last, Service Requester requests the service to selected Service Provider. The
WSLA Service measures SLA parameters such as availability or response time
either from inside or outside the service provider’s domain. It obtains measured
values of SLA parameters and compares them against the thresholds given in
the SLA. This can be done periodically. Once the result of comparison has been
violated, the WSLA Service will carry out the appropriate actions to correct the
problem as specified in the SLA.

3.2 Web Service Quality Model

In most of web service quality model [12,13], since the quality of requester’s point
of view in use about web service acts as the important decision factor due to
web service characteristics. The quality in use among software qualities defined

Table.1. Web Service Quality Specification

Throughput
(requests/s)

0.010.030.05
Cost involved in requesting
the service

Cost(€)Cost

0 � Re
� 0.3

0.4 � Re
� 0.6

0.7 � Re
� 1

The ability of a service to
perform its required
Functions under stated
conditions for a specified
period of time

Reliability
(probability)

0.7 � Av
� 1

0.4 � Av
� 0.6

0 � Av
� 0.3

quality aspect of whether the
Web service is present or
Ready for immediate use

Availability
(probability)

Safety

51 � Th
� 100

101 � Th
� 150

151 � Th
� 200

The number of completed
service requestors over a
time period

0.8 � RT
� 0.9

0.4 � RT
� 0.7

0.1 � RT
� 0.3

The average time required to
complete a service request

Response
Time(ms)

Performance

bronzesilvergold

Service Level
DescriptionClassification

by ISO 9126 is mostly dealt with. Web service quality in use is divided into
performance quality aspects, safety quality aspects, middleware service qual-
ity aspects, manageability quality aspects, and interoperability quality aspects.
However, in this paper, we consider only performance and safety quality aspects
among them and cost.

70 Young-Jun Seo, Hwa-Young Jeong, and Young-Jae Song

<Table 1> describes quality attributes and descriptions included in each web
service quality aspects, and, also, presents various service levels[13] which service
providers offer. The value of service level of availability and reliability belonging
to safety quality aspects was described with the value of ratio of usable time and
average time when failure occurs in total monitoring time according to three
level ranges.

3.3 Negotiation Model and Procedure

In this paper, we consider multi-party and multi-issue negotiation, which con-
tains service requester, several service providers and attributes. We focus on the
method, which finds the optimal compromise suggestion between both sides and
decides the service provider offering the maximum gains.

Service
Requester

Service
Provider 1

Service
Provider 2

Service
Provider 3

x1 = 0.4, x2 = 110, x3 = 0.5
x4 = 0.3, x5 = 0.01

Z(Total Utility) = 1.2321877

x1 = 0.4, x2 = 70, x3 = 0.4
x4 = 0.3, x5 = 0.02

Z(Total Utility) = 1.117267

x1 = 0.5, x 2 = 70, x3 = 0.5
x4 = 0.3, x5 = 0.03

Z(Total Utility) = 0.7623999

Best

��������������	
�����	�������
	
�

��������
����	
��
������������	
�

������������������	

��������������	
�������������
	
�

������������
	
��
������������	
�

������������������	

���������
���
	
����	���
������	
�

�������������	
��
������������	
�

������������������	

�������������
	
����		��������	
�

�������������	
��
������������	
�

��������	���������	

Fig.2. Result of Web Services Selection

Here, we define the optimal compromise suggestion as the proposal that
warrants the maximum common gains to each other. In Negotiation model, we
assume that service providers have different attributes for web service providing
same function and service requester is a consumer who purchases web service
with specific function offered by service providers. As attributes for Negotiation,
response time, throughput, availability, reliability and cost are considered. Ser-
vice requester and service provider have the weight (values in the parentheses),
which is the relative preference value of specific attribute to other attributes.
Generally, qualities offered by service provider are divided into three service
levels (cf. Table 1), and requester has no choice but to select only one level

A Study on Web Services Selection Method Based on the Negotiation 71

according to proposed cost. This paper includes the desired request value for
specific quality attribute and the allowable value which can be permitted to the
opposite side through negotiation between both sides. Service requester has low
response time, high throughput, low availability, high reliability and low cost as
request values, and provider is set up in the reverse way.

Fig. 2 shows attributes, which are possessed by one service requester and
three service providers and the negotiation results. The value used in Fig. 2
as request (bold strokes) and allowable value (normal strokes) is represented
by composing values in each service level provided differentially per each quality
attribute. Supposing variable x1 to x5 are response time, throughput, availability,
reliability, and cost, respectively. The gains of Requester and Provider1 in Fig.
2 can be represented by utility function[9] as follows.

RequesterUtility =
0.6 − x1

0.6 − 0.4
× 0.2 +

x2 − 70
110 − 70

× 0.1 +
0.5 − x3

0.5 − 0.4
× 0.1 (8)

+
x4 − 0.3
0.6 − 0.3

× 0.1 +
0.03 − x5

0.03 − 0.01
× 0.5

Provider1Utility =
x1 − 0.3
0.7 − 0.3

× 0.1 +
150 − x2

150− 51
× 0.2 +

x3 − 0.2
0.6 − 0.2

× 0.1 (9)

+
0.6 − x4

0.6 − 0.4
× 0.1 +

x5 − 0.01
0.05 − 0.01

× 0.5

The above problem can be transformed into linear programming form [9] as
follows.
Object function:

Max Z = −0.75x1 − 0.0005x2 − 0.75x3 + 0.167x4 − 12.5x5 + 2.028 (10)

Constraint:

− 1.25x1 + 0.0045x2 − 1.25x3 + 0.833x4 − 37.5x5 ≤ −1.112 (11)
−1.25x1 + 0.0045x2 − 1.25x3 + 0.833x4 − 37.5x5 ≤ −1.132 (12)

Boundary:

0.4 ≤ x1 ≤ 0.6, 70 ≤ x2 ≤ 110, 0.4 ≤ x3 ≤ 0.5, 0.3 ≤ x4 ≤ 0.6, 0.01 ≤ x5 ≤ 0.03
(13)

After we obtain the answer using equation (8) through (13), and then cal-
culate the solution having each maximum gains among requester, provider2 and
provider3, we present those results in Fig. 2 altogether. As a result, since To-
tal Utility of Requester+Provider3 is the biggest, the third Service Provider is
selected as the provider offering the optimal service.

72 Young-Jun Seo, Hwa-Young Jeong, and Young-Jae Song

4 Conclusions

In this paper, we start from web service selection problem through functional
requirement without consideration of quality. Then we propose Web Service
Quality Broker Architecture, which helps service requester find service provider
offering the maximum gains in the requester’s point of view and bind that dy-
namically. Negotiation process of Quality Broker is described by Multi-Attribute
Utility Theory (MAUT) on the basis of quality information of both sides par-
ticipating in negotiation.

The optimal web service selection method through negotiation of Quality
Broker proposed in this paper can give a solution to handle the calculation
complexity increment problem, which can be generated by the extension to mul-
tilateral negotiations and the reliability problem for the result value, and can be
extended and applied to the optimal service selection through other negotiation
strategies in the future.

References

1. Ovum, ”Web Services Market Overview”, Ovum Research Report, Sept, (2002)

2. Mike Clark, ”UDDI weather report”, Nov, (2001), Available online:
http://www.webservicesarchitect.com/content/articles/clark04.asp

3. K.H.Bennett, and others, ”A Broker Architecture for Integrating Data Using a
Web Services Environment”, ICSOC, Vol.2910, (2003) 409-422

4. Hung, P.C.K, ”Web Services Discovery Based on the Trade-off between Quality
and Cost of Service: A Token-based Approach”, in the ACM SIGecom Exchanges,
Vol. 4.2, Sept, (2003), 20-26

5. Asit Dan, Heiko Ludwig, Giovanni Pacifici, ”Web Services Differentiation with
Service Level Agreements”, White Paper, IBM Corporation, May, (2003)

6. Keller, A., Ludwig, H., ”The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services”, Journal of Network and Systems Manage-
ment, Special Issue on E-Business Management, Vol.11, No.1, Plenum Publishing
Corporation, Mar, (2003)

7. Hung, P.C.K, ”A Primitive Study of Logrolling in e-Negotiation”, Proceedings of
the 36th Annual Hawaii International Conference on, Jan, (2003), 29-36

8. Keeney, R., ”Decision Analysis: An Overview”, Operations Research, Vol.30, No.5,
(1982), 803-838

9. Sanghyun Park, Sung-Bong Yang, ”Mediator Agent System for Reciprocity and
Negotiation using Multi-Attributes”, Journal of KISS: Software and Applications,
Vol.31, No.3, Mar, (2004), 308-316

10. M. Tian, A. Gramm, T. Naumowicz, H. Ritter, J. Schiller, ”A Concept for QoS
Integration in Web Services”, Fourth International Conference on Web Information
Systems Engineering Workshops, Dec, (2003), 149-155

11. Tao Yu, Kwei-Jay Lin, ”The Design of QoS Broker Algorithms for QoS-Capable
Web Services”, IEEE International Conference on the e-Technology, e-Commerce
and e-Service, Mar, (2004), 17-24

12. Shuping Ran, ”A Model for Web Services Discovery With QoS”, ACM SIGecom
Exchanges, Vol.4, Issue.1, (2003) 1-10

A Study on Web Services Selection Method Based on the Negotiation 73

13. NCA, ”A Study on Technical Trends and Deployment Strategies of Web Service
Quality Management”, National Computerization Agency Research Report, Dec,
(2003), Available online: http://www.nca.or.kr/eindex.htm

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 74-80, 2005.
 Springer-Verlag Berlin Heidelberg 2005

CA-Ex: A Tuning-Incremental Methodology for
Communication Architectures in Embedded Systems1

Haili Wang, Jinian Bian, Yawen Niu, Kun Tong, Yunfeng Wang

Department of Computer Science and Technology, Tsinghua University,
Beijing, 10084, P.R.China

{Whl01, Nyw03, Tk02, Wangyf00}@mails.tsinghua.edu.cn,
Bianjn@tsinghua.edu.cn

Abstract. The communication architecture (CA) problem is at the very heart of
system level design related to the development of distributed embedded sys-
tems. The design of efficient CAs is pivotal because communication is becom-
ing the most important source of on-chip desired performance numbers. In this
paper we focus on the aspects of CA design in heterogeneous systems consist-
ing of arbitrarily linked multi-components, and introduce a new design meth-
odology named CA-Ex which enables a tuning-incremental architecture explo-
ration. Unlike previous research efforts, CA-Ex employs three kinds of optimi-
zation strategies to implement topology, mapping and scheduling scheme, and
interface circuits. One of the major contributions is that we summarily present
four architecting scenarios and outline a unified framework to achieve a speci-
fication-modeling-exploration process. Finally, we evaluate CA-Ex through an
illustrative case study on JPEG decoder and describe its advantages.

1 Introduction

Designing distributed embedded systems is an error-prone and time-consuming proc-
ess because of complicated interactions during hardware/software codesign and strict
performance and cost requirements. The heterogeneous systems, such as digital tele-
vision, set-top boxes, mobile terminals, are usually composed of programmable proc-
essors, off-the-shelf application-specific components and various types of intercon-
nected communication architectures. With the rapidly increasing computation and
communication power in embedded systems owed to manufacturing technology,
designers rely more and more on automatic design tools and sound methodologies
that allow them to explore a large amount of design solutions at the system level [1].

One of the key problems in embedded systems is the architecting of communica-
tion infrastructure for quickly exploring alternative solutions. It serves as a middle
connecting link between the preceding algorithm-level and the following implementa-

1 This work is supported in part by National Natural Science Foundation of China under grant

NSFC-90207017, NSFC-60236020, NSFC-60236011 and NSFC-60121120706, and Hi-Tech
Research & Development (863) Program of China under grant 2003AA115110.

CA-Ex: A Tuning-Incremental Methodology for Communication Architectures 75

tion-level, as illustrated in Fig.1. The problem in CA design that designers want to
solve is to find the best system architecture, including automatic generation of inter-
connect topologies, appropriate mapping of functionality tasks and communication
channels, and optimal determination of communication protocols [2][3].

Mapping

Refinement

Modification

Evaluation

Algorithm
~ 10x

Architecture

> 100x

Implementation

>> 1000x

Embedded Systems

SW

Spec.

Focus

 Platform-based

Spec. Arch.

 Component-based

Spec.

Arch.

(c) (d)

Refinement

Spec.

Arch.

(b)

Arch.

Spec.

(a)

Transformation Mapping
Generation

Fig. 1. Three design abstraction levels Fig. 2. Four scenarios of architecting

A large body of work focuses on CA design. There exist mostly two categories of
design approaches: one is based on dynamic simulation technique of the entire system
to increase the accuracy; the other is based on static analysis and evaluation for trade-
offs between design time and efficiency. Lahiri et al. presented an exploration tech-
nique called CAT (Communication Architecture Tuners) by utilizing two phases of
performance-analysis methodology to explore CA [3]. Renner and Glesner introduced
performance modeling, generation and optimization approach of communication
infrastructure for architecture-precise rapid prototyping of real-time embedded sys-
tems [4]. Eles et al. focused on the aspects related to the synthesis of distributed sys-
tems and carefully studied on the impact of scheduling with bus access optimization

[5]. Based on a specific hierarchical class library [6], Zhu developed a related model-
ing framework for on-chip architecture and integrate this into a simulation environ-
ment. In [7], Russell and Jacome addressed an architecture-level performance evalua-
tion, which adapts to component-based embedded systems by the use of a designer-
specified scenario to support early space exploration.

Compared to the existing approaches above, our contributions are as following: 1)
we summarily present four architecting scenarios and outline a unified framework to
achieve architecture exploration. 2) We utilize the advantages of static analysis and
dynamic simulation technique to trade-off accuracy and efficiency. 3) We propose a
tuning-incremental methodology to support communication architecting.

The remainder of the paper is organized as follows. Section II introduces four ar-
chitecting scenarios and our related methods. Section III describes our CA-Ex meth-
odology for communication architecture, followed by an illustrative case study on the
JPEG decoder in Section IV. The conclusion is given in Section V.

2 Architecting Scenarios and Our Methods

As mentioned previously, on-chip communication architecture has a major impact on
performance in the design of heterogeneous systems, which can accommodate differ-
ent components that communicate using an appropriate communication manner.

76 Haili Wang et al.

As shown in Fig.2 (which is an update of the similar figure shown in [8]), there are
generally four design scenarios for the system architecting that implement the desired
specification. The first one as shown in Fig.2 (a) is to satisfy the constraints on sys-
tem and find an optimal architecture by a few of defined transformation rules for a
given specification. The second one, as illustrated Fig.2 (b), is a reverse procedure
that gradually refines the system specification until adapting to a given architecture.
Fig.2 (c) and Fig.2 (d) show two popular approaches (platform- /component-based)
that adopt an implementation-independent idea between the specification and archi-
tecture. The way enables both of them to develop and design respectively, and reduce
design cycle time. In our methodology, we give more attention to both (b) and (c)
methods and combine their advantages to implement architecture design.

Building the system architecture based on on-chip communication will raise the
challenges of efficient mapping from algorithm to architecture due to the essential
distinction between the two-level models, as shown in Fig.3. The algorithm model is
an untimed and technology-independent description, while the architecture model is a
timed and implementation-ready representation. Therefore, the direct mapping is an
unclear and difficult task. Introducing an intermediate process called transaction-level
will be a preferable practice, which can deal with the existing problems resulting from
the representation style and behavior difference between them. Fig.3 illustrates basic
elements for creating a realistic functional and architectural model. For instance, there
are five types of components to generate a virtual prototype at transaction level. It is a
simple task to achieve the transformation of algorithm into transaction model, fol-
lowed by a smooth mapping from the transaction to architecture. Our methodology
adopts this method as the front-end of architecting design.

Mapping ?

Transaction Level

Global Variable

Comm. Element
(FIFO)

Module/Port

Process

Event/Signal

Architecture Level

Comm. Network

Processor/
Component

Event/Signal

Memory

Comm./IF
Circuit

Mapping

Algorithm Level

Procedure/
Function

Global Variable

Control/Data
Edge

Transformation

Fig. 3. Mapping from algorithm to architecture

3 CA-Ex Methodology

In this section, we present our new architectural design methodology called CA-Ex
(Communication Architecture Exploration) that enables designers to easily explore
the architecture-level space and achieve a specification-modeling-exploration process.
CA-Ex provides a unified framework and divides the whole design flow into five
sub-processes, as depicted in Fig.4. One of the advantages by the use of this method-
ology is that it can directly and accurately reflect and inherit design constraints (such
as delay) during the mapping from function to architecture, as well as generate appli-
cation-specific communication architectures in an incremental manner.

CA-Ex: A Tuning-Incremental Methodology for Communication Architectures 77

Heuristic Info.

Func.- Arch.
Mapping

alter partial
topology

modify/conf.
comm. para.

change local
mapping solution

Yes

No

Arch. Topology
Generation

PEs/IPs Lib.

Initial Arch.
Graph (IAG)

Configurable
Comm Perf.

Graph (CCPG)

Architecture Level

Implementation Level

Comm. Perf.
Metrics

Satisfied?

Incremental
Arch. Tuner

 Arch.
Template Lib.

SystemC

Executable
Arch. Spec. Perf.

Model Lib.

Implementation Cost
Evaluation

Simulation

Embedded Systems

1 2

3

4

5
Comm.

Performance
Analysis

CA-Ex Methodology

CG HCDFG

Fig. 4. CA-Ex system design flow diagram

3.1 Functional and Architectural Model

Before introducing CA-Ex Methodology, we first give the definition of communica-
tion graph (CG), which is used as the functional description of system in transaction
level. CG = {V, E, T, IO} is a directed cyclic graph, where v represents each task in
system behaviors. A relation edge eij = (vi, vj) E indicates that data will be trans-
ferred from vi to vj. To each eij, we assign tij T to depict the times of data exchang-
ing between vi and vj. To separate computation from communication and enable reuse,
we have constructed a virtual-component communication model to describe data
transmission on a given architecture [8]. The model is denoted as a three-tuple set:
{VCI, VP, VC}, where VCI, VP, and VC represent virtual component interface, vir-
tual port, and virtual channel, respectively. The model encapsulates the implementa-
tion details of communication. Unlike previous work mentioned, we take the interface
mechanism into account and model it as IO = {VCI, VP, VC}. It is useful for multi-
component design because communication is a must to be considered.

The distributed architecture model of embedded systems is featured with multiple
heterogeneous processing elements (PE) connected through a network of communica-
tion channels (CH). In design flow, nodes in CAG are mapped to PEs, while edges to
CHs. In addition, a technology library is built to deposit the attributes of available PE
and Ch types. For example, the chip area and price are associated with each PE type,
while the attributes in each CH type include the chip area/price per port and transfer
speed in correspondence with interface types. Note that interface type represents the
communication protocol and port arrangement of a CH, which should be compatible
with PEs it wants to connect. If it is not, an interface transducer will be inserted to
smooth the communication. Based on the component and technology libraries, het-
erogeneous systems can be composed of arbitrarily linked programmable processors
and off-the-shelf application specific components.

3.2 Design Flow

As mentioned above, the architecting is an activity embedded in a system develop-
ment process. The activity in our CA-Ex methodology requires two types of inputs: 1)

78 Haili Wang et al.

A partitioned golden HCDFG (Hierarchical CDFG), which is a representation model
for the specification of embedded systems after HW/SW partitioning; 2) A template-
based platform; 3) Functional description of system at the transaction-level.

To efficiently find an optimal application-specific architecture, it is required that
the derived architecture model can be analyzed and evaluated in a quick time from a
large number of possible solutions. In CA-Ex, the first step has to start with an ab-
stract architecture model that captures the required system resources. A template-
based technique is used to generate an initial architecture graph (IAG). By obtaining
the results after partitioning, and based on CG, the mapping of system behaviors to
the IAG will be executed, followed by a configurable communication performance
graph (CCPG) which can be generated. The requirements of communication behavior
can be planned to the CCPG according to the result of executable transaction-level
model. One of key features is to adopt the combination method of static analysis and
dynamic simulation to tradeoff accuracy and efficiency. And then, the CCPG model
is analyzed to evaluate and determine candidate communication architectures. Our
goal is to derive a worst case delay and cost by which the system completes its execu-
tion, such that this delay is as small as possible and the cost is guaranteed to generate
the sound architecture topology by optimizing protocol parameters of the communica-
tion between processes, or changing local mapping solution.

 PE (IP)
SystemC
Module

Behaviors

Write

Read

Conf.
Comm.

Port

Transaction Level

Comm. Component

Interface Channel

Port SystemC-Centric
Design

8 x 8
Block

8 x 8
Block

8 x 8
Block

Encoding

HT QT 8 x 8
Block

8 x 8
Block

Compressed
Bit stream

JPEG
DCT Quantization

Fig. 5. SystemC-based architecture model Fig. 6. JPEG image compression

In order to support efficient architecture exploration, CA-Ex introduces a popular
method using an idea of the platform-based design. The architecture model has been
constructed by SystemC 2.0 [9]. As shown in Fig.5, the models are defined and pa-
rameterized using performance metrics. Thus, performance analysis based on the
CCPG model can be incorporated with SystemC 2.0 simulation kernel, and the analy-
sis results will be back-annotated to the CCPG. An important characteristic in archi-
tecture exploration is that an incremental process has been introduced. We employ
three tuning strategies on performance critical paths instead of globally replacing one
candidate from the architecture library. These strategies include: a) Alter partial to-
pologies; b) Change local mapping solutions; c) Configure or modify communication
protocol parameters. In addition, considering the application-specific characteristics,
the design space can be pruned to generate an optimal architecture.

4 Case Study: JPEG Decoder Application

To implement an efficient exploration and evaluate CA-Ex methodology, we choose a
JPEG application as a testbench. Fig.6 shows a basic design flow of JPEG encoder

CA-Ex: A Tuning-Incremental Methodology for Communication Architectures 79

algorithm. In JPEG compression algorithm, there are mainly three processes: Discrete
Cosine Transform (DCT), Quantization and Huffman code. In the succeeding case
study, we focus on the JPEG decoder that is a reverse transformation process.

Virtual Communication Platform

iQuant
Table

iQuant

iHuffman

iHuffman

Table

Cfifo(64)

VP

VC
 VC

I mainProc IDCT

Comm.

Cfifo(1024) Cfifo(256)

Cfifo(64) Cfifo(256)

Cfifo(64)

iQuant

Mapping

IDCT

iHuff

iQuant
Table

iHuff
Table

Main

Transaction
Level Spec.

Comm.
Architecture

Read/Write

 HB

Bus2 (FIFO)

II SB IB

Interface
Transducer

Bus3 (ColdFire)

MP IL MB

Interface
Transducer

Bus4 (Handshake)

DM DP GY

IM

GM DE

Bus1 (FIFO) Width: 32; Speed: 64

Width: 32; Speed: 64

Width: 16; Speed: 32 Width: 32; Speed: 25

Fig. 7. Transaction-level modeling Fig. 8. Topology exploration

As discussed previously, we introduce the transaction-level modeling to smooth
the mapping process between algorithm and architecture. The left of Fig.7 illustrates
an example of JPEG decoder modeled as a corresponding CG in transaction level
discussed above. Each node represents a set of tasks to implement a given behavior,
such as IDCT that reverts to a real image from an equivalent in the frequency domain.
The communication among nodes can be achieved by encapsulated read and write
functions using SystemC master/slave library. The right of Fig.7 illustrates an archi-
tecture model with six modules, which are all connected by custom bus but only the
IDCT is connected with the mainProc module by the point-to-point manner. The
modeling results are summarized in Table 1. It can be seen from the table that two
types of communication manner are used in this architecture. The Cfifo is viewed as
channel FIFO and the number followed by it is the depth of FIFO.

Table 1. Results of communication architecture exploration

Source
Node

Link
Node

Comm.
Manner

Source
Node

Link
Node

Comm.
Manner

IDCT Cfifo(64) iHuff Cfifo(256)
iHuff Signal(1) iQuant table Cfifo(256) iQuant

iQuant table Signal(1)
mainProc

iHuff table Cfifo(1024)
mainProc Signal(1) iQuant table iQuant Signal(1)

iQuant Cfifo(64) iHuff table iHuff Signal(1) iHuff
iHuff table Signal(1) IDCT mainProc Cfifo(64)

The outputs of architectural exploration by using CA-Ex include: golden topology,

mapping and scheduling scheme, performance statistics, and interface circuits. Until
now, we have achieved the automatic generation of interconnect topology. The other
three parts of results are not implemented completely and under investigation.

Taking the CG above as input, we apply the channel mapping process to generate
the fine-granularity architecture for JPEG decoder (for exploring more space in archi-
tecture level, we recombine different tasks in JPEG decoder), shown in figure 8. The
diamonds in the final CA represent interface transducers for smoothing communica-
tion between PEs with incompatible protocols. The results of topology exploration
can be also seen from the figure that four different types (such as width, speed, and
communication protocol) of CA mechanism (buses) are used in this architecture.

80 Haili Wang et al.

5 Conclusions

In this paper, we have presented a novel architecting design methodology called CA-
Ex, to assist designers to explore early architecture space for distributed embedded
systems. We also illustrate design scenarios and related issues in the architecture-
level for achieving a specification-modeling-exploration process, and propose an
overall design flow to solve them. We have used the CA-Ex methodology for a case
study of JPEG decoder application. Experimental results conducted to evaluate the
effectiveness of the unified framework indicate that the methodology can perform
well and implement space exploration.

Future work will focus on investigating the intrinsic relation between algorithm
development and architecture design, and smoothing the integration of architecting
and low-level layout.

References

1. V. D. Zivkovic, P. Lieverse: An Overview of Methodologies and Tools in the Field of Sys-
tem-level Design. Lecture Notes in Computer Science, Vol. 2268. Springer-Verlag, Berlin
Heidelberg New York (2002) 74-89

2. J-P. Calvez, V. Perrier: SOC Architecting and Design with CoFluent Studio, Concepts and
Methodology -Part I-. available at: http://www.cofluent.com

3. K. Lahiri, A. Raghunathan, S. Dey: Design Space Exploration for Optimizing On-Chip
Communication Architecture. In IEEE Trans. on Computer-Aided Design of Integrated Cir-
cuits and Systems, Vol. 23, No. 6, pp. 952-961, June 2004.

4. F-M. Renner, J. Becker, M. Glesner: Automated Communication Synthesis for Architecture-
precise Rapid Prototyping of Real-Time Embedded Systems. In IEEE International Work-
shop on Rapid System Prototyping, pp. 154-159, 2000.

5. P. Eles, A. Doboli, P. Pop, Z. B. Peng: Scheduling with Bus Access Optimization for Dis-
tributed Embedded Systems. In IEEE Trans. on Very Large Scale Integration (VLSI) Sys-
tems, Vol.8, No.5, pp. 472-491, Oct. 2000.

6. X. P. Zhu, S. Malik: A Hierarchical Modeling Framework for On-Chip Communication
Architecture. In IEEE/ACM International Conference on Computer Aided Design, pp. 663-
670, Nov. 2002.

7. J. T. Russell, M. F. Jacome: Architecture-Level Performance Evaluation of Component-
Based Embedded Systems. In Proc. of the 40th Design Automation Conference, pp. 394-
401, 2003.

8. Haili Wang, Qiang Wu, Jinian Bian et al.: A Novel Virtual-Real Component Synthesis Ap-
proach in SoC Design. In the 8th International Conference on CAD/Graphics03, Macau, pp.
151-156, Oct. 2003.

9. Open SystemC Initiative (OSCI). available at: http://www.systemc.org

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 81-87, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Efficient Parallel Spatial Join Processing Method in a
Shared-Nothing Database Cluster System

Warnill Chung1, Soon-Young Park2, and Hae-Young Bae2

1Electronics and Telecommunications Research Institute,
161 Gajeong-dong, Yuseong-gu, Daejeon, 305-350, Korea

wnchung@etri.re.kr
2Dept. of Computer Science & Information Engineering, INHA University,

253 YongHyun-3Dong, Nam-Gu, Inchon, 402-751, Korea
{sypark, hybae}@dblab.inha.ac.kr

Abstract. Spatial database cluster consisted of several single nodes on high-
speed network to offer high-performance is raised. But, research about spatial
join operation that can reduce the performance of whole system in case process
at single node is not achieved. Therefore, we propose efficient parallel spatial
join processing method in a spatial database cluster system that uses data parti-
tions and replications method that considers the characteristics of spatial data.
Since proposed method does not need the creation step and the assignment step
of tasks, and additional message transmission between cluster nodes that appear
in existent parallel spatial join method, it shows performance improvement of
23% than the conventional parallel R-tree spatial join for a shared-nothing ar-
chitecture about expensive spatial join queries.

1 Introduction

Cluster systems have been studied widely. However, researches about cluster system
for spatial data are insufficient. But, it is very inefficient that division method of data
and redundancy method that is used in existing spatial database cluster system apply
to spatial data of bulk that expensive CPU operation that regional adjacency is high
[3,8,9,11]. Spatial database cluster manages spatial data at each cluster node by divid-
ing spatial data into spatial relations, and uses partial replication method that repli-
cates regional relation [1,7]. Spatial join query is achieved with parallel at all cluster
nodes that manage redundancies of join relation and each node executes spatial join
operation about space objects of logical division area allocated to own node. Result
tuples of spatial join operation performed at each node are transmitted to query proc-
essing node by pipelining. Query processing node transmits query results that are
transmitted from other nodes to user without removing redundancy result separately.
In proposed spatial database cluster system, parallel spatial join method does not need
work generation and assign step between each node those are need to achieve parallel

*This research was supported by University IT Research Center Project.

82 Warnill Chung, Soon-Young Park, and Hae-Young Bae

spatial join [10]. In the midst of parallel spatial join operation, it processes expensive
spatial join query rapidly because there is no message transmission cost for work
division between cluster nodes. Assignment of logical division area shortens the
query processing time because redundancy of disk I/O for equal object between nodes
is no need. Also, several nodes do not achieve expensive refinement operation repeat-
edly at filter step of spatial join operation by filtering method that uses central point
of MBR of object in the logical division area border. And response time is fast be-
cause relevant results are transmitted to user who demands query immediately with-
out achieving additional work of union and so on to remove duplicate results about
parallel space join results. Hardware platform of spatial database cluster for our re-
search is based on a shared-nothing structure that is consisted of several independent
workstations and services stably large data [5].

2 Related Works

Spatial join operation is to seek a set of object pair that satisfied specification spatial
condition that is contain, cross, and overlap etc for two set of spatial data. And it has
characteristic that operation time increases rapidly according as the number of object
increases by requiring multiplex injection for two sets of data [3]. Previous research
about these spatial join was spatial join that uses mostly single processor, and actual-
ity spatial join's performance was progressed rather. But, in spite of this research,
spatial join at single processor is not satisfying users who require fast response time.
The reason is that the numbers of object to be spatial join's target is much and opera-
tion of each object is complicated and it takes much unit operation time [2]. Many
researches for parallel spatial join [2,3,4,6] have been studied to overcome limit in
this single processor by using multi processor. Among them, there is a research about
distributed parallel spatial join that makes two nodes participate spatial join parallel
under distributed spatial database system environment [8]. Spatial join characteristic
is that target object is a lot and expense of refinement step in operation of object pair
costs much. This separates and runs operation for each object pair [6]. Also, it pro-
vides advantage on performance to divide into filter step and refinement step [3].
Both a point that it is no relativity in operation of this object pair and a point that can
perform by multistage are very profitable characteristic inside parallel.

3 Parallel Spatial Join Scheme

3.1 Determination of Cluster Node to Achieve Join

Cluster node that must process spatial query gets list of cluster nodes to run spatial
join query parallel through position information of local relation managed in global
meta-information. These nodes transmit query of parse tree form and own node ID to
each nodes without special data transmission and request spatial join operation be-
cause those stores relevant relation already. Each cluster nodes that are required spa-

Efficient Parallel Spatial Join Processing Method 83

tial join operation achievement run spatial join operation about spatial objects in
relevant area after those find out spatial join's area to perform by oneself by referring
logical partition area of join target relations in own local meta information. For ex-
ample, let's suppose that replicated spatial relation R and S in node 1, node 2 and
node 3 join as following condition. Following join query is separated to following
three queries by LPA that is LPA_Node1, LPA_ Node2 and LPA_ Node3.

SELECT * FROM R, S WHERE CONTAINS(R.Obj, S.Obj);
Each cluster node that is requested spatial join operation achievement runs spatial

join operation about spatial objects that overlapped in own logical partition area.
After that, it transmits result records to node that requests spatial join operation.

local
A

Node1 Node2 Node3 Node4

local
C

local
B

local
A

local
A

local
B

local
C

local
B

LocalA_r
iver

LocalA_roa
d

Request join

Parallel execution

Transmission of results

User
Reques queries

Final result

Allocated logical
partition area

Fig. 1 Parallel spatial join achievement by using logical partition area

Fig. 1 is an example of parallel spatial join achievement that uses logical partition
area about spatial join query for the river and road layer in local area A. Query proc-
essing node that receives query from user transmits user query to relevant nodes and
achieves parallel join operation after it searches nodes that store join target relations
repeatedly by referring global meta information. Nodes that obtain spatial join opera-
tion achievement achieve spatial join operation about spatial objects that are included
in logical partition area that is established to own local meta information. Spatial
join's results outputted parallel at each node are passed to query processing node and
the query processing node transmits final results to user.

3.2 Replicated Candidate Object Elimination Method at Filtering Step

By performing filtering step using CPM(center point of MBRs) of object, our method
prevents achieving expensive refinement operations that occur repeatedly about spa-
tial objects in partition area boundary. Local node that processes query achieves spa-
tial join operation about objects overlapped with logical division area of own local
meta-information. However, if parallel spatial join operation is based on space parti-
tioning, expensive spatial join operation is executed repeatedly like Fig. 2. By taking
advantage of filtering technique which uses center point of spatial object’s MBR,
expensive replicated join operation which occurs due to objects in partition area

84 Warnill Chung, Soon-Young Park, and Hae-Young Bae

boundary is removed. All tuples of spatial relation have spatial header information to
approach spatial object fast. This header information has MBRs and CPM. By filter-
ing spatial objects that exist in logical partition area boundary line according to CPM,
replicated expensive refinement operation is prevented in several nodes.

O b je c t M B R o f
re la t io n R

O b je c t M B R o f
re la t io n S

O b je c ts th a t c a u s e
r e p l ic a te d s p a t ia l jo in

N o d e 1

N o d e 3 N o d e 2

Fig. 2 Spatial objects by replicated join

Fig. 3 shows spatial join operation about spatial relation A and B stored replica in
cluster nodes. Spatial object A1 and B1 exist on boundary line of NODE1_LPA and
NODE2_LPA. Filtering step determines standard relation and then produces final
candidate object pair according to standard relation and CPM of candidate object. As
doing like this, replicated refinement operation that is caused due to replicated candi-
date object pairs is prevented.

A 2

A 1

B 2

B 1

N o d e 1

N o d e 4

N o d e 2

N o d e 3

N O D E 1 _ L P A N O D E 2 _ L P A

N O D E 4 _ L P A N O D E 3 _ L P A

S p a t i a l r e l a t i o n A

S p a t i a l r e l a t i o n B

Fig. 3 Spatial join operation of spatial relation A and B

Fig. 4 shows these cases. LPA is logical partition area and A is MBR of spatial ob-
ject within standard relation.

L P A L P AL P A

A

B A

B

L P A

A B

A
B

1) 2) 3) 4)

Fig. 4 The case being candidate object pair on LPA boundary

Efficient Parallel Spatial Join Processing Method 85

Like 1) and 2) in Fig. 4, in case CPM of spatial object in standard relation is in
own logical partition area, refinement operation is achieved as outputting final candi-
date object pair. In case of 3) and 4), Node which manages logical partition area un-
der relevant area is achieved. However, like Fig. 5(3), spatial objects that are included
perfectly in other logical partition area can be omitted in filtering step.

L P A

A

B

L P A

A

B

L P A

A B

A . c e n t L P A a n d
B . c e n t L P A

1) A . c e n t L P A a n d
A . r e c t L P A a n d
B . r e c t L P A

2) A . r e c t L P A a n d
B . r e c t L P A

3)

Fig. 5 The case being candidate objects on LPA boundary

Fig. 5 shows the case that outputs final candidate object pair in cluster node that
has LPA’s logical partition area and conditional expression. Filtering operation uses
R tree that is constructed in all spatial relations. Filtering algorithm is based on R-tree
that uses replicated candidate object elimination method.

4 Performance Evaluations

The proposed method and conventional method [4] were implemented in shared-
nothing spatial database cluster system [7]. R-tree index constructed in all relations
that are used in estimation and filtering step is achieved by using R trees in spatial
join. Also, transmission time that was spent to transmit relevant results to user was
except in this performance estimation because that time is equal in all methods.

Table 1 is information about spatial relations that are used in this experiment. Spa-
tial join achievement used crossing operation, and the number of cluster node to take
part in parallel spatial join operation is four.

Table 1. Detail inforamtion of realtions for evaluations

 Relation name Relation size(Kb) No. of Tuples
Subway 42 112 CASE 1 HangjungDongGae 80 100
River 498 1,220 CASE 2 Dong-KyunGae 607 587

Building 1,348 7,739 CASE 3 Road 1,394 6,482

Firstly, we analyze the query processing time according to size of spatial join tar-

get relation. Fig. 6(a) shows that proposed method achieves faster query processing
than existing method according to size increment of relation. This shows that pro-
posed method is more efficient. The reason is because this method achieves spatial

86 Warnill Chung, Soon-Young Park, and Hae-Young Bae

join operation parallel at all nodes by using logical partition area assigned in each
node without process of work creation and so on.

0

500

1000

1500

2000

2500

CASE 1 CASE 2 CASE 3
No. of Tuples

Pr
oc

es
si

ng
 T

im
e(

m
s)

Conventional Method Proposed Method

0

200

400

600

800

1000

2 3 4 5 6 7 8 9 10
No. of Cluster Node

Pr
oc

es
si

ng
 T

im
e(

m
s)

Conventional Method Proposed Method

(a) Size of Relation (b) Number of Cluster Nodes

Fig. 6 Variations of parallel spatial join performance

Secondly, we analyze the query processing time according to increment of the
number of cluster node. Spatial relation that is used in estimation is the river of CASE
2 and Dong-KyungGae and spatial join operation is crossing operation. Fig. 6(b)
shows that processing time of proposed method are decreased greatly than existing
techniques according to increment of cluster node’s number. According to increment
of cluster node, this method has no transmission of message between nodes and equal
Disk I/O frequency by using logical partition area based on MBR that considers area
adjacency of spatial data.

5 Conclusions

With the rapid growth of the Internet, significant numbers of web-based information
systems have come to rely on database cluster technology to serve large user commu-
nities and to deal with peak loads. Therefore, we proposed a parallel spatial join
method to process expensive spatial join operation efficiently by using partition
method and replication method of spatial data in spatial database cluster system in
terms of high throughputs, fast response time, data consistency, linear scalability and
fault-tolerance. In our method, there is no need task creation and allocation of con-
ventional method because each cluster node achieves spatial join operation about
spatial objects in LPA allocated to oneself. So, expensive spatial join queries can be
processed rapidly because there is not necessary message transmission cost for task
distribution between cluster nodes.

References

1. B. Kemme, Database Replication for Clusters of Workstations, Ph.D. thesis, Department of
Computer Science, ETH Zurich, Switzerland, 2000.

2. J.D. Kim, and et. al, A Study on Task Allocation of Parallel Spatial Joins using Fixed Grids,
KIPS Journal Vol.8-D NO.04 pp.347~360, 2001.

Efficient Parallel Spatial Join Processing Method 87

3. T. Brinkhoff and H.P. Kriegel, Parallel Processing of Spatial Joins Using R-trees, Proceed-
ings of 12th Int’l Conf. on Data Eng.(ICDE’96), New Orleans, LA, 1996.

4. L. Mutenda, et. al, Parallel R-tree Spatial Join for a Shared-Nothing Architecture, 1999 Int’l
Symposium on Database Applications, pp. 429-436, 1999.

5. Y.I Jang, et. al, Web GIS Cluster Design with Extended Workload-Aware Request Distribu-
tion Strategy, Proc. of KISS, VOL. 28, NO.02, pp.304 ~306, 2001.

6. Y.D. Seo, Implementation and Performance Evaluation of Parallel Spatial Join Algorithm
using R-tree, Master Thesis, Pusan National Univ., 1999.

7. Chung-Ho Lee, A Partial Replication Protocol and a Dynamically Scaling Method for Data-
base Cluster Systems, Ph.D Thesis, Inha Univ., 2003.

8. H.J. Lee, Parallel Pipelined Spatial Join Method for Efficient Query Processing In Distrib-
uted Spatial Database Systems, Master Thesis, Inha Univ., 2002.

9. C.G. Li, Load Balancing Method using Proximity of Query Region in Web GIS Clustering
System, Master Thesis, Inha Univ., 2001.

10. Jignesh M. Patel and David J. Dewitt, Partition Based Spatial-Merge Join, Proc. of ACM
SIGMOD, Vol.25, Issue 2, pp. 259-270, 1996.

11. K. Tamura, and et. al, The Parallel Processing of Spatial Selection for Very Large Geo-
Spatial Databases, ICPADS 2001, pp. 26-30, 2001.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 88-93, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Maximizing Parallelism for Non-uniform Dependence
Loops Using Two Parallel Region Partitioning Method

Sam Jin Jeong

 Division of Information and Communication Engineering, Cheonan University
Anseo-dong 115, Cheonan City, Korea 330-704

sjjeong@cheonan.ac.kr

Abstract The existing parallelizing compilers can parallelize most of the loops
with uniform dependences, but they do not satisfactorily handle loops with
non-uniform dependences. Most of the time, the compiler leaves such loops
running sequentially. Unfortunately, loops with non-uniform dependences are
not so uncommon in the real world. This paper presents the two parallel region
partitioning method of nested loops with non-uniform dependences for maxi-
mizing parallelism. By parallelizing anti dependence region using variable re-
naming, we will divide the iteration space into two parallel regions by a line in
case that FDT (Flow Dependence Tail set) does not overlap FDH (Flow De-
pendence Head set). Comparison with some related works shows more parallel-
ism than other existing methods.

1 Introduction

Given a sequential program, a challenging problem for parallelizing compilers is to
detect maximum parallelism. It is generally agreed upon, and shown in the study by
Kuck and et al. [1] that most of the computation time is spent in loops. Therefore,
current parallelizing compilers pay much of their attention to loop parallelization. A
loop can be easily parallelized if there are no cross-iteration dependences. But loops
with cross-iteration dependences are very common in normal programs.

Some techniques, based on Convex Hull theory [5] that has been proven to have
enough information to handle non-uniform dependences, are the minimum depend-
ence distance tiling method [4], the unique set oriented partitioning method [3], and
the three region partitioning method [7].

Fig. 1(a) shows the dependence patterns of Example 1 in the iteration space.

Example l.
do i = 1, 10

 do j = 1, 10
 A(2*i+3, j+1) = . . .

 . . . = A(i+j+3, i+2*j+1)
 enddo

enddo

Maximizing Parallelism for Non-uniform Dependence Loops 89

This paper will focus on parallelization of flow and anti dependence loops with
non-uniform dependences. Especially, it shows us a case that the iteration space is di-
vided into two parallel regions by a line.

(a) (b)

Fig. 1. (a) Iteration Spaces (b) CDCH of Example 1

The rest of this paper is organized as follows. Chapter two describes our loop
model, and introduces the concept of Complete Dependence Convex Hull (CDCH). In
chapter three, we define the properties of FDT (Flow Dependence Tail set) and FDH
(Flow Dependence Head set). We show how to find FDT and FDH and to divide it-
eration space into two parallel regions by a line. Chapter four shows comparison with
related works. Finally, we conclude in chapter five with the direction to enhance this
work.

2 Program Model and Dependence Analysis

We consider doubly nested loop program of the form shown in Fig. 2. For the given
loop, l1 (l2) and u1 (u2) indicate the lower and upper bounds respectively, and should
be known at compile time. We also assume that the program statements inside these
nested loops are simple assignment statements of arrays. The dimensionality of these
arrays is assumed to be equal to the nested loop depth. To characterize the coupled
array subscripts, the array subscripts, f1(I, J), f2(I, J), f3(I, J), and f4(I, J), are linear
functions of the loop index variables.

do I = l1, u1

 do J = l2, u2
A(f1(I, J), f2(I, J)) = . . .

 . . . = A(f3(I, J), f4(I, J))
 enddo

enddo

Fig. 2. A doubly nested loop model

The loop in Fig. 2 carries cross iteration dependences if and only if there exist four
integers (i1, j1, i2, j2) satisfying the system of Linear Diophantine Equations given by
(1) and the system of inequalities given by (2). The general solution to these equations

90 Sam Jin Jeong

can be computed by the extended GCD or the power test algorithm [6] and forms a
DCH (Dependence Convex Hull).

f1(i1, j1) = f3(i2, j2) and f2(i1, j1) = f4(i2, j2) (1)

l1 i1, i2 u1 and l2 j1, j2 u2 (2)

From (1), (i1, j1, i2, j2) can be represented as

 (i1, j1, i2, j2) = (g1(i2, j2), g2(i2, j2), g3(i1, j1), g4(i1, j1))

where gi are linear functions.

From (2), two sets of inequalities can be written as

l1 i1 u1 and l2 j1 u2 and

l1 g3(i1, j1) u1 and l2 g4(i1, j1) u2

(3)

l1 i2 u1 and l2 j2 u2 and

l1 g1(i2, j2) u1 and l2 g2(i2, j2) u2

(4)

And, (3) and (4) form DCHs denoted by DCH1 and DCH2, respectively. Clearly, if
we have a solution (i1, j1) in DCH1, we must have a solution (i2, j2) in DCH2, because
they are derived from the same set of equations (1). The union of DCH1 and DCH2 is
called Complete DCH (CDCH), and all dependences lie within the CDCH. Fig. 1(a)
shows the CDCH of Example 1, which is given in [3].

If iteration (i2, j2) is dependent on iteration (i1, j1), then we have a dependence vec-
tor d(i1, j1) = (di(i1, j1), dj(i1, j1)) = (i2-i1, j2-j1)

So, for DCH1, we have

di(i1, j1) = g3(i1, j1) - i1 = (11 - 1)i1 + 11j1 + 11 and

dj(i1, j1) = g4(i1, j1) - j1 = 12i1 + (12 - 1)j1 + 12

(5)

For DCH2, we have

di(i2, j2) = i2 - g1(i2, j2) = (1 - 21)i2 – 21j2 - 21 and

dj(i2, j2) = j2 - g2(i2, j2) = - 22i2 + (1 - 22)j2 - 22

(6)

The properties of DCH1 and DCH2 can be found in [3].

3 Two Parallel Region Partitioning Method

We define the flow dependence tail set (FDT) and the flow dependence head set
(FDH) as follows. We can form two regions, FDT and FDH, by the algorithm, which
is similar to the algorithm presented in [5]. Fig. 3(a) shows the head and tail sets of
flow dependence, anti dependence in Example 1.

Maximizing Parallelism for Non-uniform Dependence Loops 91

Definition 1 Let L be a doubly nested loop with the form in Fig. 2. If line di(i1, j1) = 0
intersects DCH1, the flow dependence tail set of the DCH1, namely FDT(L), is the
region H, where H is equal to

DCH1 {(i1, j1) | di(i1, j1) 0 or di(i1, j1) 0 } (7)

Definition 2 Let L be a doubly nested loop with the form in Fig. 2. If line di(i2, j2) = 0
intersects DCH2, the flow dependence head set of the DCH2, namely FDH(L), is the
region H, where H is equal to

DCH2 {(i2, j2) | di(i2, j2) 0 or di(i2, j2) 0 } (8)

Property 1 Suppose line di(i, j) = p*i+q*j+r passes through CDCH. If q > 0,
FDT(FDH) is on the side of di(i1, j1) 0 (di(i2, j2) 0), otherwise, FDT(FDH) is
on the side of di(i1, j1) 0 (di(i2, j2) 0).

(a) (b)

Fig. 3. (a) The head and tail sets of flow dependence, anti dependence, (b) FDT and FDH in
Example 1.

By Property 1, we can know the area of the flow dependence head set (FDH) of
DCH1 and the flow dependence tail set (FDT) of DCH2 in Example 1 as shown in
Fig. 3(b).

Because the intersection of FDT and FDH is empty, FDT does not overlap FDH
and the iteration space is divided into two parallel regions by the line di(i2, j2) = 0.
From equation (6), we can get di(i2, j2) = i2/2 - j2/2, and the equation is j = i. So, the it-
eration space is divided into two parallel regions, AREA1 and AREA2, by the line j =
i. The execution order is AREA1 AREA2.

Transformed loops are given as follows.

AREA1

 do i l1 u1

do j max l2 i u2

A(2*i+3, j+1) = . . .
 . . . = A(i+j+3, i+2*j+1)

enddo
 enddo

92 Sam Jin Jeong

AREA2

 do i l1 u1

do j l2 min u2 i
A(2*i+3, j+1) = . . .

 . . . = A(i+j+3, i+2*j+1)
enddo

 enddo

4 Performance Analysis

Theoretical speedup for performance analysis can be computed as follows. Ignoring
the synchronization, scheduling and variable renaming overheads, and assuming an
unlimited number of processors, each partition can be executed in one time step.
Hence, the total time of execution is equal to the number of parallel regions, Np, plus
the number of sequential iterations, Ns. Generally, speedup is represented by the ratio
of total sequential execution time to the execution time on parallel computer system
as follows:

Speedup = (Ni * Nj)/(Np + Ns) (9)

where Ni, Nj are the size of loop i, j, respectively.

(a) (b)

Fig. 4. Regions of the loop partitioned by (a) the three region partitioning; (b) the unique sets
oriented partitioning in Example 1

In Example 1, the three region partitioning method [2], [7] divides the iteration
space into one parallel region, AREA3, and one serial region, AREA1, as shown in
Fig. 4(a). So, the speedup is (10*10)/(1+45) = 2.2.

The unique set oriented partitioning method [3] divides the iteration space into one
parallel region, AREA2, and one serial region, AREA1, as shown in Fig. 4(b). So, the
speedup is the same as the three region partitioning method.

Maximizing Parallelism for Non-uniform Dependence Loops 93

Applying the minimum dependence distance tiling [4], djmin = 2. The space can be
tiled with width = 1 and height = 2, thus 50 tiles are obtained. The speedup for this
method is (10*10)/(50) = 2.

Our proposed method divides the iteration space into two parallel areas as shown
in Fig. 3(b). The speedup for this method is (10*10)/2 = 50.

5 Conclusions

In this paper, we have studied the parallelization of nested loops with non-uniform
dependences to maximize parallelism, and proposed Two Parallel Region Partitioning
Method.
 When there are both flow and anti dependence sets, we eliminate anti dependence
from the doubly nested loop by variable renaming. After variable renaming, there re-
mains only flow dependence in the nested loop. We then divide the iteration space
into the flow dependence head and tail sets.
 If FDT does not overlap FDH, a line between two sets divides the iteration space
into two parallel areas by our proposed method.

In comparison with some previous partitioning methods, our proposed methods
give much better speedup than other methods.

References

1. D. Kuck, A. Sameh, R. Cytron, A. Polychronopoulos, G. Lee, T. McDaniel, B. Leasure, C.
Beckman, J. Davies, and C. Kruskal, "The effects of program restructuring, algorithm
change and architecture choice on program performance," in Proceedings of the 1984 In-
ternational Conference on Parallel Processing, August 1984.

2. C. K. Cho and M. H. Lee, "A loop parallization method for nested loops with non-uniform
dependences", in Proceedings of the International Conference on Parallel and Distributed
Systems, pp. 314-321, December 10-13, 1997.

3. J. Ju and V. Chaudhary, "Unique sets oriented partitioning of nested loops with non-uniform
dependences," in Proceedings of International Conference on Parallel Processing, vol. III,
pp. 45-52, 1996.

4. S. Punyamurtula and V. Chaudhary, "Minimum dependence distance tiling of nested loops
with non-uniform dependences," in Proceedings of Symposium on Parallel and Distributed
Processing, pp. 74-81, 1994.

5. T. Tzen and L. Ni, "Dependence uniformization: A loop parallelization technique," IEEE
Transactions on Parallel and Distributed Systems, vol. 4, no. 5, pp. 547-558. May 1993.

6. M. Wolfe and C. W. Tseng, "The power test for data dependence," IEEE Transactions on
Parallel and Distributed Systems, vol. 3, no. 5, pp. 591-601, September 1992.

7. A. Zaafrani and M. R. Ito, "Parallel region execution of loops with irregular dependences," in
Proceedings of the International Conference on Parallel Processing, vol. II, pp. 11-19,
1994.

The KODAMA Methodology:

An Agent-Based Distributed Approach

Guoqiang Zhong, Satoshi Amamiya, Kenichi Takahashi, and Makoto Amamiya

Graduate School of Information Science and Electrical Engineering,
Kyushu University, 6-1, Kasuga-Koen, Kasuga, 816-8580 Japan
{zhong, roger, tkenichi, amamiya}@al.is.kyushu-u.ac.jp

Abstract. The KODAMA methodology is our endeavour to explore
new analysis and design methodologies, as well as new tools, for de-
veloping ubiquitous applications around autonomous, interacting soft-
ware agents. To concrete and detail the well-known multiagent system
paradigm, KODAMA introduces a plug-and-play agent model, an agent
community model and an on-demand interaction model. At the top level,
a whole system is decomposed into various agent communities. Working
one level down, communities are broken down into independent agents.
At the lowest level, agent roles are the basic entities for specifying agent
activities in online interactions. In this article, we first present how these
new models are exploited in the analysis and design phases; then discuss
some details of how they are implemented in a practical shopping-support
system.

1 Introduction

In an era of ubiquitous computing that Mark Weiser foresaw in [1], the new
software engineering challenges that must be faced are characterised by three key
features. First, most systems are now de facto concurrent and distributed, and
are expected to interact in flexible ways to dynamically exploit services and make
context-dependent decisions that can not be foreseen at design time. Second,
more and more systems are moving towards a customer-centred paradigm, in
which many aspects of customer behaviour should be facilitated. Third, and as
a natural consequence of the first two features, systems have to be designed as
open systems so that new components may join (and existing components may
leave) the system constantly, and interactions may occur at unpredictable times,
for unpredictable reasons, between unpredictable components [2].

Against this background, the KODAMA (Kyushu University Open & Dis-
tributed Autonomous Multiagent) methodology exploits the multiagent system
(MAS) paradigm to provide a set of new analysis and design models for develop-
ing ubiquitous applications. From the micro level to the macro level, KODAMA
introduces a plug-and-play agent model, an agent community model and an
on-demand interaction model. When taken together, these new models form a
complete mapping between the characteristics of complex systems and the key

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 94–102, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The KODAMA Methodology: An Agent-Based Distributed Approach 95

abstractions necessary for modelling agents, agent organisations and agent inter-
actions. These abstractions in turn serve as clear guidelines for the full system
development and maintenance cycle.

Different from other methodologies such as Gaia [3] and ARCHON [4], our
approach offers a holistic methodology and software engineering guidance on (i)
how to conceptualise and structure applications as agent-based systems, (ii) how
to explicitly represent agent social relationships to dynamically form, maintain,
and disband organisations, (iii) how to distribute different tasks throughout the
community. The emphasis of KODAMA therefore is on the smooth integration
of analysis, design, development and maintenance of multiagent systems.

The remainder of this article is organised as follows. Section 2 details the
KODAMA methodology as it pertains to agent-oriented software engineering
(AOSE). Section 3 examines a case study of a shopping-support system to show
some details of its implementation. We then outline, in Section 4, some conclud-
ing remarks.

2 The KODAMA Methodology

The core concepts behind agent-oriented software engineering, in effect, are
agent-oriented decomposition, agent-oriented abstraction and agent-oriented or-
ganisation [5,6].

Agent-oriented decomposition: the problem-solving space of a system is
naturally partitioned into self-contained agents.

Agent-oriented abstraction: agents, either cooperating or competing with
each other, are the right metaphor for both analysing and modelling subsys-
tems, subsystem components, interactions, and organisation relationships.

Agent-oriented organisation: by their very nature, agents are social entities
not only in the sense that they need to interact, but in the sense that they
rely on others according to protocols determined by their roles.

In the following two subsections and Section 3, we detail how these three con-
cepts are exploited in KODAMA for the analysis, design and implementation of
multiagent systems.

2.1 The Analysis Phase

The main goal of the analysis phase is to collect and specify the requirements of
the system-to-be and to identify some generic characteristics of the system that
are likely to remain the same regardless of the actual applications.

Just as the real world can be viewed as a set of autonomous agents that col-
laborate to perform some higher-level function [7], agent-oriented decompositions
based on functions/actions/processes are more intuitive and closer to the way
people might think about a problem [8]. Accordingly, the KODAMA approach
defines a set of preliminary models of agents, interactions and organisations as
follows:

96 Guoqiang Zhong et al.

The preliminary agent model. Basically, agents have full control over
their behaviour and states. An agent, for example, can only ask other agents to
help it by sending them messages. The operating engine of an agent is message-
driven. Furthermore, an agent’s social knowledge is clearly separated from its
domain-level knowledge so that the application designer can reuse many common
facilities provided by the former and focus on the latter.

The preliminary interaction model. This model distinguishes agent in-
teraction activities into message exchanging, message interpretation and inter-
role interaction. It is worth noting that data exchange activities are application
independent and can be insulated from agent-related issues. Meanwhile, the
format and syntax of messages are system-neutral and specified by declarative
agent communication languages (ACL), while the semantics of messages are de-
termined by agent roles in applications and specified by interaction protocols.
Situated in an environment which is subject to ongoing change, it is more real-
istic for agents to have the ability to initiate (and respond to) interactions in a
flexible manner so that they can respond to unanticipated difficulty by sending
requests for assistance at runtime.

The preliminary organisation model. This model captures the depen-
dencies and interrelationships between various agents in the system in terms
of organisation rules and organisation structures. On the one hand, organisa-
tion rules allow designers to explicitly define how new groups of agents can be
formed, how unwanted groups of agents can be disbanded. On the other hand,
organisations of different sizes may require different organisational structures
from a simple collection of peers to a relatively complex multilevel hierarchy.
When an agent interacts with others in the system, the notion of which agents
are primitive can be varied according to its aims and objectives. From a different
level of abstraction, a collection of agents may be viewed as a single conceptual
unit. Agent-based systems always involve ever-changing interrelationships among
their members that are explicitly represented by organisational structures, and
organisation rules that are explicitly defined by interaction protocols.

2.2 The Design Phase

Starting with the three preliminary models outlined in the analysis phase, the
design phase is responsible for eventually elaborating them into real models,
which in turn act as guidelines for actual system implementations.

The plug-and-play agent model. This plug-and-play standard mandates
that an agent is made up of a kernel unit, which encapsulates the common mod-
ules, and an application unit, which encapsulates application-dependent mod-
ules. In practice, the kernel unit is composed of a set of common data and
modules, such as agent ID, registers, control module, communication module,
etc; the application unit is composed of one or more plug-in modules, which can
be seamlessly plugged into the kernel unit.

As mentioned above, agents are inherently message-driven. When a new mes-
sage reaches an agent, it is first checked and interpreted by the kernel unit. Then
the application-dependent part of the message is forwarded to and processed in

The KODAMA Methodology: An Agent-Based Distributed Approach 97

Kernel Unit

Action Output

Invocation Conditions

Plug-in Modules

Social
Knowledge

Domain-level
Knowledge

Message Input

Y

N

Reply/Request
Messages

Fig. 1. The message flow in an agent

the application unit, which may result some action being performed, replying
to the message or sending a new request message(s) (see Figure 1). Typically, a
plug-in module consists of invocation condition, which is checked with incoming
messages, and plug-in program, which is called if the condition is satisfied.

To install a plug-in module, either during development or runtime, an agent
simply adds the invocation condition to the kernel unit and loads the plug-
in program to the application unit. Similarly, an agent can uninstall a plug-in
module by removing its invocation condition and plug-in program. Like class
libraries in object-oriented programming, plug-in libraries in our agent-oriented
approach are modular and reusable.

The agent community model. All agents in KODAMA are categorised
into various agent communities (or communities for short), which in turn are
linked together to form organisation structures. It seems appropriate to divide
complex systems into smaller more manageable sub-systems, each of which can
be represented and handled by one or more agent communities. Social rela-
tionships between agents therefore are specified through their positions within
communities. Determined by the size and needs of applications, organisation
structures can be peer-centred or hierarchical, and can even change dynamically
in an evolutionary fashion.

Our model for communities, namely the portal agent model, is based on
three inter-related concepts: role, interaction and organisation. At the micro
level, roles are the basic building blocks representing generic agent behaviours
that can interact mutually. At the macro level, an organisation is composed of
a set of role-playing agents and their interactions. Agents, on the one hand, are
specified as active communicative entities which play roles. The behaviour of a
multiagent system as a whole, on the other hand, is the result of roles played by
agents.

A portal agent acts only on behalf of a single community and allows all agents
in the community to be treated as one single normal agent, the portal agent itself,
outside the community. In general, an agent’s address in a community, we call

98 Guoqiang Zhong et al.

it logical address, is given by the community name and its unique identifier as
follows:

<logical-address> ::= <community-name> ‘‘.’’ <UID>

<community-name> ::= <logical-address> | ‘‘root’’

<UID> ::= <string>

A community name actually is the logical address of the portal agent that is given
by the higher community. Note that the portal agent of the top community is
called root.

The on-demand interaction model. The KODAMA methodology defines
a push and pull model for online interaction and cooperation between agents.
With this model, agent attributes are divided into those belonging to a pub-
lic profile, which is open and can be made public, and those belonging to a
private profile, which is restricted and cannot be exposed. Agent roles are of-
fered through online interaction between agents by pushing their public profiles
to service agents and pulling available roles and rules back. Those roles are in
turn evaluated locally according to private profiles and corresponding rules. It is
worth noting that the notion of agent roles here is consistent with the notion of
plug-in modules mentioned earlier. While the plug-in model focuses on abstrac-
tion mechanisms for individual agents, the role model captures agent activities
in interactions.

Policy packages are used to pack together roles (representing agent services),
assignment rules of roles (which are described in a rule base), and service con-
tents [9]. The structure of policy packages is as follows:

<policy package> ::= <rules> <roles> <contents>

<rules> ::= <rule> | <rule> <rules>

<rule> ::= <condition> <role names>

<role names> ::= <role name> | <role name> <role names>

<condition> ::= ‘‘TRUE’’

| ‘‘and’’ <condition> <condition>

| ‘‘not’’ <condition>

| ‘‘eq’’ <attribute>

| ‘‘<’’ <attribute>

| ‘‘>’’ <attribute>

<attribute> ::= <variable name> <value>

<roles> ::= <role> | <role> <roles>

<role> ::= <role name> <programme name> <init description>

<contents> ::= <content> | <content> <contents>

<content> ::= <programme name> <programme path>

Public and private profiles are stored as pairs of variable and value, or as digital
certificates with Public Key Infrastructure (PKI). They can only be accessed by
a specific profile manager. Meanwhile, policy packages are evaluated by a specific
policy evaluator. Once an agent gets a policy package, its policy evaluator gets
roles by evaluating rules in the policy package. In this way, agent roles are
described and delivered as policy packages; agent attributes are managed as
public and private profiles; appropriate roles are extracted through a two-step

The KODAMA Methodology: An Agent-Based Distributed Approach 99

Table 1. Agents, roles and functions

application independent roles
agents

application dependent roles
functions

portal (de-)register agents, filter messages
portal agent

agent list delivery send shop agent list

create agent create new agents

delete agent delete agents
creator agent

join community join an agent community

information registration register visitor & shop information

join community join an agent community

leave community leave an agent community
shop agent

information registration register shop information

policy package delivery send shop policy packages

join community join an agent community

leave community leave an agent community

location update location, join community
user agent

profile management manage public/private profiles

package evaluation evaluate shop policy packages

advertising send advertising email to visitors

matching process: first matching against the public profile on the service provider
agent side, then matching against the private profile on the service consumer
agent side.

3 A Case Study

As a part of an academe-industry joint research project, we were able to build a
shopping-support system and perform a large-scale experiment [10] in the Osu
shopping mall in Nagoya, Japan. Through this case study, we demonstrate how
our approach can be used to build a location- and context-aware application in
which participants, activities and transactions are treated as agents, agent roles
and agent interactions respectively.

The actual system is developed in Java language and its implementation
proceeds from two different perspectives simultaneously. One is a top-down ap-
proach, looking at the application’s overall structure, and the other is a bottom-
up approach, deciding the granularity of the agents and determining each agent’s
roles in the community. In particular, we chose a single-level hierarchical struc-
ture for the agent organisation with four kinds of agents, two kinds of agent
communities (see Figure 2). Furthermore, agents’ roles are decomposed, in ac-
cordance with the plug-and-play agent model and on-demand interaction model,
into application-independent roles, and application-dependent roles, as sum-
marised in Table 1.

100 Guoqiang Zhong et al.

User Agent Community

Shopping-mall Community

User Agent Portal Agent

Create Agent Agent Move Agent Interaction

Creator Agent Shop Agent

Fig. 2. An overview of the agent society

Table 2. Definition of the location role

role name: location

protocol name: shopping-support system

description: update location

initiator: location sensing subsystem

interaction with: join community role/local portal agent

input: position information

parameters: shopping-mall name

output: invoke join community role/shop agent list enquiry

parameters: portal agent name/position information

To demonstrate the working mechanism of agent roles, here we present one
specific application-dependent role, the location role. As shown in Table 2, the
location role is initiated externally by a location-sensing subsystem (refer [10]
for details). Depending on its position information, the agent has two choices:
either to move to another shopping-mall community or to update the shop agent
list. In the former case, the location role will initiate the join community role in
the agent. In the latter case, the location role will interact with the local portal
agent to get a new shop agent list.

This experimental system development was divided into three steps: common
facilities development, kernel unit development and application unit develop-
ment. The greatest effort was devoted to the application unit part and required
six person-months to fix the specification and three person-months to program.
The development of both the common facility part and the kernel unit part,
however, was based on our previous work and required approximately another
two person-months. As illustrated in Table 3, the common facility part and the
kernel unit part make up 47% of the source code, while the application unit
part makes up 53% of the source code. It means that the KODAMA approach
promotes speedy development cycle and high reusability.

The KODAMA Methodology: An Agent-Based Distributed Approach 101

Table 3. Source code constitution of the experimental system

number of classes lines of code percent

common facility 50 3,756 21%

kernel unit 63 4,646 26%

application unit 153 9,547 53%

total 266 17,949 100%

4 Conclusions

This paper has given a general introduction to the KODAMA methodology for
agent-oriented software engineering. In sum, our approach affords four bene-
fits. First, the role-agent-community metaphors provide the underlying ratio-
nale for the system under analysis and guide subsequent design, development
and deployment. Second, KODAMA is naturally distributed and capable of self-
configuration and self-adaptation. Both service providers and consumers are en-
capsulated as relatively independent agents. Third, the agent community model
and portal agent model are suitable not only for partitioning a complex sys-
tem into smaller sub-systems, but also for integrating the agent level and the
macro level seamlessly. Fourth, the public profile and private profile manage-
ment model, together with the push and pull ad hoc interaction model, enables
on-demand interaction and extracts customised services among agents.

References

1. Weiser, M.: The computer for the 21st Century. Scientific American 265 (1991)
94–104

2. Papazoglou, M.P.: Agent-oriented technology in support of e-business. Communi-
cations of the ACM 44 (2001) 71–77

3. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
the Gaia methodology. ACM Transactions on Software Engineering and Method-
ology 12 (2003) 317–370

4. Jennings, N.R., Mamdani, E.H., Corera, J.M., Laresgoiti, I., Perriollat, F., Skarek,
P., Varga, L.Z.: Using Archon to Develop Real-World DAI Applications. IEEE
Expert 11 (1996) 64–70

5. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley & Sons,
Chichester England (2002)

6. Luck, M., McBurney, P., Preist, C.: Agent Technology: Enabling Next Gener-
ation Computing (A Roadmap for Agent Based Computing). Technical report,
AgentLink (2003)

7. Jennings, N.R.: Agent-based control systems. IEEE Control Systems Magazine 23
(2003) 61–73

8. Booch, G.: Object-Oriented Analysis and Design with Applications. Addison
Wesley (1994)

102 Guoqiang Zhong et al.

9. Iwao, T., Okada, M., Kawashima, K., Matsumura, S., Kanda, H., Sakamoto, S.,
Kainuma, T., Amamiya, M.: Large Scale Peer-to-Peer Experiments with Virtual
Private Community (VPC) Framework. In: Proceedings of Cooperative Informa-
tion Agents. LNAI 2442, Springer Verlag (2002) 66–81

10. Zhong, G., Amamiya, S., Takahashi, K., Iwao, T., Kawashima, K., Ishiguro, T.,
Kainuma, T., Amamiya, M.: You’ve Got Mail From Your Agent. In: Engineering
Societies in the AgentsWorld IV. LNAI 3071, Springer Verlag (2004) 392–409

A New Iris Recognition Approach for Embedded

System

Hongying Gu1, Yueting Zhuang1, Yunhe Pan1, and Bo Chen2

1 Institute of Artificial Intelligence, Zhejiang University,
Hangzhou 310027, P.R.China

{guhy,yzhuang}@cs.zju.edu.cn
2 Software College, Zhejiang University of Technology,

Hangzhou 310032, P.R.China
cb@zjut.edu.cn

Abstract. Iris recognition is a prosperous biometric method, but some
technical difficulties still exist especially when applied in embedded sys-
tems. Support Vector Machine (SVM) has drawn great interests recently
as one of the best classifiers in machine learning. In this paper, we develop
an iris recognition system using SVM to classify the acquired features
series. Even though the SVM outperforms most of other classifiers, it
works slowly, which may hinder its application in embedded systems,
where resources are usually limited. To make the SVM more applicable
in embedded systems, we make several optimizations, including Active
Learning, Kernel Selection and Negative Samples Reuse Strategy. Exper-
imental data show that the method presented is amenable: the speed is
5 times faster and the correct recognition rate is almost the same as the
basic SVM. This work makes iris recognition more feasible in embedded
systems. Also, the optimized SVM can be widely applied in other similar
fields.

1 Introduction

Embedded systems have limited resources, including power, communications
bandwidth, time and memory. All of the above will require new ways of think-
ing, not just at the input and output ends, but about the very fundamentals of
computing and communications. Ways will be needed to ensure such systems to
operate reliably, safely, and efficiently. Support Vector Machine (SVM) has been
a promising method for classification because of its solid mathematical founda-
tions [1]. In classifying the same features series, it works better than most of other
classifiers, such as Euclidean distance and Hamming distance. Nevertheless, due
to its nature of the computational complexity, under certain circumstances, it
may not be applicable in embedded systems.

Iris recognition is one of the best biometrics recognition methods in the world
[2]. The combination of the iris recognition and embedded systems would surely
create great possibilities. An embedded iris recognition system can be used in cell
phones, automobiles, e-business systems and so on. Recently, health researchers

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 103–109, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

104 Hongying Gu et al.

are investigating microscopic sensors that could traverse the bloodstream, mon-
itor health conditions and report them tirelessly. Consumer electronics and in-
formation technology companies envision homes filled with intelligent devices
that can interact with each other. They also envision homeowners and appliance
manufacturers to improve the quality of daily life. In these embedded applica-
tions, it is necessary that the identification be recognized. Since the cameras
are already embedded into cell phones and other places for other purposes, iris
recognition is firstly considered to recognize a person.

There are several companies developing iris recognition products: Iridian
Technologies, LG and Panasonic. Among the products provided by different
companies, the BM-ET300 from Panasonic is unique in that it is partly embed-
ded iris recognition product. All of these companies use Daugman’s iris recog-
nition algorithm and most of their products run on PC or similar platform. In
Daugman’s algorithm [3], multi-scale Gabor filters are used to demodulate tex-
ture phase structure information of the iris to get an IrisCode. The difference
between a pair of IrisCode is measured by their distance.

In this study, we choose variation fractal dimension as the feature of irises
according to the self-similarity of the rich texture variation details in irises. To be
more suitable in embedded applications, we improve the efficiency of SVM for iris
recognition and maintain its high classification performance at the same time.
The experimental data show that our iris recognition system with an optimized
SVM is 5 times faster than the system with the normal SVM while the accuracy
is almost the same.

2 Iris Recognition

As a typical pattern recognition method, iris recognition is done in 2 steps. First,
extract features to present iris pattern. Then, choose a classifier to do the pattern
recognition. In the features extraction, we choose variation fractal dimensions as
features because of the self-similarity of irises textures. Later, we will discuss two
different classifiers and compare their performance in the section of Experiments
and Results.

2.1 Features Extraction

By analyzing local intensity variations of an iris image, we can see the self-
similarity of the local variations of the two-dimensional iris image. So we take
it as a typical fractal phenomenon. The mathematical way to measure fractals
is by fractal dimension. Mandelbrot [4] studied the use of some effective fractal
dimensions. The most well known and the most widely used one is box-counting
fractal dimension. Inspired by Mandelbrot, A special box-counting dimension
was proposed for texture images like irises in [5]:

DimBF = lim
δ→0

log Nδ(IsChange(Fδ))
− log δ

, (1)

A New Iris Recognition Approach for Embedded System 105

where Nδ (IsChange (Fδ)) is the smallest number of square boxes of side δ nec-
essary to cover F . Fδ is the image, which covered by square boxes of side δ,
IsChange(Fδ) is 1 if the gray scale in Fδ changes, and 0 otherwise.

In order not to leave out any variation details, we use a moving window
(la, lb) which moves by (Step). The overlap is allowed when covering the image.
We now calculate the variation fractal dimension for every sub-image.

Feature(I) = (D1 · · ·Dn) , (2)

where Di is ith sub-image’s corresponding variation fractal dimension. These
features are sent to the classifier for recognition.

2.2 Match by Euclidean Distance

After extracting the features, we are apt to go straight forward to measure the
distance between different people’s feature series. Both of [2] and [3] use distance
as their classifier to do iris recognition. One is Hamming Distance and the other is
Euclidean Distance. Hamming distance is 1-D distance, and Euclidean distance
is 2-D.They are both linear classifiers and time-saving algorithms. Here we use
Euclidean Distance to do the comparison experiment. Suppose we have two
feature vectors: x and y, in Euclidean space, the distance is defined as:

d (x, y) =

√√√√ n∑
i=1

(xi − yi)2. (3)

Euclidean distance works fast and performances well when comparing linear
features. But iris textures are highly nonlinear, and the variation fractal dimen-
sion features are nonlinear too. Therefore, the conventional Euclidean Distance
is not suitable to differentiate people represented by variation fractal dimension.
The possible solution is to construct a nonlinear classifier so that the two classes
can be correctly classified.

2.3 SVM Classifier

Based on the minimization of structural risk of statistical learning theory, SVM
works like this [6]: it maps the input vector x to a higher dimension feature space
Z, and constructs a classification-hyperplane in this space. The hyperplane H is
w · x + b = 0.

The following is the general equation of the SVM decision function for clas-
sification:

f (x, α) = sgn

⎛
⎝ ∑

SupportV ectors

yiαik (xi, x) + b

⎞
⎠ , (4)

where yiαi = wi are the networks weights, xi are the support vectors of the
solution, b is the threshold of the function and k (xi, x) is the kernel function.

As we can see, the solution is the sign of the addition, so this is the general-
ization function for two-class’s classification. In our case, the kernel function is
then the polynomial function of degree d: k(x, y) = (x · y + c)d.

106 Hongying Gu et al.

3 Performances and Optimizations

How to build an effective learning system plays a crucial role in the performance
of classifiers. Support Vector Machine (SVM) is a promising method for classifi-
cation because of its solid mathematical foundations which convey several salient
properties that other methods hardly provide. However, the efficiency of training
support vector machines is still a bottleneck, especially for a large-scale learning
problem [7]. Therefore, it is important to develop a fast training algorithm for
SVM in order to solve various engineering problems. The main task of this paper
is to improve its efficiency.

3.1 Active Learning

Support Vector Machine has got significant success in numerous real-world learn-
ing tasks. However, like most machine learning algorithms, it is generally applied
using a randomly selected training set classified in advance.

Since iris recognition system can have a database before test, we try a dif-
ferent strategy: choosing the training samples beforehand. Pre-setting training
samples is a kind of active learning [8].

Given an unlabelled pool U, an active learner l has three components:(f, q, X).
The first component is a classifier, f : X → {−1, 1}, trained on the current set of
labelled data X (and possibly unlabelled instances in U too). The second compo-
nent q(X) is the querying function that, given a current labelled set X , decides
which instance in U to query next. The active learner can return a classifier f
after each query (online learning) or after some fixed number of queries.

Usually the total training set is much larger than the number of final support
vectors. Active learning can remove most non-support vectors quickly so that
the computational cost for sequential optimization can be dramatically reduced.
Further, another fact is that the result is changed little if some non-support
vectors are removed from the training set. So we can limit the training set size,
and remove the non-support feature vectors.

3.2 Kernel Selection

To get a better performance, we choose polynomial kernel function from the
three kernel functions of the SVM method: Polynomial, RBF and sigmoid neu-
ral networks. The sigmoid neural network kernel function and the RBF kernel
function work fine, but cost more time.

The principal parameter of the polynomial kernel function is the degree of
the polynomial. It is always possible to implement with a variable degree. The
polynomial degree would be between 1 and 4. Basically, we will choose the poly-
nomial degree as 2.

Let us suppose that the iris images have a size tm × tm and that tb × tb is
the block size. t2b is thus the number of pixels to be processed by window of
classification. If we take again the decision function of SVM with a polynomial
kernel of degree d and C = 1:

A New Iris Recognition Approach for Embedded System 107

f (x, α) = sgn

⎛
⎝ ∑

SupportV ectors

yiαi [(xi, x) + 1]d + b

⎞
⎠ . (5)

So the complexity of this algorithm is: t2b + d + 1 operations by support vector.

3.3 Negative Samples Reuse Strategy

In an application of SVM, the positive samples and negative samples are non-
symmetrical. Most of the cases are: negative samples are much more than positive
ones and are much easier to get. Usually, when different people are tested, the
negative sample set can be similar. So we reuse the negative samples when they
support vectors. It improves the performance.

3.4 Other Small Optimizations

We also make some small optimizations: 1. Storing features in a dense format.
The SVM must read in the training set and then perform a quadratic optimiza-
tion. It takes the time to do some I/O so as to get features into the memory and
process them. If we store the feature vector in a contiguous memory address, and
in a dense format, it saves systems run time. 2. Saving training results. We save
training results into two files. One is used to store kernel parameters, support
vectors and the corresponding. The other (index file) is to store the sequential
number of support vectors on the training set in order to merge them during the
testing stage and reduce unnecessary kernel re-evaluations.

4 Experiments and Results

To evaluate the performance of the proposed method, we provide evidence of our
analysis on SVM-based iris recognition using CASIA Iris Image Database from
National Laboratory of Pattern Recognition (NLPR), Institute of Automation
(IA), Chinese Academy of Sciences (CAS). The database includes 756 iris images
from 108 different eyes of 80 subjects. The images are acquired during different
sessions and the time interval between two collections is one month, which is a
real-world application case simulation. All these experiments are done in a Pocket
PC with Windows CE. The algorithms are developed in Embedded Visual C++
3.0.

According the algorithms discussed above, we implement the iris recognition
system as Figure 1:

In some real world applications, such as biometrics recognition, the reliabil-
ity rate is more important than the raw error rate. So it is necessary to eval-
uate SVM’s rejection performance. The reliability is defined by Reliability =

Recognition rate
100%−Rejection rate . Now we list the experimental result as the widely-used form
shown in Table 1:

108 Hongying Gu et al.

Fig. 1. Iris recognition system structure

Table 1. Comparison of CRR, FAR and FRR

Matching Methods Recognition
rate (%)

False accept
rate (%)

False reject
rate (%)

Reliability
(%)

Euclidean Distance 72.2 17.1 10.7 80.85
SVM 98.4 0.35 1.25 99.65

Table 2. Comparison of CRR and Computational Complexity

Matching Methods Recognition rate (%) Average run time(s)

Euclidean Distance 72.2 0.13
SVM 98.4 4.59

Optimized SVM 98.27 0.88

As shown in Table 2, Computational Complexity comparison is done among
the three different algorithms. The average run time of SVM and optimized SVM
include training time and matching time.

From Table 2, we can see the optimized SVM-based iris recognition runs
much faster than the original one. And its correct recognition rate is still satis-
fying. With this improved performance, iris recognition can be implemented in
embedded systems.

5 Conclusions

The increasingly important role of embedded iris recognition system in the wide
variety applications has opened an array of challenging problems centered on the
computation efficiency. In this paper, we have presented an efficient approach
for SVM-based iris recognition. To make the SVM more applicable in embedded
systems, we make several optimizations, including active learning, kernel selec-
tion and negative samples reuse strategy. By the optimizations, the performance
is improved by more than 5 times, which makes embedded iris recognition more
feasible.

Support vector machine is a widely used and promising method for classifi-
cation. The optimizations of the SVM we make here can be applied in a wide
variety of application fields.

A New Iris Recognition Approach for Embedded System 109

References

1. DeCoste, D., Scholkopf, B.: Training invariant support vector machines. Machine
Learning, 46 (2002) 161-190.

2. Ma, L., Wang, Y., Tan, T.: Iris recognition based on multichannel Gabor filtering,
In Proc.5th Asian Conf. Computer Vision, I (2002) 279-283.

3. Daugman J.G., High confidence visual recognition of persons by a test of statistical
independence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36
(1993) 1148 1161.

4. Mandelbrot B. B., The Fractal Geometry of Nature, San Francisco, CA: Freeman
(ed.), 1982.

5. Gu, H., Pan, H., Wu, F., Zhuang, Y., Pan, Y.: The research of iris recognition
based on self-similarity. Journal of Computer-Aided Design and Computer Graphics,
16(2004) 973-977 (in Chinese).

6. Vapnik V N.: Statistical Learning Theory, J. Wiley, New York(1998).
7. Collobert, R., Bengio, S.: SVMTorch: Support vector machines for large-scale re-

gression problems. Journal of Machine Learning Research, 1 (2001) 143-160.
8. Tong, S., Koller, D.: Support vector machine active learning with applications to

text classification, Journal of Machine Learning Research (2001) 45-66.

A RAID Controller: Software, Hardware and

Embedded Platform Based on Intel IOP321

Xiao-Ming Dong, Ji-Guang Wan, Rui-Fang Liu, and Zhi-Hu Tan

Key Laboratory of Data Storage System, School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R.China

xmdong@mail.whut.edu.cn

Abstract. While demand for large-scale storage services is growing very
rapidly, RAID is still today’s standard solution for enterprise class stor-
age systems. The software and hardware designing of a RAID controller
based on Intel IQ80321 platform is introduced, in which embedded Linux
is setup on the board, and a prototype system is implemented on x86
platform with Fibre Channel interface to host. The benchmark test
presents throughput of 186MB/s and 184MB/s for RAID 5 reading and
writing respectively.

1 Introduction

Storage demands are growing rapidly with the increasing usages of multimedia,
stream casting, and large scale database. To satisfy the capacity and availability
requirements of these applications, storage systems typically contain large disk
arrays that are capable of storing terabytes of data and have high availability.
High-performance RAID (Redundant Array of Independent Disks, [1] and [2])
storage is a critical component for many large-scale data-intensive applications.

The principle behind RAID-style architecture is simple: using a high-speed
interconnection medium to aggregate arbitrarily many (slow) storage devices
into a faster logical storage service, and making all applications unaware of this
aggregation. RAID level 0 (stripe), 1 (mirror) and 5 (stripe and block parity
check) are most commonly used.

RAID is divided into two camps: software and hardware. Software RAID uses
the computer’s CPU to perform RAID operations, while hardware RAID uses
specialized processors. The goal of our project is to implement high performance
external RAID controller based on Intel IOP80321. We also deploy our design
and prototype implementation on x86 platform. With our new algorithm, the
benchmark test results present throughput of 186 and 184MB/s for sequential
RAID 5 read and write operations. The performance evaluation seems incredible
by approaching the full bandwidth of fiber channel connection.

In the following chapters, section 2 and 3 introduce the software and hard-
ware design. Section 4 introduces the embedded development environment. The
prototype implementation is discussed in section 5, and evaluation results are
also shown there. The last two sections are related works and conclusions.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 110–117, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A RAID Controller 111

2 Software Design

The RAID controller’s software is divided into six modules, as shown in Figure
1. SCSI Target module will receive I/O requests sent from host servers passing
through some type of connection, such as SCSI or Fibre Channel. In general,
codes of SCSI subsystem in most operating systems (Linux, for example) are
only for initiator mode operation. Thus, we must implement target SCSI drivers
ourselves. On the other end, there is also a SCSI initiator module connecting to
low level disk drivers and disk hardware. It must support hot plug of disks, and
do detections of disk status periodically.

Fig. 1. This is the functional block diagram of the RAID controller software. A
whole disk array consists of the RAID controller plus a group of disks (maybe
FC, SCSI, or SATA type disk)

Cache Management module has a center position in the whole software sys-
tem. All memory buffers are allocated at CM in size of a stripe unit, according
to buddy algorithm. And the design has a ”zero-copy” memory allocation fea-
ture, which means each stripe unit has only one copy in the system, avoiding the
cost to copy buffers between software modules. There are two parts of cache in
system for read and write respectively. We need a method to deal with all these
stripe units efficiently, since operations for each I/O request are required.

Several commonly used RAID levels have been implemented in RAID Kernel
module, including level 0, 1, 5, and etc. RAID algorithms transform read and
write requests to a visual disk to requests to physical disks. I/O requests passed
by RK will be sent into queues. I/O Schedule module is always checking the
queue aiming to combine two contiguous requests into one, or do other reor-
ganizations to enable maximum I/O throughput. Global Configuration enables

112 Xiao-Ming Dong et al.

administrators to setup disk array through several approaches, such as serial
consoles and custom GUI applications.

3 Hardware Scheme

The Intel IOP321 I/O processor [3], featuring an Intel XScale core (which is
compliant with ARM version 5TE.) at 600 MHz, delivers a combination of high
performance, PCI-X data throughput, low-power consumption, small package
size, and outstanding price/performance.

Fig. 2. This is the functional block diagram of the RAID controller hardware.
Its components mainly include IOP321 processor, SATA disk controller (such as
Intel 31244) and FC controller (such as Agilent Tachyon DX2 or Qlogic ISP2312)

We have designed a RAID controller based on Intel 80321 processor, as shown
in Figure 2. This is a FC-to-SATA controller, with Fibre Channel interface to
the host and Serial ATA interface to disks. There are many choices for SATA
controller vendors, such as Silicon Image, VITESSE and Intel. Intel 31244, for
example, is a 4-port PCI-X to Serial ATA Controller. We need two such chips
to support at least 8 disks, providing about 2 TB of storage. It seems that
there are no more choices for FC controllers other than Agilent and Qlogic, such

114 Xiao-Ming Dong et al.

2. Compile ARM-Linux Kernel: To compile a Linux kernel for IOP321
processor, several patches should be applied to the official Linux kernel.
For example, we patched rmk1, ds0, and dj9 revision packages to linux-
2.4.21 kernel source tree, then compiled kernel using arm-linux toolchain,
and finally delivered the kernel image file — zImage.

3. Make Root Filesystem: One of the last operations conducted by the
Linux kernel during system startup is mounting the root filesystem. The
content of a root filesystem include the system libraries (/lib), the kernel
modules (/lib/modules), kernel images (/boot), device nodes (/dev), main
system applications (/bin and /sbin), and custom applications (/local), with
configuration files and system initialization scripts (/etc). We have made a
root filesystem with size less than 2 Megabytes using BusyBox [6] utilities
package.

4. Boot the Board: Another very important system component, bootloader,
is needed in our system, which is responsible for loading the kernel dur-
ing system’s startup. RedBoot [7] is the standard embedded system de-
bug/bootstrap environment from Red Hat.

5 Prototype Evaluation Results

A PC architecture RAID controller has been implemented to test algorithms and
evaluate performances. It consists of an Agilent HHBA-5221A PCI-FC controller
(2Gb bandwidth) acting as SCSI target, an LSI 21320-R ULTRA320 SCSI con-
troller, and an Intel Xeon 1.80GHz CPU. The software is implemented as Linux
kernel modules, including a SCSI target mode device driver for the FC card. We
run Iometer [8] to do following tests.

Most tests have been done on the prototype implementation with 4 Seagate
Cheetah Ultra320 (MODEL ST373307LC) disks. The machine running Iometer
benchmark is a Xeon 2.4GHz PC server with an Agilent FC HBA card. We
also evaluate the performance of an nSTOR disk array with FC interface disks
under similar conditions for comparing. As shown in Figure 4, our prototype
implementation is even better than nSTOR in most cases.

In order to evaluate the RAID algorithm performance on target board and
compare the processing capacity, we have done a set of tests on both PC and
IQ80321 platform. As shown in Figure 5(a), the platform A can do about 4 times
more I/O per second than X. The source code is the same for the two platforms,
which means we have not utilized AAU on IQ80321 board now.

The evaluation results in Figure 5(b) indicate the effects of AAU and zero-
copy. We can see that the performance get considerable enhancement when we
offload IOP321 by AAU doing XOR processing in RAID 5. The memory through-
put is 617MB/s with AAU, it’s much greater than computing XOR by IOP (only
77MB/s, with 64KB block size). The zero-copy feature also has much contribu-
tion to the enhancement by avoiding memory copy overhead.

A RAID Controller 115

Fig. 4. This figure compares RAID 5 performance of our implementation (elake)
with a medium level disk array from nSTOR. (Random or Sequential/Read or
Write/elake or nstor). (a)Read throughput results; (b)Write throughput results

Fig. 5. (a) The test results compare processing capacity between general proces-
sors and XScale embedded processors. Each value is an average of data collected
through about 1 hour. ’A’ means PC platform with an AMD Athlon(tm) MP
2600+ CPU (2GHz) and 512MB memory; ’X’ means IQ80321 board with IOP321
(600MHz) and 128MB memory. The 0 and 5 following platform sign represent
RAID level 0 and 5 respectively. (b) The evaluation results compare effects on
memory throughput by AAU engine and zero-copy policy with different block
sizes

6 Related Works

RAID was declared at Berkeley in 1988 by D. A. Patterson, G. A. Gibson,
and R. H. Katz in [1]. Challenging the well-known gap between I/O subsystem
and processor, systems can alleviate the gap by distributing the controllers’ and
buses’ loads across multiple, identical parts. RAIDs suffer from some limitations,
such as bad performance for small writes, and limitation of scalability. There are
considerable researches devoted to RAID-derived storage systems. Also some

116 Xiao-Ming Dong et al.

new controller architectures have been developed, including AutoRAID [9] and
TickerTAIP [10].

Several manufacturers provide hardware RAID array products, including LSI
Logic, Mylex, Adaptec, Infortrend, Promise and 3ware, etc. [11] introduces man-
aging issues of RAID on Linux systems.

7 Conclusions

RAID is today’s standard solution for enterprise class storage systems. This
project tries to develop a high performance RAID controller with our efforts.
We have done these works:

o Selected IOP321 as hardware platform and setup an embedded Linux oper-
ating system.

o Designed RAID software and implemented a prototype system.
o Evaluated prototype performance and did some comparisons between x86

and IOP321 platforms.

The performance evaluation seems incredible by approaching the full band-
width of Fibre Channel connection, and we are planning to port the software to
our customized IOP321 board for RAID controller in the near future.

8 Acknowledgments

This project is supported by the National Natural Science Foundation of China
(No. 60273073) and National Key Project of Fundamental R & D of China (973
project, No. 2004CB318203). It is partially supported by Wuhan Elake Storage
Technology Co., Ltd.

References

1. Patterson, D. A., Gibson, G. A., Katz, R. H.: A Case for Redundant Arrays of In-
expensive Disks (RAID). In Proceedings of the International Conference on Man-
agement of Data (SIGMOD) (June 1988)

2. Chen, P. M., Lee, E. K., Gibson, G. A., et al.: RAID: High-Performance, Reliable
Secondary Storage. ACM Computing Surveys, Vol. 26(2) (1994) 145–188

3. http://www.intel.com/design/IIO/ (December 2004)

4. Intel IQ80321 I/O Processor Evaluation Platform Board Manual. Document Num-
ber: 273521-006, November 7, 2002.

5. Yaghmour, K.: Building Embedded Linux Systems. O’Reilly & Associates (May
2003)

6. http://www.busybox.net/ (December 2004)

7. http://sources.redhat.com/redboot/ (December 2004)

8. http://www.iometer.org/ (December 2004)

A RAID Controller 117

9. Wilkes, J., Golding, R., Staelin, C., and Sullivan, T.: The HP AutoRAID Hier-
archical Storage System. ACM Transactions on Computer Systems, Vol. 14(1)
(February 1996) 108–136

10. Cao, P., Lim, S. B., Venkataraman, S., and Wilkes J.: The TickerTAIP Parallel
RAID Architecture. ACM Transactions on Computer Systems, Vol 12(3) (August
1994)

11. Vadala, D.: Managin RAID on LINUX. O’Reilly & Associates (2003)

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 118-123, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Component-Based Integration Towards a
Frequency-Regulating Home Appliance Control System*

Weiqin Tong1, Qinghui Luo1, Zhijie Yin1, Xiaoli Zhi1, and Yuwei Zong2

1 School of Computer Engineering and Science, Shanghai University, Shanghai, China
wqtong@mail.shu.edu.cn, luoqinghui@graduate.shu.edu.cn

2 Shanghai Software Technology Development Center, Shanghai, China

Abstract. Conventional approaches to embedded software development are
very costly, mainly because of their close reliance on application-dependant
design, ad-hoc implementation, time-consuming performance tuning and
verification. The resulting software is often hard to maintain, upgrade and
customize. Component-based integration is an effective method to address the
problem. As the result of our effort, an embedded software developing platform
is constructed while developing an embedded control system for frequency-
regulating home appliances. In this paper, the control system is described, and
the developing platform is presented in detail, including an Application
Component Library and a Fast Developing Tool. Component-based embedded
software design and implementation are also put forward.

1 Introduction

There has been a great challenge, and a great opportunity as well, confronting the
home appliances industry, namely to move toward the trend of home appliances
informatization and frequency regulation. Informatization can attach new functions to
home appliances, while frequency regulation technology can save 10%~30% of the
energy used by home appliances.

This motivates an embedded control system for frequency-regulating home
appliances. To reduce design time and development cost, and enable software
customizing and tailoring, the reusable design concept is incorporated into the design
of this system. Much attention is paid to one of the key technical problems and
challenges—platforms and tools. An embedded system developing platform is built
up, together with an Application Component Library and a Fast Developing Tool for
frequency-regulating control software.

This paper is organized as follows. Section 2 gives an overview of the control
system. Section 3 introduces the system developing platform and tool. Section 4
expatiates on the embedded software design and implementation based on software

* This work is supported in part by Science and Technology Commission of Shanghai
Municipality under grant number 04dz15003.

Component-Based Integration 119

component. Finally, section 5 identifies directions for further research and concludes
this paper.

2 System Overview

The embedded control system consists of the following parts:
 Central control module. It is the kernel of the embedded control system, with the

task of processing the information generated by other modules and coordinating
their executions.

 Data acquisition and processing module. This module is in charge of collecting
the status of the running system and environment, and doing preliminary analysis
as well.

 Frequency regulating module. Frequency regulation technology is employed for
carrying out the stepless speed variation to the alternating current motor. As the
rotating speed of the alternating current motor is proportional to the frequency of
electric current, the rotating speed of the motor can be adjusted by regulating the
power frequency. This module implements the control algorithms.

 Frequency regulating algorithms remote update module. This module receives
the program codes transferred through network interface and writes them into the
FLASH ROM or EEPROM, in order to upgrade the driver routines, revise the
software defects and achieve function extension.

 Communication module. This module enables the short distance communication
with home appliances through serial port or infrared interface.

 Human-machine interface module. This module displays the running status of the
home appliance on the LCD/LED installed on the control panel, and offers facility
to control and adjust the appliance by touch screen or buttons on it, also provides
means to gather the running information and control the appliance through remote
controller.

 Remote monitoring and maintenance module. This module provides remote
control and monitoring functions, and supports remote maintenance as well.
Remote manipulator can control and monitor the appliance via a computer
connected to the network, while maintenance staffs can do runtime maintenance
and fault diagnosis according to the result by analyzing the running status that the
appliance feeds back.

 Self-adjusting and individualization configuring module. The operating
environments of home appliances may vary geographically and climatically; for
instance, there are differences in temperature and humidity between the north and
the south. This has great influence on the use and maintenance of home appliances.
Self-adjusting module helps adjust appliances to ideal temperature and humidity
according to different geographic and climatic conditions. Moreover,
individualization configuring module keeps record of user's commands and
preferences, and responds promptly later when the user issues a similar command
or needs specific preferences.
The system is modeled based on software component, as an effort to support

extensibility, and additional function modules can be incorporated easily.

120 Weiqin Tong et al.

3 System Developing Platform

The control system consists of hardware and software. A microcontroller based on
ARM7TDMI™ is used for the target system. The embedded operating system
Reworks [4] is adopted for our purpose. It supports hard real-time operation and is
suitable for the control of electronic equipments, also provides an integrated
development environment (IDE) named ReDe, supporting ARM processors with
facilities like cross-compiling, linking, emulation debugging and downloading.

The OS running on the host machine is Windows 2000/NT/XP. The developing
platform includes the following parts:
 Application Component Library
 Fast Developing Tool for frequency regulating control software
 Supporting tools like cross-compiling, linking, emulation debugging and

downloading: Generate the binary code that can run on the target system and the
debugging information.

 System design tools: Provide designers with a graphic interface for component-
based software development, also interfaces and/or methods to invoke other tools.

Fig. 1. Structure of the developing platform

3.1 Application Component Library

The component library is a repertory of components source codes and associated
information, including component insertion or deletion, component search,
components attributes table maintenance [1][2]. The component attributes include the
types of target processors, locating and linking requirements, hardware requirements,
related component information, etc. Some attributes can be adjusted according to
specific operating environments.

To develop the software based on components, the software functionality is
decomposed into different components. The principles and the methodologies of the
decomposition, and the definitions of the components function field, may be different
under specific situations [2]. In our system, necessary components are decomposed

Component-Based Integration 121

out according to the principle of function independence, integrity, and functional
cohesion. These components include but are not limited to:
 Data acquisition and processing component
 Frequency regulating component
 Communication component
 Downloading component: writing code into FLASH ROM or EEPROM.
 Embedded operating system component: providing kernel modules of Reworks

running on some typical ARM MCU, and the BOOTLOADER module.
Also, there are human-machine interface component and remote monitoring and

maintenance component. These components can be decomposed into sub-
components, if necessary.

3.2 Fast Developing Tool for Frequency-Regulating Control Software

The Fast Developing Tool (FDT) is based on the Application Component Library. It
provides a Graphic User Interface (GUI) for users to configure typical static data and
control parameters of the frequency regulating software. The Component Develop
Module of FDT accesses the Application Component Library and fetches necessary
components according to user’s configuration. Furthermore, it unpacks the
components to obtain the source code encapsulated in them. Then the Code
Generating Module synthesizes static data and the source code of components to
generate the program code of target software. Fig.2 describes the work model of FDT.

Fig. 2. FDT work model

4 Embedded Software Design Based on Component

Component-based software development means building an application system on the
basis of the existing reusable components. When the Application Component Library
is built up, or a component set of certain scale is collected, fast customization of the
embedded software can be realized [3]. Now the developer's task is not to build a
system from scratch, but to determine what components are needed according to the
application system architecture, to adjust the components according to special
requirements of the system, to add application-specific components where necessary,

122 Weiqin Tong et al.

and then to assemble these components into a complete system. Fig.3 shows the
development flow chart.

Fig. 3. Component-based software development flowchart

Fig. 4. Components and their relationships (The solid arrow represents relationship between
central control component and other components, while the hollow arrow represents
relationship among other components)

Components can be implemented either in the form of class in C++ or in the form
of structure in C. Each component may consist of one or more classes (or structures).
Functions of a component are implemented by different methods and interfaces
provided by these classes. For example, CDataAcquisition, a class of the data
acquisition and processing component, includes the following methods and interfaces:

Component-Based Integration 123

void Init();
float getTempInside();
float getTempOutside();
float getHumidityInside();

The Init() method is responsible for the initialization of related hardware (I/O
ports, for example), the other three "get" methods obtain the indoor temperature, the
outdoor temperature and the indoor humidity, respectively.

 Similarly, a structure named Sdisplay can be implemented to take over the role
of LCD initialization and display in human-machine interface component. Its primary
methods include:
void Init();
void setDisplayMode(TdisplayMode mode);
void D_printf(const char *format,...);
void clearScreen();

After the establishment of Application Component Library, what developers need
to do is to outline the software architecture and choose the proper components to
assemble a system. Fig.4 illustrates the cooperation relationships of the main
components used in this system.

In practice, the relationships between components can be easily established by
using some commercial Unified Modeling Language (UML) tools [5]. Hence the
implementation part, i.e. coding, is greatly simplified.

5 Conclusions

A developing platform is established to assist the development of embedded control
system for frequency-regulating electrical home appliances. Based on the platform, a
prototype system is developed. Component-based approach is adopted to enhance
software reusability and reduce system development time as different components can
be developed and tested in parallel. Our future effort will be devoted to enrich the
Application Component Library and improve the quality of components and the
performance of our Fast Developing Tool as well.

References

1. Thomas Genßler, Oscar Nierstrasz, Bastiaan Schonhage, Components for Embedded
Software [J]. CASE 2002 October 8-11, 2002, Grenoble, France.

2. Yang Fuqing, Mei Hong, Li Keqin, Software Reuse and Software Component Technology,
ACTA ELECTRONICA SINICA, 27(2):68-75, Feb 1999.

3. M.Jenko, N.Medjeral, P.Butala, Component-based software as a framework for concurrent
design of programs and platforms an industrial kitchen appliance embedded system,
Microprocessors and Microsystems 25 (2001) 287-296.

4. Reworks Reference Manual, East China Institute of Computing Technology, May 2004.
5. G. Booch, I. Jacobson, and J. Rumbaugh. Unified Modeling Language User Guide. Addison

Wesley, 1997.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 124-129, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Design and Implementation of the System for Remote
Voltage Harmonic Monitor

Kejin Bao 1, 2, Huanchuen Zhang 1, and Hao Shentu 2

1Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2Jiangsu University, Zhenjiang 212013, China

bkj@ujs.edu.cn

Abstract. Take 8-bit microcontroller (C8051F005) as the nucleus and study a
kind of voltage harmonic monitor device that satisfies the long-range monitor.
The harmonic analysis algorithm adopts Fast Fourier Transform (FFT). This
device has two work modes: “native” and “remote”. It also can communicate
with monitor center through telephone line, serial port, IC card, PDA (Personal
Digital Assistant), etc.

Key Words: Harmonic test; remote-monitor; C8051F005 Microcontroller

1 Introduction

With the technical development of modern electronics and electrics, non-linear
electric load in power grid increases considerably. This non-linear load causes
aberration in the power grid and produces power grid harmonic. The power grid
harmonic has become a social effect of pollution, and it is becoming more and more
serious now. To eliminate the pollution, we must monitor and analyze the harmonic
effectively in harmonic pollution area, then adopt valid measures. With the starting of
power grid reforms, large number of unmanned transformer substations is rushing out
now. Compared with the monitor device used in normal environment, the monitor
device used in unmanned environment requires more reliability and remote
communication capability. The wide usage of the monitor devices also makes cost an
even more important issue. This paper introduces a new voltage harmonic monitor
device that is based on an 8-bit microcontroller (C8051F005). This monitor device
can monitor 1 - 31 power harmonic voltage in power lines in real time. It can record
how long and how big voltage has been over the limit, and record the time of power
going on and off. Both of the works are done in real time.

2 Hardware Constitution of Monitor Device

Real time volt and harmonic data are measured, analyzed and stored in monitor
device. Over value time, power lost time and other information are calculated from
previous data and are also stored in monitor device. These data can send back to
monitor center by telephone line, serial port, IC card and PDA when they are needed.

Design and Implementation of the System for Remote Voltage Harmonic Monitor 125

In monitor center, these data are processed by certain software that runs on a personal
computer and report documents can then be generated. The diagram of this system is
shown in Fig.1.

Normal 8-bit MPU runs at a relative low speed which can not afford for harmonic
process, so most of such monitor systems are based on 16-bit microcontrollers or are
multi-CPU systems combined with DSP. But the C8051F005 produced by Cyganl
Company, an 8-bit microcontroller, is fast enough to do such a work. It can run at a
speed of 25MIPS which is fast enough for harmonic calculating. It is also integrated
witch A/D adapter, RAM, FLASH ROM, voltage compare and a lot of I/O ports in
the single chip and is suitable for unmanned environments.

The circuit architecture of Voltage Harmonic Monitor Device is shown in Fig.2.

Fig. 2. The circuit architecture of Voltage Harmonic Monitor Device

3 Measuring Voltage Virtual Value and Voltage Harmonic

The key problem of voltage harmonic monitor device is that the virtual value of
voltage and voltage harmonic must be accurately measured. From the architecture of
the monitor device (Fig.2), it can be seen that measuring voltage need following steps:
first, sample the 50Hz alternating currents voltage through mutual inductor; then

 SMBus
AD

C8051F005

Power

Quartz
Oscillator

Clock

Amplifier/
filter

Mutual
inductor

IC CardSerial Flash

Light
isolator Modem

7279
Keyboard/

display

~ 220V

Power

Phone
line

Fig. 1. Diagram of the system

126 Kejin Bao, Huanchuen Zhang, and Hao Shentu

amplify and filter the sampled value and send the value into CPU; finally, the CPU
samples and calculates virtual value of voltage and every power harmonic value.

3.1 Measuring the Virtual Value of Voltage

Measuring the virtual value of voltage adopts rectangle algorithm. Uniformly divide
one period into N interval. Suppose Vn is instantaneous value on the n-th point.
Because the interval is very short, we can assume that the voltage in this whole
interval is Vn. Thus we can obtain the virtual value of voltage as follows:

N

n
nrms V

N
V

1

21 (1)

To increase the accuracy of voltage virtual value that we calculate, we sample the
voltage many times within a second, and calculate the voltage virtual value according
to every sampled data. All voltage virtual values we have calculated in one second are
processed as follows: first, sort those values according to value size. After removing
the maximum and the minimum ones, calculate the average value, and take this
average as voltage virtual value in this second. Voltage harmonic monitor device
refurbishes the voltage virtual value and displays it every second.

3.2 Measuring Voltage Harmonic

We calculate the harmonic component of alternating signals using DFT. Discrete
Fourier transform and discrete inverse-Fourier transform are as follows:

1

0

)()]([)(
N

n

nkWnxnxDFTkX)10(NK (2)

1

0

)(1)]([)(
N

k

nkWkX
N

KXIDFTnx)10(Nn (3)

where:
)2(

N
j

eW .
Because imaginary number cannot appear in harmonic detecting, we can further

adopt real-sequence FFT algorithm. It utilizes one FFT calculation to obtain two real-
sequence FFT transforms, and reduces the computational complexity by about 1/2.

In this way, we can calculate)(kX and)(kNX at the same time, then through
conjugating)(kNX we also obtain)(* kNX . In other words, we make one DFT and
obtain two DFTs of two sequences, because FFT simplifies the computational
complexity by dividing one DFT into two sub-DFTs which can be created in one DFT
transforming by using real FFT. After Fourier transforming of sampled data, we
obtain corresponding 1 to 31 power harmonic virtual values. Every harmonic
component is saved in two bytes, thus saving the result of one FFT needs at least 62
bytes of memory. According to the speed of CPU adopted by us, it can calculate 1-31

Design and Implementation of the System for Remote Voltage Harmonic Monitor 127

power harmonic 10 times per second. However, if we save all these harmonic
calculation results in one second, the RAM in CPU cannot provide enough space. For
simple reasons, the last calculated result is used as current result and is shown on 7-
Segments LEDS. Because only total harmonic distortion (THD), total odd order
harmonic distortion, total even order harmonic distortion are stored for statistic, only
the max three THD data measured in one second is saved in memory the third max
THD is used as THD in this second. (Same as quality of electric energy supply
standard of PRC). Both high respond speed and measure accuracy can be achieved by
this method.

4 Improve the Precision of Measuring

Measuring accuracy is a very important issue in the design of 8-bit CPU based
harmonic monitor device. To improve the measuring accuracy, we use 12-bit A/D for
sampling voltage analog value. Every sampled data are expressed by two bytes.
Moreover, several other new measures are also adopted for choosing sampling period,
designing hardware and software filter wave.

4.1 Sample Time Determination

In order to reduce the leakage error in FFT transformation, the signal value should be
sampled at exact time which divides the signal period by the same time span. This
method is also called synchronic sampling. 20ms is used as a standard period in
power grid, but it can not stay at the value. The normal implementation of synchronic
method is to use PLL circuit. For the simplification of hardware, voltage compare,
timer and software are used to measure the period time, compare the signal voltage
value with the average volt value and record the time when the signal voltage is
raising just above the average volt value. The time span between the record times is
the signal period. Actual the compare voltage is not important. The period time should
not be bigger or less than 5% of the standard period time; otherwise the result should
be discarded, the average result of the period should be used for a better and more
precise result.

The timer value is obtained by dividing the period of detected voltage by sample
times. When the division is aliquant, there will be some errors. The maximum in these
errors is smaller than the minimal timer resolution, and the maximal error value in the
whole sampled sequence is smaller than the minimal value multiplying sampling
times. As adopt C8051F005 (24 MHz) and 256 sampling points, the error is less than
12.8us. In order to further improve the sampling accuracy, the difference between the
timer setting value and the actual value is recorded and accumulated. When the
accumulated error exceeds minimal timer resolution, the sampling time is adjusted
such that the maximal error value in the whole sampled sequences will be no more
than the minimal timer resolution. For C8051F005 (24 MHz), the maximal error in
one sampling sequence is only 0.05us.

128 Kejin Bao, Huanchuen Zhang, and Hao Shentu

4.2 Filtering the Sampling Signal

By using voltage mutual inductor, the input voltage can be reduced to the range
suitable for sampling. In order to reduce disturbance of high frequency noise, active
filter network is used to filter the voltage before it is sampled. The filter network is a
low-pass network whose cutoff frequency must be lager than the concerned highest
harmonic frequency. Its frequency response must be kept flat in the range where the
frequency is less than the cutoff frequency; otherwise it may affect the result of
harmonic measuring. The cutoff frequency of the active filter network is 1600Hz.

The signal passes an active filter hardware before sampling, the arithmetic mean of
the voltage values measured in one second except the max and min value is calculated
and is used as voltage value of this second. In practice, this voltage value is not very
stable for Electro Magnetic interference, so we make a second filter: use the
arithmetic mean of the values of this second and previous two seconds as current
voltage value. After such process, the value is the same as the value measured by a
voltage meter with accuracy of 0.5% in the most of the time.

4.3 Minimize Quantization Noise

Over-sampling and averaging can be used to achieve higher ADC resolution
measurements and SNR (signal-to-noise ratio) of analog-to-digital conversions.
Over-sampling and averaging will improve the SNR and measurement resolution at
the cost of increased CPU utilization and reduced throughput.

For each additional bit of resolution, the signal must be over-sampled by a factor of
four.

s
W

os ff 4 (4)

where w is the number of additional bits of resolution desired, fs is the original
sampling frequency requirement, and fos is the oversampling frequency.

Each doubling of the sampling frequency will lower the in-band noise by 3 dB, and
increase the resolution of the measurement by 1/2 bit.

Use the fos as sampling frequency, we accumulate (add 4W consecutive samples
together) then divide the total by 2W (or right shift the total by W-bits). And this data
is used as normal sample data. In practice, w=2 is used and obvious throughput
reduction can be found.

5 Monitor Center Software Design

The software used on PC is programmed in VC++® 6.0 develop environment; PDF
and CHM file are used as software help document. The html file of the CHM
document is created by DREAMWARE® 3.0, and CHM document is generated by
HTMLHELP® 1.3. PDF document is created by WORD® and ACROBAT®.

Report document is crated by WORD® and EXCEL®, so it can be opened on any
PC with WORD® or EXCEL® installed on it. Because WORD® and EXCEL®

Design and Implementation of the System for Remote Voltage Harmonic Monitor 129

document is a kind of compound document, so it can not be created by simple use
WINDOWS API such as ReadFile or WriteFile. The OFFICE® objects and VBA®
(VB® Script of Application) function is used to generate these documents.

For simple reasons, ACCESS® is used as database management system. In
consider of transportation reasons, only ODBC functions are used in the software.
Special functions which can be run in ACCESS® only, such as fast data exchange in
OFFICE software, are not used. So the software can be run under other DBMS with
litter changes.

6 Conclusion

The voltage harmonic monitor device based on microcontroller C8051F005 can in
real time monitor the 1 to 31 power harmonic voltage virtual values, total aberration
rate, time and number of times of power cut, and the value of the voltage exceeding
the limit. The device also has functions such as alarm, programming for detecting
subsection time, and remote data transmitting.

This remote voltage harmonic monitor device has passed the test of Jiangsu
Institute of Measurement &Testing Technology in May, 2003. This research has also
passed the technology achievements identification from Department of Science and
Technology of Jiangsu, China in Dec 28, 2003. Now, it has been in volume
production. It provides low cost monitor instrument for power supply departments
and let them master the state of power usage and analyze the quality of power grid.

Reference

1. Stefan Kunis, Daniel Potts, Fast spherical Fourier algorithms, Journal of Computational and
Applied Mathematics 161 (2003) 75 98

2. Tian Xiaolin, Wang Jianhua, Liu Hongjun, Method of power harmonics analysis based on
single chip processor and FPGA, Electrical Measurement & Instrumentation, 2004.2

3. Xiao Jian-hua, Wu Jin-pei, The Design of the Power Harmonics Detection System, Journal
of Jishou University (Natural Science Edition), Vol . 21 No. 3, 2000.9

4. http://www.xhl.com.cn

Guaranteed Cost Control of Networked Control

Systems: An LMI Approach

Shanbin Li, Zhi Wang, and Youxian Sun

National Laboratory of Industrial Control Technology
Institute of Modern Control Engineering

Zhejiang University, Hangzhou 310027, P.R.China
sbli@iipc.zju.edu.cn

Abstract. In this paper, networked control systems (NCS) is modeled
as a discrete-time linear state-delayed system with norm-bounded un-
certainty. Inspired by the so-called descriptor model transformation, a
delay-dependent sufficient condition for the existence of a guaranteed
cost controller for NCS is presented by a set of linear matrix inequalities
(LMIs). The resulting controller can not only asymptotically stabilize the
system but also guarantee an adequate level of performance. Theoretical
analysis and illustrative results show that the control strategy presented
in this paper is effective and feasible.

1 Introduction

Guaranteed cost control was firstly presented by Chang and Peng [1]. Its objec-
tive is to design a control system, which is not only stable but also guarantees
an adequate level of performance. It is obviously a useful method in industrial
control system. However, guaranteed cost control for networked control systems
(NCS) wherein the control loops are closed through communication networks
has not been studied extensively.

Up to now, the NCS has been an emerging research topic, which attracts
increasing attention. The existence of networks in control systems brings about
many problems including network-induced delays, jitter, packet losses as well
as limited bandwidth [2]. It’s well known that the network-induced delays intro-
duced into the control loop can deteriorate the dynamic performance of systems.
In worse case, these delays may be a main cause of potential system instability.
Consequently, the basic focus in NCS involves the control of network-induced
delays [3].

The network-induced delay issue of NCS is discussed using the guaranteed
cost control approach in this paper. There are numerous stability results of
guaranteed cost control for uncertain systems with time-delay, see e.g. [4]. In
[4], a delay-dependent guaranteed cost control was developed for discrete-time
state-delayed system by the so-called descriptor model transformation, which
was firstly presented in [5]. Motivated by the transformation, this paper pro-
poses a delay-dependent guaranteed cost control for NCS by modeling it into

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 130–136, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Guaranteed Cost Control of Networked Control Systems: An LMI Approach 131

an uncertain discrete-time system with state-delay. The state feedback problem
for NCS is formulated as a convex optimization over a set of LMIs, which can
be very efficiently solved by interior-point methods [6]. At the same time, the
optimal performance index sufficing that control law is given and the efficiency
of guaranteed cost control strategy is demonstrated by an illustrative example.

2 Model Description

Assume that the uncertain discrete-time plant model is:

x(k + 1) = (A + DΔ(k)Ea)x(k) + (B + DΔ(k)Eb)u(k), (1)

where x(k) is the state, u(k) is the control input, A, B, D, Ea and Eb are
real constant matrices. Δ(k) is an uncertain time-varying matrix stratifying the
bound ΔT (k)Δ(k) ≤ I. All matrices are assumed to have compatible dimensions.

There are time-varying but bounded delays τsc
k and τca

k in the control loops.
Here τsc

k (τca
k) is the communication delay between sensor and controller (con-

troller and actuator) at time k respectively. If a static feedback controller is
adopted, then τsc

k and τca
k can be equivalently lumped together as a single delay

τ(k) = τsc
k + τca

k . Furthermore, the bounds of network-induced delay can be ob-
tained by the best and worst case analysis as [7]. Hence, the assumption τ ≤ τ ≤
τ is reasonable, where τ and τ are positive integers corresponding to minimum
and maximum of τ(k). Then the controlled state information is given as:

u(k) = Kx(k − τ(k)), (2)

where K is the state-delayed feedback gain.
Given positive definite symmetric matrices Q1 and Q2, the cost function is

considered as:

J =
∑∞

k=0

[
xT (k)Q1x(k) + uT (k)Q2u(k)

]
. (3)

Associated with the cost function (3), the guaranteed cost controller (2) is defined
as following:

Definition 1 : Consider the uncertain system (1) and the cost function (3).
If there exists a control law u(k) and a positive scalar J∗ such that, for all
admissible uncertainties, the closed-loop is stable and the closed-loop value of
the cost function (3) satisfies J ≤ J∗. Then J∗ is said to be a guaranteed cost
and u(k) is said to be a guaranteed cost controller for the uncertain system (1).

This paper aims to develop a controller as (2) which achieves value J∗ as small
as possible for uncertain systems in the networked setup.

132 Shanbin Li, Zhi Wang, and Youxian Sun

3 Guaranteed Cost Control over Network

3.1 Analysis of Robust Performance

Applying a new Lyapunov-Krasovskii function, a new sufficient condition for the
existence of the guaranteed cost controller for uncertain plant (1) and cost (5)
in the networked setting will be established in this subsection.

Applying the controller (2) to plant (1), we will have the following system:

x(k + 1) = A1x(k) + B1x(k − τ(k)), (4)

where A1 = A+DΔ(k)Ea, B1 = (B +DΔ(k)Eb)K. Associated with the system
(4) is the cost function:

J =
∑∞

k=0 xT
e (k)Qxe(k), (5)

where xT
e (k) = [xT (k), xT (k − τ(k))], Q = diag{Q1, KT Q2K}.

Theorem 1 . Consider the system (4) with the cost function (5) and time-
varying but bounded delay τ(k) ∈ [

τ , τ
]
. The system (4) is asymptotically stable

if there exists a scalar ε > 0 and symmetric positive-definite matrices P1 ∈ Rn×n,
R ∈ Rn×n and S ∈ Rn×n, matrices P2 ∈ Rn×n, P3 ∈ Rn×n, W ∈ R2n×2n and
M ∈ R2n×n such that the following matrix inequalities are satisfied:

Θ(τ , τ) =

⎡
⎢⎢⎣

Γ P T

[
0

BK

]
−M

[
ET

a

0

]
∗ −R+KT Q2K KT ET

b

∗ ∗ −εI

⎤
⎥⎥⎦ < 0, (6)

[
W M
∗ S

]
≥ 0, (7)

where the ∗ represents block that is readily inferred by symmetry and:

Γ = PT

[
0 I

A−I −I

]
+
[

0 I
A−I −I

]T

P + εPT

[
0 0
0 DDT

]
P

+
[

μR + Q1 0
0 P1 + τS

]
+ τW +

[
M 0

]
+
[
M 0

]T
, (8)

μ = 1 + (τ − τ), P =
[
P1 0
P2 P3

]
. (9)

Furthermore, the cost function (5) satisfies the following bound:

J ≤ xT (0)P1x(0) +
∑−1

l=−τxT (l)Rx(l) +
∑0

θ=−τ+1

∑−1
l=−1+θy

T (l)Sy(l)

+
∑−τ+1

θ=−τ+2

∑−1
l=θ−1 xT (l)Rx(l), (10)

where y(l) = x(l + 1) − x(l).

Proof. Because of the limit of pages, the detail proof procedure is omitted here.
Q.E.D.

Guaranteed Cost Control of Networked Control Systems: An LMI Approach 133

3.2 Controller Design

A parameterized representation of the guaranteed cost control laws in terms of
the feasible solutions to a set of LMIs will be presented in this subsection.

It’s noted that the upper bound (10) depends on the initial condition of
system (4), which will bring some difficulties in the solution to Theorem 1.
In order to remove the dependence on the initial condition, we suppose that
the initial state of system (4) is arbitrary but belongs to the set S = {x(l) ∈
Rn : x(l) = Uvi, vT

i vi ≤ 1, l = −τ ,−τ + 1, . . . , 1, 0}, where U is a given
matrix. Then the cost bound (10) leads to:

J ≤ λmax(UT P1U) + ρ1λmax(UT RU) + ρ2λmax(UT SU). (11)

where λmax(·) denotes the maximum eigenvalue of matrix (·), ρ1 = μ(τ + τ)/2
and ρ2 = 2τ(τ + 1). Based on (11), the controller design theorem is given as
following:

Theorem 2 . Consider the system (4) with the cost function (5) and time-
varying but bounded delay τ(k) ∈ [

τ , τ
]
. Suppose that for a prescribed scalar

δ, there exists a state feedback gain K such that the control law (2) with state-
delay is a guaranteed cost controller if there exists a scalar ε > 0, matrices
X > 0, Y, Z, F, L > 0, S̄ > 0, W̄1, W̄2, W̄3, such that the following matrix
inequalities are satisfied:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ1 Ψ2 0 XET
a τZT 0 X ZT

∗ Ψ3 (1 − δ)BF 0 τY T 0 0 Y T

∗ ∗ −L FT ET
b 0 FT 0 0

∗ ∗ ∗ −εI 0 0 0 0
∗ ∗ ∗ ∗ −τ S̄ 0 0 0

∗ ∗ ∗ ∗ ∗ −Q−1
2 0 0

∗ ∗ ∗ ∗ ∗ ∗ −Q−1
1 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (12)

⎡
⎢⎣

W̄1 W̄2 0
∗ W̄3 δBF

∗ ∗ XS̄−1X

⎤
⎥⎦ ≥ 0, (13)

where

Ψ1 = Z + ZT + μL + τW̄1, (14)

Ψ2 = Y + X(A − I)T − ZT + τW̄2 + δFT BT , (15)

Ψ3 = −Y − Y T + τW̄3 + εDDT . (16)

Furthermore, a guaranteed cost control law is given by (2) with K = FX−1 and
the corresponding cost function satisfies:

J ≤ λmax(UT X−1U) + ρ1λmax(UT X−1LX−1U) + ρ2λmax(UT S̄−1U). (17)

134 Shanbin Li, Zhi Wang, and Youxian Sun

Proof. By Sherman-Morrison matrix inversion formula, we have:

P−1 =

[
P−1

1 0

−P−1
3 P2P

−1
1 P−1

3

]
. (18)

Let X = P−1
1 , Y = P−1

3 and Z = −P−1
3 P2P

−1
1 . Similar to [4], we have to restrict

M to δP T

[
0

BK

]
in order to obtain an LMI, where δ is a scalar parameter

determined by designer.
Pre- and post-multiplying diag{P−1, P−1

1 , I} and its transpose to (6), re-
spectively. Pre- and post-multiplying diag{P−1, P−1

1 } and its transpose to (7),
respectively. We further denote L = P−1

1 RP−1
1 , F = KP−1

1 , S̄ = S−1 and

(P−1)T WP−1 =
[

W̄1 W̄2

∗ W̄3

]
. Applying the Schur complement and by expansion

of the block matrices, the theorem is proved. Q.E.D.
From (17), we establish the following inequalities:

[−αI UT

∗ −X

]
< 0,

[−βI UT

∗ −XL−1X

]
< 0,

[−γI UT

∗ −S̄

]
< 0, (19)

where α, β and γ are scalars to be determined. However, it is noted that the
condition (13) and (19) are no more LMI conditions because of the terms XL−1X
and XS̄−1X , respectively. Note that for any matrix X > 0, we have XS̄−1X ≥
2X − S̄, XL−1X ≥ 2X − L.

Given a prescribed scalar δ, τ and τ , the design problem of the optimal
guaranteed cost controller can be formulated as the following LMI eigenvalue
problem:

OP: min
ε,X,Y,Z,F,L,S̄,W̄1,W̄2,W̄3

(α + ρ1β + ρ2γ)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) Equation(12),

(ii)

⎡
⎢⎣W̄1 W̄2 0

∗ W̄3 δBF

∗ ∗ 2X − S̄

⎤
⎥⎦ ≥ 0,

(iii)
[−αI UT

∗ −X

]
< 0,

[−βI UT

∗ −2X + L

]
< 0,

[−γI UT

∗ −S̄

]
< 0.

(20)

It is clear that the above optimization problem (20) is a convex optimization
problem and can be effectively solved by existing LMI software [8]. Using this
solution, we can calculate the upper bound of (11). This bound will be considered
as a function of δ, τ and τ . We select its minimum as a suboptimal value for the
corresponding upper bound of the cost function (10).

Guaranteed Cost Control of Networked Control Systems: An LMI Approach 135

4 Illustrative Example

In this section, a numerical example is presented to illustrate how to solve the
optimization problem proposed in this paper and realize the networked control
law. The plant is given as follows:

A =
[

1.13 0
0.16 0.478

]
, B =

[
0.2 0.1
0 −0.1

]
, D =

[
0 0

0.1 0

]
,

Ea =
[

0.1 0
0.1 −0.1

]
, Eb =

[
0 0.1

0.1 0

]
,

(21)

and the simulation parameters are given as: Q1 =
[

1.5 0
0 1.5

]
, Q2 = 0.1, U =[

1 0
0 1

]
. The eigenvalues of A are obtained as λ1 = 0.478 and λ2 = 1.13, which

means the plant (21) is open-loop unstable.
We first choose δ = 1 and τ = 1, τ = 3. By Theorem 2 and using Mat-

lab command mincx of LMI-toolbox [8], we have Jcost = 1.1357 × 103, K =[
−1.1303 −0.2577
−0.3535 −0.0897

]
. On the premise of assuring the feasibility to optimization

problem (20), we increase δ from 0.7 to 1 by step 0.01, and τ from τ to 4 by step
0.1. Then a three-dimensional graph of cost, δ and τ is obtained as Figure 1,
where J(1, 1) is the cost obtained when δ = 0.96, τ = τ = 1. As shown, increas-
ing τ results in an increase of cost, namely deteriorates the system performance.
This validates the aforementioned analysis.

1
1.5

2
2.5

3

0.96

0.97

0.98

0.99

1

20

40

60

80

100

120

140

160

180

Maximum Delay (in times of sampling time)
Tuning Parameter delta

C
os

t J
 (

in
 ti

m
es

 o
f J

(1
,1

))

Fig. 1. The cost as a function of δ and delay τ ∈ [τ , τ]

136 Shanbin Li, Zhi Wang, and Youxian Sun

5 Conclusions

Network-induced delays in the networked control system are inevitable and have
a significant effect on system performance. This paper addresses networked con-
trol systems (NCS) within the framework of a discrete-time linear state-delayed
system with norm-bounded uncertainty. Based on the model, a delay-dependent
sufficient condition for the existence of a guaranteed cost controller for NCS is
presented by a set of linear matrix inequalities (LMIs). The resulting controller
can not only asymptotically stabilize the system but also guarantee an adequate
level of performance. It should be noted that the proposed results can be appli-
cable to NCS, wherein the network-induced delay is random and bounded. It’s
also noted that the results can be extended to the case where the delay is not
only shorter than one sampling time but also longer than one sampling time.

References

1. Chang, S., Peng, T.: Adaptive guaranteed cost control of systems with uncertain
parameters. IEEE Trans. On Automat. Contr. 17 (1972) 474–483

2. Tipsuwan, Y., Chow, M.Y.: Control Methodologies in Networked Control Systems.
Control Engineering Practice 11 (2003) 1099–1111

3. Krtolica, R., Özgüner, Ü., Chan, H., Göktas, H., Winkelman, J., Liubakka, M.:
Stability of linear feedback systems with random communication delays. Int. J.
Control 59 (1994) 925–953

4. Chen, W.H., Guan, Z.H., Lu, X.: Delay-dependent guaranteed cost control for
uncertain discrete-time systems with delay. IEE Proc.-Control Theory Appl. 150
(2003) 412–416

5. Fridman, E., Shaked, U.: A descriptor system approach to h∞ control of linear
time-delay systems. IEEE Trans. Automat. Contr. 47 (2002) 253–270

6. Boyd, S., Ghaoui, L.E., Balakrishnan, E.F.V.: Linear Matrix Inequalities in System
and Control Theory. SIAM, Philadelphia (1995)

7. Castelpietra, P., Song, Y.Q., Francoise, S.L., Attia, M.: Analysis and simulation
methods for performance evaluation of a multiple networked embedded architecture.
IEEE Transactions on Industrial Electronics 49 (2002) 1251–1264

8. Ghainet, P., Nemirovski, A., Laub, A.J., Chilali, M.: LMI Control Toolbox-for Use
with Matlab. The Math Works Inc. (1995)

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 137-142, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Robust Tuning of Embedded Intelligent PID Controller
for Induction Motor Using Bacterial Foraging Based

Optimization

Dong Hwa Kim

Department of Instrumentation and Control Eng., Hanbat National University,
16-1 San Duckmyong-Dong Yuseong-Gu, Daejon City, Korea, 305-719.

kimdh@hanbat.ac.kr

Abstract. In this paper, design approach of PID controller with rejection
function against external disturbance in motor control system is proposed
using bacterial foraging based optimal algorithm. To design disturbance
rejection tuning, disturbance rejection conditions based on H are
illustrated and the performance of response based on the bacterial foraging is
computed for the designed PID controller as ITSE (Integral of time weighted
squared error). Hence, parameters of PID controller are selected by bacterial
foraging based optimal algorithm to obtain the required response.

1 Introduction

A Proportional – Integral – Derivative (PID) controller has been widely used in the
most industrial processes despite continual advances in control theory. Most of the
PID tuning rules developed in the past years use the conventional method such as
frequency-response methods [1]. This method needs a highly technical experience to
apply since they provide simple tuning formulae to determine the PID controller
parameters. In case of the Ziegler-Nichols rule tuning technique, it often leads to a
rather oscillatory response to set-point changes. Despite the fact that many PID tuning
methods are available for achieving the specified GPM, they can be divided into two
categories. On the other hand, since natural selection of bacterial foraging tends to
eliminate animals with poor foraging strategies for locating, handling, and ingesting
food, optimization models can be provided for social foraging where groups of
parameters communicate to cooperatively forage in engineering. In this paper, an
intelligent tuning method of PID controller by bacterial foraging based optimal
algorithm is suggested for robust control with disturbance rejection function on
control system of motor control loop.

138 Dong Hwa Kim

2 PID Controller Tuning with Disturbance Rejection Function

2.1 Condition for Disturbance Rejection

In Fig. 1, the disturbance rejection constraint can be given by [7,8]

)(),(1
)(max

)(sGcsK
sw

d

Y
Dtd

. (1)

Here, 1 is constant defining by the desired rejection level and denotes

the H -norm, which is defined as)(max)(
),0[

jGsG .

The disturbance rejection constraint becomes

)2(),(max

),(),(),(),(1
)()(max

)(),(1
)(

5.0

).0[

5.0

).0[

c

cjGcjKcjGcjK
jwjw

sGcsK
sw

The controller K (s, c) is written as sc
s
cccsK 3

2
1),(and the vector c of

the controller parameter is given by Tcccc 321 ,, . Hence, the condition for

disturbance rejection is given as 5.0

).0[
),(max c .

2.2 Performance Index for Disturbance Rejection Controller Design

The performance index defined as ITSE (Integral of the Time-Weighted Square of the

Error) is written by dttEtPI
0

2))((, n

i

n
i

m

j

m
j

sa

sb

sA
sBsE

0

1

0

1

)(
)()(. (3)

Because E(s) contains the parameters of the controller (c) and plant, the value of
performance index, PI for a system of nth order can be minimized by adjusting the
vector c as)(min cPI

c
. The optimal tuning proposed in this paper is to find the

vector c, so that the ITSE performance index PI (c) is a minimum using bacterial
algorithm and the constraint 5.0

).0[
),(max c is satisfied through real coded

bacterial algorithms.

Robust Tuning of Embedded Intelligent PID Controller for Induction Motor 139

3 Behavior Characteristics and Modeling of Bacteria Foraging

3.1 Overview of Chemotactic Behavior of E. coli.

This paper considers the foraging behavior of E. coli, which is a common type of
bacteria as in reference 4-5. Its behavior to move comes from a set of up to six rigid
100–200 rps spinning flagella, each driven as a biological motor. An E. coli bacterium
alternates between running and tumbling. Running speed is 10–20 sec/m , but they
cannot swim straight. Mutations in E. coli affect the reproductive efficiency at
different temperatures, and occur at a rate of about 710 per gene and per generation.
E. coli occasionally engages in a conjugation that affects the characteristics of a
population of bacteria. Since there are many types of taxes that are used by bacteria
such as aerotaxis (it are attracted to oxygen), light (phototaxis), temperature
(thermotaxis) and magnetotaxis, it can be affected by magnetic lines of flux. Some
bacteria can change their shape and number of flagella which is based on the medium
to reconfigure in order to ensure efficient foraging in a variety of media.

3.2 Optimization Function of Bacterial Swarm Foraging

The main goal based on bacterial foraging is to apply in order to find the minimum
of nRP),(, not in the gradient)(P . Here, when is the position of a bacterium,
and)(J is an attractant-repellant profile. A neutral medium, and the presence of
noxious substances, respectively can be shown by

},...,2,1),,({),,(NilkjlkjH i . (4)

Equation represents the positions of each member in the population of the N
bacteria at the jth chemotactic step, kth reproduction step, and lth
elimination-dispersal event. Let P(i, j, k, l) denote the cost at the location of the ith
bacterium ni Rlkj),,(. Reference [20, 21] let

)()((),,(),,1(jiClkjlkj ii , (5)
so that C(i)>0 is the size of the step taken in the random direction specified by the
tumble. If at),,1(lkji the cost J(i, j+1, k, l) is better (lower) than at),,(lkji ,
then another chemotactic step of size C(i) in this same direction will be taken and
repeated up to a maximum number of steps Ns . Ns is the length of the lifetime of the
bacteria measured by the number of chemotactic steps. Functions)(i

cP , i=1, 2, . . . ,
S, to model the cell-to-cell signaling via an attractant and a repellant is represented by

,)(exp

)(exp)(

1 1

2

1 1 1

2

N

i

n

j

i
jjattractrepellant

N

i

N

i

n

j

i
jjattractattract

i
ccc

K

LPP

 (6)

140 Dong Hwa Kim

When we where T
p][,...,1 is a point on the optimization domain, Lattract is the

depth of the attractant released by the cell and attract is a measure of the width of the
attractant signal. attractrepellant LK is the height of the repellant effect magnitude),
and attract is a measure of the width of the repellant. The expression of)(cP
means that its value does not depend on the nutrient concentration at position .
Model use the function)(arP to represent the environment-dependent cell-to-cell
signaling as car PPTP exp)(, where T is a tunable parameter. Model

considers minimization of P(i, j, k, l)+ lkjP i
ar ,, , so that the cells will try to find

nutrients, avoid noxious substances, and at the same time try to move toward other
cells, but not too close to them. The function lkjP i

ar ,, implies that, with M
being constant, the smaller P , the larger Par () and thus the stronger attraction,
which is intuitively reasonable. In tuning the parameter M, it is normally found that,
when M is very large, Par () is much larger than J , and thus the profile of the
search space is dominated by the chemical attractant secreted by E. coli. This paper
describes the method in the form of an algorithm to search optimal value of PID
parameter.
[step 1] Initialize parameters n, N, NC, NS, Nre, Ned, Ped, C(i)(i=1,2,…,N), i , and
random values of PID parameter. Where, n: Dimension of the search space (Each
Parameter of PID controller), N: The number of bacteria in the population, NC :
chemotactic steps, Nre : The number of reproduction steps, Ned : the number of
elimination-dispersal events, Ped : elimination-dispersal with probability, C(i): the size
of the step taken in the random direction specified by the tumble. The controller
parameter is searched in the range of Kp=[0 30], Ti=[0 30], and Td=[0 30].
[step 2] Elimination-dispersal loop: l=l+1
[step 3] Reproduction loop: k=k+1
[step 4]Chemotaxis loop: j=j+1
[step 5] If CNj , go to step 3. In this case, continue chemotaxis, since the life of
the bacteria is not over.
[step 6] Reproduction:
[step 7] If reNk , go to [step 3]. In this case, we have not reached the number of
specified reproduction steps, so we start the next generation in the chemotactic loop.
[step 8] Elimination-dispersal: For ,...,2,1 Ni with probability edP , eliminate and
disperse each bacterium. To do this, if you eliminate a bacterium, simply disperse one
to a random location on the optimization domain. If edNl , then go to [step 2];
otherwise end.

4 Simulations and Discussions

Fig. 1 shows the step response to variation of chemotactic size. When step size is 0.15,
response is best response. Fig. 2 is comparison of results by GA (genetic algorithm),
immune algorithm, and bacterial foraging. Fig. 3 is representing search process of

Robust Tuning of Embedded Intelligent PID Controller for Induction Motor 141

performance index (ITSE) by bacteria foraging and Fig. 4 is search process to have
optimal PID parameters by bacteria foraging.

5 Conclusions

Up to now, the PID controller has been used to operate the process loops including
motor control. However, achieving an optimal PID gain is very difficult for the
control loop with disturbances. Since natural selection of animal tends to eliminate
animals with poor foraging strategies for locating, handling, and ingesting food, they
obtain enough food to enable them to reproduce after many generations, poor foraging
strategies are either eliminated or shaped into good ones redesigned. Therefore,
optimization approach can be provided for social foraging where groups of
parameters communicate to cooperatively forage in engineering.

Fig.1. Step response by variation of
chemotactic step size Fig.2. Comparison of each optimal

algorithm. (GA, Immune algorithm,
Bacteria Foraging)

Fig.3. Search process of performance index
(ITSE) by Bacteria Foraging

Fig.4. Search process of optimal PID
parameters by Bacteria Foraging

142 Dong Hwa Kim

Table 1. Comparison of PID parameter and ITSE of each optimal algorithm.

 Bacteria
Foraging

GA[1] Immune
Algorithm

Kp 29.901 29.992 29.739
Ti 0.25813 0.0001 0.39477
Td 30 28.3819 27.277
ITSE 0.000668 0.000668 0.0006352

In this paper, an intelligent tuning method of PID controller by bacterial foraging
based optimal algorithm is suggested for robust control with disturbance rejection
function on control system of motor control loop. Simulation results are showing
satisfactory responses. The object function can be minimized by gain selection for
control, and the variety gain is obtained as shown in Table 1. The suggested controller
can also be used effectively in the control system as seen from Figs. 1-4.

References

1. 2. J. X. Xu, C. Liu, and C. C. Hang: Tuning of Fuzzy PI Controllers Based on Gain/Phase
Margin Specifications and ITAE Index. ISA Transactions 35 (1996) 79-91.

2. Dong Hwa Kim: Intelligent tuning of a PID controller with robust disturbance rejection
function using an immune algorithm. Proc. Int. Conf. Knowledge-based intelligent
information and engineering systems. Springer-Verlag (2004) 57-63.

3. PASSINO, K. M.: Biomimicry of Bacterial Foraging for Distributed Optimization and
Control. IEEE Control Systems Magazine (2002)

4. Ching-Hung Lee, Yi Hsiung Lee, and Ching Ch-eng Teng: A novel robust PID controllers
design by Fuzzy Neural network. Proceedings of the American Control Conference,
Anchorage, May 8-10, (2002) 1561-1566

5. Dong Hwa Kim: Robust PID controller tuning using multiobjective optimization based on
clonal selection of immune algorithm. Proc. Int. Conf. Knowledge-based intelligent
information and engineering systems. Springer-Verlag (2004) 50-56.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 143-149, 2005.
 Springer-Verlag Berlin Heidelberg 2005

The Customizable Embedded System for Seriate
Intelligent Sewing Equipment

Kailong Zhang, Xingshe Zhou, Ke Liang, and Jianjun Li

School of Computer, Northwestern Polytechnical University Xi’an, Shaanxi, 710072, China
{kl.zhang, zhouxs}@nwpu.edu.cn

Abstract: Today the development of sewing technology has shown the seriate
intelligent trend, and one important factor is the embedded system technology.
After careful research and analysis, this paper brings forward a customizable
embedded system architecture, which is made up of customizable embedded
hardware platform, customizable embedded OS and component-based
embedded software. We have used this architecture to design new electro-
pattern sewing machine successfully.

1 Introduction

With the fast development of embedded system technique, the industry of sewing
equipment has entered an intelligent era after a long mechanical and electric sewing
period. The new generation of electro-sewing equipments, which adopts the advanced
intelligent embedded system, can do more complex and accurate sewing tasks, and is
easier to operate.

Having analyzed the features of intelligent sewing machines, this paper presents a
new customizable embedded system for the seriate intelligent requirement, which
includes a customizable hardware platform, a customizable embedded software
platform, a sewing domain-oriented embedded component set, development methods
and so on.

2 Customizable Embedded Hardware Platform

An intelligent sewing machine is mainly made up of mechanical-electro devices and
one embedded system. In such a machine, the embedded system makes all the electro
devices act coordinately and can interact with user.

Between different sewing machines, there are many differences, such as the type of
mechanical units, electric units and the control system. In order to explain this
question, we compare the electro-lockstitch sewing machine with the electro-pattern
sewing machine here. First, they are designed for different purposes. The former is
mainly to execute two-dimensional linear sewing tasks, while the latter is for three-
dimensional pattern sewing application. Second, they are different in mechanism. An
electro-lockstitch sewing machine needs a main-shaft motor and some mechanical

144 Kailong Zhang et al.

connecting rods to control the needle and move fabric backwards and forwards, while
an electro-pattern one requires two step motors and one servomotor to achieve
coordinated movement[1][2]. Of course, except these differences, there are some
similarities among different ones in many aspects. From the simpler electro-lockstitch
sewing machine to the more complex computerized embroidery machine, they all
adopt the manipulative mode of “embedded system + electric units”, and consist of
motor driver, auto-threadtrimming set and other apparatuses controlled by embedded
system. So, we can make the following conclusion primarily: the differences between
them are only the type, number and manipulative approaches of motors and
pneumatic equipments.

On the foundation, we put forward a new opening hardware platform that includes
the foundational platform and special devices in this paper. The foundational platform
includes general equipments and interfaces required by the seriate sewing machines,
such as embedded processor, basic I/O, USB, Ethernet interface, etc. The special
devices are required only by given intelligent equipment, for instance the motor
controller, pneumatic units, data acquisition devices, and what not. With such opening
architecture, embedded hardware system can be configured easily. And the nice
extensibility of such architecture can also guarantee the developer to produce new
intelligent sewing machines. The customizable hardware architecture for seriate
sewing machines is shown in Fig1.

Fig. 1. Opening Architecture of Embedded Hardware for Seriate Intelligent Sewing Equipment

Therefore, the hardware platform of new sewing equipment can be developed
conveniently by customizing the number of switch, motor and motor driver, and the
interfaces of communication and control. For example, the typical hardware
configuration for electro-pattern sewing machine can be the following: foundational
hardware platform, touching-screen, LCD, CF card, 2-way digital switches, 3-way
data acquisition and three-dimensional motor controller, etc.

3 Customizable Embedded Software Platform

The embedded software platform of intelligent sewing machine is mainly constructed
by embedded OS, drivers for special devices and embedded application software,
while some applications may need embedded graphic and character libraries, network

Motor
Controller

digital
switch

electromag
netic valve

electro-
magnet

The Customizable Embedded System for Seriate Intelligent Sewing Equipment 145

protocol stack and other modules. Traditional embedded software is difficult to be
applied to the other intelligent sewing equipments, because it is often designed for
special cases. To meet the seriate demands and improve the development method, a
new customizable architecture of embedded software platform is proposed as
following.

Such customizable software architecture is mainly separated into three different
parts: customizable embedded OS, general embedded software component set, and
special embedded software component set. With such architecture, the special
application-oriented embedded system can be customized easily. During the
development of new sewing machines, more embedded components can be developed
and added into the embedded software set continuously. Eventually, the customizable
embedded system platform with rich functions can be established, which will be more
helpful in the future. At the same time, the “general software + special software”
mode based on embedded component will meet the customizable demands.

3.1 Customizable Embedded RTOS

In our practice, we used embedded Linux as our foundational OS platform for it has
more merits. Embedded Linux provides not only the core functions of the micro-
kernel, such as general process management, but also the high-level ones, such as the
real-time FIFO, process schedule based on priority-driven polling and otherwise. The
architecture of embedded Linux is clear and can be divided into the following four
layers: HAL, micro-kernel, real-time kernel and application interface. For the limited
resources and domain-oriented applications, the common embedded Linux need to be
tailored, extended and optimized before it is used in the sewing equipments. This
work will be described as the following items.

Kernel Tailoring. Linux kernel is designed in modularization mode which allows
many functional modules to be compiled into kernel directly or loaded dynamically.
Because of the open source and powerful kernel-compiled tools, Linux kernel can be
tailored conveniently. In addition, embedded Linux should also activate the kmod
function to support diverse hardware by smaller core. When we try to tailor a kernel,
one of the important contents is the compile-items. Based on our experiments, the
following options must be considered: loadable module support, general kernel, block
devices, networking options, ATA/IDE, Frame-buffer, input core, file system, SCSI
and USB support, and etc. Additionally, we should consider tailoring the libc library
according to application, which can economize the storage space by a long way.

For example, to realize the automatic network configuration and the pattern data
transferring function, the items, such as Networking support [General setup], Network
block device support [Block devices], and Unix domain socket, IP: kernel level auto-
configuration, IP: DHCP support, IP: BOOTP support, IP: RARP support[Networking
options], should all be selected.

In practice, we adopt the Linux 2.4.20-8 kernel. The kernel we customized for the
electro-pattern sewing machine is about 1093K, which can support almost all the
basic functions required by an electro-pattern sewing machine.

146 Kailong Zhang et al.

Function Extending. Generally, the drivers and interfaces provided by embedded
Linux may not support all the devices needed by sewing equipment, especially some
special hardware. Consequently, the embedded Linux kernel should be extended fully.

Linux kernel is designed as a wholly independent entity, and the drivers are all
designed as modules. This mechanism allows all the drivers to be loaded or removed
dynamically with some useful system calls, such as init_module() and cleanup_
module(). Although the drivers are all treated as modules in Linux system, the kernel
can load them by two different methods. One is modularization mode that allows the
kernel loading special modules dynamically. And the other is kernel mode, which
requires the kernel to load all modules needed when system is booting. Considering
the fixed demands of the special sewing system, the latter is adopted in our practice.

Performance Optimizing. Embedded Linux can satisfy requirement of applications
on sizes and functions partly, but its performance, such as real-time processing, may
be limited if it is used in sewing field. Thus the performance of embedded Linux
should be optimized firstly when it will be used.
 The ability of real-time processing

Because the interrupt mechanism and process scheduling policy in traditional
embedded Linux are not designed in real-time mode, the real-time performance must
be optimized for real-time sewing application. Based on the analysis, the real-time
performance of Linux kernel can be promoted by modifying source code of kernel,
adopting optimized process scheduling, inserting preemptable points, optimizing the
mechanism of interrupt management and fining clock granularity [5].
 Rapid, graphic system booting

Another requirement of such embedded system is rapid system booting. For the
sake of hardware detection and system services loading, common Linux always starts
up slowly. But, not all of the detection and services are needed. To shorten the system
booting time, some unnecessary system detections and services must be masked by
modifying initial shell scripts and kernel configuration. On the other hand, Linux
should be booted in the single user mode. Moreover, some applications also require
the system booting in graphic mode, so that this function can be realized by patching
the optimized kernel with bootsplash 3.0.7.

On an embedded board with 1GHz main clock and 128M memory, the optimized
embedded Linux can boot up in 5 seconds, and shut down in 4 seconds, while the
common Linux will spend about 73 seconds to boot and 24 seconds to halt in the
same conditions.

3.2 Application Software Set Based on Embedded Component

Embedded components are self-contained, packaged, standard and reusable software
modules with a special functionality [11]. Having analyzed the functions of intelligent
sewing equipments, we divided embedded components into three classes: framework,
general sewing components, and the special ones. This classification indicates the
functional modes and the hierarchy of embedded component in sewing field, which is
helpful to configure, extend, and manage the component library.

The Customizable Embedded System for Seriate Intelligent Sewing Equipment 147

Embedded Component for Sewing Equipment (ECSE). An embedded component
 can be described with data structure: component ::= <IR(X), II(), IE(X), F(),

IH()>, where IR(X) is the component remark, II() is the data and control interface,
IE(X) is the entity to realize the actual sewing function, F() = {f1,…,fn} is the set of
services encapsulated by component , IH() describes information about the related
hardware. Considering the fact that the embedded component for intelligent sewing
equipment is almost related to the control action, the descriptions of the time-
restriction, hardware platform, special embedded interfaces and other features are
supplied to the embedded component as metadata.

The procedure to design an embedded component mainly includes three steps:
component abstraction, component entity design and component packaging. Twice-
packing is necessary for component entity, and the first is to uniform the service
interfaces while the second to manage the component library [9].

Embedded Component Repository for Sewing Equipment (ECRSE). ECRSE is a
set of software modules constructed by certain semantic and structural rules. In
ECRSE, all the embedded components are stored in the form of files, and all can be
searched and customized by component management tools.

According to the classification of ECSE before, the ECRSE can be classified into
three sublibraries.
 Framework component subset contains all the foundational components. These

components are always the basic units, and provide abundant contracted interfaces.
 General component subset involves some components used by different

equipments, such as power on self-test, data acquisition, auto-threadtrimming,
thread-broken detecting and so on.

 Special component subset includes some components needed by special
equipment, such as pattern customizing for electro-pattern-sewing machine,
fastener hole diameter setting for electro-button-attaching machine.
ECRSE is established with information library and functionality library in practice.

The information library stores the description information of all components, while
the latter provides functionality to instantiate components. At the same time, the
mapping relationship between description information and components is also
necessary to be involved into ECRSE.

Customizing Application. Commonly, the process to customize an application
involves system designing, components customizing and assembling, system
simulating and testing, etc.

After analyzing and determining the characteristics and functionality of target
system, the following step is to choose one appropriate framework, some general
components and special ones for it. Since there aren’t completely equivalent function
descriptions in the component library where there aren’t reduplicate components [10],
new components should be customized or developed if no one can satisfy the
requirement. The third, all the customized components should be assembled
according to component contact and event/time-driven mode to form a new embedded
application. By integrating the customized embedded software, RTOS and hardware
platform together, the customization work is completed on the whole. As the last
important step, the system customized above must be tested and simulated in the

148 Kailong Zhang et al.

special simulation environment we have developed. The principle of customizing
component-based application is shown in Fig2.

Fig. 2. Component-based Embedded Application for Seriate Intelligent Sewing Equipment

4 Conclusion and Future Work

As a whole, the opening system architecture for seriate sewing machines presented in
this paper has been used in our project, and the result of experimentation shows that
the customizable method is doable and effective. With our research and practice, we
can get the following conclusion: the opening architecture and the component-based
application development method are useful to shorten the developing period of a new
product, and improve the performance of products further.

During our practice, we summarize two main tasks that should be researched more
in the future. First, the existing kernel customization tools can’t satisfy the special
requirements, so we will study further the mechanism of customizable embedded
RTOS and customization methods. In addition, we will optimize the interface and
structures of embedded component according to the characteristics of seriate
intelligent sewing equipment.

Acknowledgment

This work is supported by the National 863 Project under grant No.2004AA1Z2410
and Xi'an Science Technology Bureau under grant No.CH04004.

References

1. He Hai, Zhao Yanwen, Wu Shilin: The Design of Real Time Multi-task Controller for Home
Computerised Embroidery Machine, Journal of WuHan Institute of Science and
Technology, Vol.14, No.1(2001)18-21.

Special
component General

component

Framework
component

Specification

Interfaces

Customized Embedded Hardware
for Serial Sewing Equipment

Customized
Embedded RTOS Ethernet USB Driver

Graphic Lib Tidy TCP/IP

Framework Component

Component1 Component2 Componentn

Com-
ponent

Custo-
mizing

Tools

Component Manage Tools

Component entities

Customized Application

Contract

The Customizable Embedded System for Seriate Intelligent Sewing Equipment 149

2. Diao Hongquan, Yan Gangfeng: Integral Design Scheme of Computerised Embroidery
Machine's Control System, Journal of Engineering Design, Vol.10, No.4(2003)187-191.

3. Carsten Boke, Marcelo Götz, Tales Heimfarth: (Re-) Configurable Real-Time Operating
Systems and Their Applications, The Fifth IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems(2003)148.

4. Zhou Dexin, Zhang Xiangli: Embedded Operating System and Linux, Journal of Guilin
Institute of Eectronic Technology, Vol.20,No.4(2000)21-23.

5. Yang Chaojun, Li Shichang, Tao Yang: The Optimization of Embedded Linux, Journal of
Chongqing University of Postsand Telecommunications, Vol.14 No.4(2002)61-64.

6. Li Xiaoqun, Zhao Huibin, Ye Yimin, Sun Yufang: RFRTOS: A Real-Time Operation
System Based on Linux”, Journal of Software, Vol.14, No.7(2003)203-1212.

7. Yu Xianqing: Component, Component-Base, Method Based on Component, Journal of
Graduate School, Academia Sinica, Vol.15, No.l(1998)86-90.

8. Philip T Cox, Song Baoming: A Formal Model for Component-Based Software, IEEE 2001
Symposia on Human Centric Computing Languages and Environments(2001)304.

9. Liu Yu, Guo Heqing: The Realization of Reusable Component for Special Domain, Micro-
computer Applications, Vol.15, No.11(1999)21-23.

10. Zhang Haifei, Yuan Lei, Xia Kuanli: A Model of Software Component Libraries Function
Set, Computer Engineering, Vol.26 No.11(2000)87-90.

11. Uwe E. Zimmermann, Michael Wenz, Thomas Längle, Heinz Wörn: Describing
Components and Configurations for Embedded Control Systems. The Proceedings of the 4th
International Workshop on Computer Science and Information Technologies CSIT’2002.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 150-157, 2005.
 Springer-Verlag Berlin Heidelberg 2005

A Distributed Architecture Model for Heterogeneous
Multiprocessor System-on-Chip Design

Qiang Wu1, 2, Jinian Bian1, Hongxi Xue1

1 Department of Computer Science and Technology, Tsinghua University,
Beijing, China 100084

wuqiang2000@mails.tsinghua.edu.cn,
{bianjn, xuehx}@tsinghua.edu.cn

2 College of Computer and Communication, Hunan University,
Changsha, China 410082

Abstract. Current embedded system designs inspire the adoption of heteroge-
neous multiprocessor system-on-chip (SoC) technology, in which the architec-
ture model plays a very important role. This paper proposes a distributed archi-
tecture model for the heterogeneous multiprocessor SoC design. It takes the
view on the system as multiple processing elements connected with a network
of communication channels. System functions are refined to primitives pro-
vided by the processing elements and communication channels through a hier-
archy of abstraction layers. This will be helpful for the enhancement of system
design modularity and efficiency.

1 Introduction

Current embedded systems design trend is to employ the heterogeneous multiproces-
sor System-on-Chip (SoC) technology to achieve functionality, performance, price
and low power goals [1][2]. Chips summarized in [10] verify the emergence of such a
design style, while [11], [12] and [13] give the concrete examples of this trend. In
these designs, several microprocessors and ASIC blocks will be integrated on the
same chip. Particular implementation tools are used for each of the components, e.g.,
compilers for microprocessors, synthesizers for ASICs. Communication components
are often identified as hardware logics combined with software drivers, and imple-
mented with corresponding compilers and synthesizers. Beyond them, the architec-
ture model describes the organization of various components. It hides the details of
the underlying components, exhibits a unified programming model for the designers
to specify the system function, and provides an appropriate hierarchy of abstraction
layers to pass the system function specification to back-end implementation tools.

 This work was supported by “National Natural Science Foundation of China 90207017,
60236020, 60121120706” and “Hi-Tech Research and Development Program (863) of China
2003AA115110”.

A Distributed Architecture Model 151

Intensive researches have been carried out on the embedded system design [3], but
many of them focus on the single processor system, like COSYMA, VULCAN,
LYCOS, TOSCA, MICKEY [3][4]. Some of them target at the multiprocessor system,
like POLIS, COOL, Chinook, COSMOS, CoWare, SpecSyn [3][4] and MFSAM-
based approach [5]. Among these, POLIS, COOL, Chinook, COSMOS were devel-
oped before 2000, and did not focus on the heterogeneous multiprocessor SoCs.
CoWare and SpecSyn (and its successor, SpecC-based SCE [6]) consider the archi-
tecture of multiprocessor SoCs, but restrict themselves on some specific set of
interconnect topology and communication protocols. MFSAM is closest to the focus
of this paper which uses a generic architecture model for application-specific
multiprocessor SoCs.

The work presented in this paper follows a distributed computing manner for the
top view, regarding the system as multiple processing elements connected with com-
munication channels. The main difference between this model and the previous works
mentioned above is the manipulation of memories which are viewed as building
blocks of processing elements or communication channels, not appearing at system
level. This can maintain a clearer view at system level for an easy function-
architecture mapping.

The rest of the paper is organized as follows: Section 2 describes the architecture
model in detail. Section 3 outlines the translation of system functions through the
hierarchy of abstraction layers. Conclusion is given in section 4.

2 Architecture Model

2.1 System Model

The proposed architecture model is a network of communication channels (CH) con-
necting multiple processing elements (PE), as illustrated in fig.1.

Memories are attached either to PEs as their local memories or to CHs as shared
memories. No instances of independent memory exist in system level model of the
architecture. This is different from previous works that always have memories as
separate components in the architecture model, especially the shared memories. But
in heterogeneous multiprocessor SoC designs, memories may have different struc-
tures for different processors. Such a separate memory organization in architecture
model may have disadvantages for system scalability. MFSAM ameliorates this situa-
tion by integrating local memories with processors, thus enhances the modularity of
the system. However, shared memories in MFSAM approach are still separated from
other components in the system, especially from the communication network.

Considering that shared memories act as a center for information exchanges be-
tween different processes or tasks in the system, we think it is better to view shared
memories as a communication channel. This forms a clean distributed computing
model for the system, where PE performs the computation and CH performs the
communication. We emphasize on the distributed feature of the model with the con-
sideration of the relation to the back-end implementation tools. We hope that the
compilers, synthesizers and programmers can be applied within the domain of each

152 Qiang Wu, Jinian Bian, and Hongxi Xue

PE and CH in the implementation stage. This encapsulation of individual components
can increase the modularity and scalability of the whole system.

Fig. 1. Illustration of the distributed architecture model

It can be seen in the fig.1 that all PEs and CHs have interfaces between them. The
interfaces on the PE side are used to hide the details of PEs and adapt them to the
abstract communication model. The interfaces on the CH side are used to hide the
details of CHs and provide an abstract communication model for PEs. This is helpful
for a clear separation between computation and communication.

2.2 PE and CH Types

The PE can be of whatever computation component, such as microprocessor, DSP,
ASIC block, reconfigurable logic device or IP core. They can be categorized to three
types according to the programmability: (1) programmable PE (for microprocessors);
(2) reconfigurable PE (for programmable logic devices); (3) fixed PE (for full-custom
logic blocks), like PE1, PE2 and PE3 illustrated in fig.1. IP cores that perform the
computation of the system will be regarded as one of these three types of PE with the
consideration of their programming characteristics and system needs. It should be

A Distributed Architecture Model 153

emphasized that each PE has a complete running environment for processes or tasks
executed on it. Data exchanges and control synchronizations with other processes or
tasks on different PEs are carried out through corresponding CHs.

The CH can be of whatever communication component, and are divided to four
types with the consideration of topologic complexity: (1) point-to-point link; (2) bus;
(3) shared memory; (4) complex network, as shown in fig.2 in detail.

(a) Point-to-point link (b) Bus

(c) Shared memory (d) Complex network

Fig. 2. Communication channel types

IP cores that perform the communication of the system are also classified in these
four types according to their topologic characteristics.

Based on these fundamental types, PEs and CHs can be further divided to sub-
types according to the functions they provide, as well as the performance and cost
associated. Such type refinement can be carried on recursively, resulting in a type tree
of PEs or CHs. The leaves of the tree should be the concrete PE or CH instances,

154 Qiang Wu, Jinian Bian, and Hongxi Xue

such as specific processors or buses. Theoretically, if all instances of PEs and CHs
and all variations of their functions, performance and cost are considered, the type
tree will be too large and possibly conflicting. This is not necessary and should be
avoided in a practical system design. So, in real system designs, type refinement
should be built on the complexity of the system function and the availability of hard-
ware and software resources to select appropriate width and height of the type tree
that can give efficient guidance to the system design.

For a good link to back-end tools, we suggest a principle of type refinement as fol-
lows: (1) At first, build sub-types from fundamental types by the functional compati-
bility; (2) Then, build further sub-types by the variations of performance and cost.
This is to say, we group available PEs or CHs that can be alternated to implement the
function of one or more processes in the system specification. After that, we will
decide whether to divide them further or not with the consideration of system design
requirement and the variances of performance and cost among the PEs and CHs in
each sub-type. If the variance is not significant and can be ignored in system design
decision, then the further division is not necessary. Otherwise, a deeper type tree is
demanded.

Fig.3 gives an example of PE type trees. It consists of 2 sub-types of programma-
ble PE: 8051 microcontroller and ARM microprocessor core series, 2 sub-types of
fixed PE: JPEG codec core and DCT logic block and 1 sub-type of reconfigurable PE:
FPGA fabric can be identified. The performance and cost differences of ARM9 and
ARM9E should be examined for further consideration, indicated by two dotted lines.
Usually, these two microprocessor cores need be separated to different sub-types. But
cases may exist in some designs that the processes to be mapped on these two cores
have minor differences in terms of design objects like running speed, power con-
sumption, development cost and so on. In such a situation, the designer may figure
that the choice between the two cores has little effect on the performance and cost of
the final system, and decide not to distinguish them. This means the type tree ends at
the ARM core series, not the core instances. For system design exploration and deci-
sion, this will be helpful due to the reduction of the search space, resulting in a faster
design convergence procedure.

PE
Types

Program
mable

Fixed Reconfi
gurable

ARM
Series

8051
MCU

ARM9E ARM9

DCT
Block

JPEG
Codec

FPGA
Fabric

Fig. 3. Illustration of a PE type tree

A Distributed Architecture Model 155

The building of CH type tree is similar to PE type tree, while the compatibility
consideration mainly concerns the interoperability of communication protocols and
interface adaptability. And the terms of performance and cost often refer to the band-
width, frequency, transport power, chip area and so on.

3 Design Flow

Unlike the top-down [7] and bottom-up [8] approaches, the design methodology in
our work can be classified as the meet-in-the-middle approach. The whole design
flow is shown in fig.4.

Fig. 4. Design flow

3.1 Abstraction Hierarchy

A three-layered hierarchy is adopted in our architecture model, which consists of the
system level, architectural level and implementation level, as shown in fig.5.

At system level, the architecture model provides abstract computation and commu-
nication primitives to support system functional specification as concurrent processes.
The computation primitives are abstract functions, while the communication primi-
tives are based on the message passing mechanism.

At architectural level, computation is represented as the functions and statements in
high level programming languages or hardware description languages (HDL). On the

156 Qiang Wu, Jinian Bian, and Hongxi Xue

PE side, communication is represented as operating system services with hardware
dependent software drivers, or behavioral signaling in HDL. On the CH side, com-
munication is further divided to two sub layers. The higher one is called the channel-
abstract level, which provides communication primitives adapted to the PE’s commu-
nication interfaces. The lower layer is called the channel-specific level, which de-
scribes the composition of the underlying hardware components for each channel.

At implementation level, computation and communication are merged to more ba-
sic operations in the forms of instruction set and logic functions. Compilers, synthe-
sizers and programmers are introduced to take care of these tedious matters.

Fig. 5. Three-layered abstraction hierarchy

3.2 Meet-in-the-Middle Approach

At first system function will be analyzed and partitioned to groups of processes. Each
group will be executed on the same PE. The communication channels will be attached
to PEs having communicating processes. Then we build implementation instances for
PEs and CHs in the preliminary architecture. Computation and communication ab-
straction will be performed for the PE and CH instances. The extracted primitives and
parameters will be stored in PE and CH database for future reuse. Later we refine the
partitioned processes towards the architectural level to meet these primitives. Once
reached, the architectural model and parameters of the PEs and CHs will be used to
guide the compilation and synthesis at implementation level.

Compared with a typical meet-in-the-middle method, the platform-based design [9],
our design flow refines the system function to individual PEs and CHs rather than a
platform. This is due to the distributed feature of our architecture model, which can
provide designers more freedom in specializing PEs and CHs for a given application.

And our approach differs from component-based approach [8] in that the compo-
nent-based approach focuses on the automatic generation of wrappers for components
in the system to interact with each other, which mainly concerns the communication
aspect of the implementation of system function. Our approach intends to cover both

A Distributed Architecture Model 157

computation and communication aspects of the system function to support architec-
tural exploration, integration and implementation.

4 Conclusion

We have introduced a distributed architecture model and related design methodology.
The model is featured with encapsulation of individual component and the separation
of computation and communication. A hierarchy of system level, architectural level
and implementation level abstraction is adopted in this model. Two sub abstraction
layers in architecture level for the CHs are employed to assist the refinement of the
communication interface between the PE and CH. This enhances the modularity and
scalability of the system, which increases the design reusability and efficiency. A set
of CAD tools is under development to support the design flow based on the proposed
architecture model.

References

1. Flynn, M. Dubey, P. Hot chips 15 - scaling the silicon mountain. IEEE Micro, Vol. 24,
Iss. 2 (2004) 7-9

2. Ravikumar, C.P. Multiprocessor architectures for embedded system-on-chip applications.
Proc. of Intl. Conf. on VLSI Design, Bangalore (2004) 512-519

3. Staunstrup J, Wolf W. Hardware/Software Co-Design: Principles and Practice. Boston:
Kluwer Academic Publishers (1997)

4. R. Rajsuman. System-on-Chip: Design and Test. London: Artech House Publishers (2000)
5. Amer Baghdadi, et al. An Efficient Architecture Model for Systematic Design of Applica-

tion-Specific Multiprocessor SoC. Proc. of DATE, Munich (2001) 55-62
6. S. Abdi, et al. System-on-Chip Environment (SCE Version 2.2.0 Beta): Tutorial. Techni-

cal Report ICS-TR-00-47, University of California, Irvine (2003)
7. Lukai Cai, et al. Top-down system level design methodology using SpecC, VCC and

SystemC. Proc. of DATE, Paris (2002) 1137
8. Cescirio W., et al. Component-based design approach for multicore SoCs. Proceedings of

Design Automation Conference (2002) 789-794
9. Sangiovanni-Vincentelli, A., Martin, G. Platform-based design and software design

methodology for embedded systems. IEEE Design & Test of Computers, Vol. 18, Iss. 6
(2001) 23-33

10. Michael Flynn, Pradeep Dubey. Hot Chips 15 Scaling the Silicon Mountain. IEEE
Micro, Vol. 24, Iss. 2 (2004) 7-9

11. Alireza Hodjat, Ingrid Verbauwhede. High-Throughput Programmable Cryptocoprocessor.
IEEE Micro, Vol. 24, Iss. 3 (2004) 34-45

12. Deepu Talla, Ching-Yu Hung, Raj Talluri, et al. Anatomy of a portable digital mediaproc-
essor. IEEE Micro, Vol. 24, Iss. 2 (2004) 32-39

13. Hans-Joachim Stolberg, Mladen Berekovic, Lars Friebe, et al. HiBRID-SoC: a multi-core
system-on-chip architecture for multimedia signal processing applications. Proceedings of
the Conference on Design, Automation and Test in Europe: Designers' Forum - Volume 2
(2003) 8-13 suppl

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 158-164, 2005.
 Springer-Verlag Berlin Heidelberg 2005

 A New Technique for Program Code Compression in
Embedded Microprocessor1

Ming-che Lai, Kui Dai, Li Shen, and Zhi-ying Wang

School of Computer National University of Defense Technology, Changsha, P. R. China.
mingchelai@chiplight.com.cn

Abstract. Program code compression has become a critical technology
nowadays, and it can promote the performance of microprocessor systems. But
compression techniques nowadays can hardly achieve both satisfactory
compression ratio and low hardware complexity. A new program code
compression method is proposed in this paper. Experiment results show that the
code sizes of ARM and OR1200 microprocessor can be efficiently reduced by
32.2% and 36.9% individually with this algorithm, resulting to a sharp decrease
in memory traffic. A hardware decompressing prototype is also presented,
revealing its advantage in ultra high speed decompression and low hardware
complexity.

1 Introduction

With all kinds of the electronic equipments widely used on PDA and automobiles,
embedded systems have been more and more popularized. Especially with the high
development of information society nowadays, embedded systems are advancing
towards large scale and complexity. Recent statistics show that the requirement for
the embedded system memory is increasing linearly by year, but it is accompanied
with a series of problems, such as shortage of storage resource, high price of the
memory elements and so on. Thus, the research on the code compression technology
is necessary.

The correlative research on the code compression begins at the nineties of the
twentieth century, and there is an abundance of algorithms in the literature now. In
1992, Wolfe and Chanin [7] proposed the first code compression system for
embedded processors using byte-based Huffman coding technology. They reported a
compression ratio around 0.73 for MIPS code. The main shortcoming of this method
is the low decompression speed. Lefury [4] proposed another new dictionary-based
method and presented the concept of variable-length codeword. The compression
ratios are 61%, 66% and 74% for the PowerPC, ARM and i386 programs on average
respectively. The drawback of this method is that branch targets must be aligned and
the range of branched is reduced. IBM also presented a code compression method
named CodePack [1], which split 32-bit instruction into two 16-bit words and
compressed the program using the variable-length codeword. They reported that the

1Supported by the Natural Science Foundation of China under Grant No.60173040

A New Technique for Program Code Compression in Embedded Microprocessor 159

compression ratio could be achieved about 61% for PowerPC program code.
Additionally, there are some new code compression methods based on the new
architecture, such as MIPS16 [6] and ARM Thumb [5]. The ARM Thumb instruction
set consists of a subset of the most commonly used 32-bit ARM instructions. The
ARM Thumb instruction set achieves an average compression ratio of 70% while
MIPS16 achieves about 60%. They have a zero decoding penalty but result in the loss
of the performance and require more effort on the microprocessor design.

This paper presents another new program code compression algorithm in section 2.
The related hardware implementation is discussed in section 3. Section 4 presented
the corresponding experiment results.

2 Code Compression Algorithm

2.1 Basic Algorithm

In order to achieve a satisfactory compression ratio by real-time decompression, this
section present a new program code compression technique, which is referred as
PCCP for Program Code Compression based on the Pretreatment.

First of all, a pretreatment mechanism is introduced. The aim of this mechanism is
to make the uncompressed code bits with value 0 become clustered relatively. Before
the pretreatment, here is a matrix whose rows correspond to the uncompressed code
vectors. Using this matrix, the pretreatment scheme works in the following two steps:
1. By studying all the elements of each column in the matrix, the corresponding bit of

the vector Xi is made certain as follows: If the number of the element 0 exceeds the
number of the element 1 in a certain column, the corresponding bit of the vector Xi
will be set to 1. Otherwise, it will be set to 0.

2. Doing XOR operation between Xi and the former code vectors to get the new code
vectors for the rows of the new matrix. After replacing the old matrix, go back to
the step 1 to get the new vector Xi+1.
The two steps above will be repeated P times, and a new code vector will be

generated for each input vector . That is to say, = X, where X represents
X1 X2 Xp. It is assured that can be recovered because and X are both known.

After the pretreatment, the new code compression algorithm is presented. The
compression scheme works in the following four steps:
1. Get the new matrix and the vector X by the above pretreatment. And each row

corresponds to an uncompressed code vector.
2. Select a maximal vector from the matrix as the next dictionary item Ti.
3. For each code vector Y labeled as uncompressed,

Y=Ti –Y (1)

Then a new matrix can be generated, in which any code vectors smaller than the
threshold is labeled as compressed.
4. If all the code vectors in the new matrix are compressed, the compression finishes.

Otherwise, go to step 2.
Completing the above procedure, the dictionary has been generated. But it is not

suitable for the decompression. In fact, this dictionary only needs some mathematical

160 Ming-che Lai et al.

improvement to achieve the simple implementation and fast decompression. Suppose
there is an uncompressed program code sequence x1, x2, , xn. Following the above
scheme, this sequence becomes another one y1, y2, , yn (i (yi<)) while getting the
dictionary items T1, T2, , Tn. If a certain code vector xi is compressed to the vector yi
by some dictionary items T1, T2, , Tw. There exists the following conclusion:

ii11ww yxTTT (2)

Then,

i
1w

i1
1w

1ww x1yT1TT (3)

i
1w

iw x1yt (4)

1w
1

1w
1www 1T1TTt (5)

In the formula (3), the code vector xi uses the first w dictionary items for its
compression. So the fast decompression can be realized only using the formula (4)
and (5). If tw is treated as the new dictionary items, there exists the following formula:

i
w

wi y1tx (6)

Then, using the new dictionary items tw, the compressed vector yi can be
decompressed to the original code vector xi.

2.2 Dictionary Size

A key factor of the compression is the dictionary size. Any good code compression
method should limit the dictionary size. The scheme in the PCCP to reduce the
dictionary size works as follows: if the value of ’ is less than the threshold *, which
is determined by the dictionary size and the constraint size, the item tw is deleted.

)(t)y()x(' w1 i1 i jj

p

j

p

j
 (7)

Then, the models of the PCCP algorithm can be constructed immediately. In the
models, a self-adapt recursive search strategy is adopted to satisfy the dictionary size
constraint and to gain the best compression performance by selecting the proper
threshold and *.

3 Hardware Prototype

In the implementation of the PCCP, the biggest challenge is the effective run-time
decompression and the key is the address conversion. Ideally, solving these problems
only needs a bitmap to show whether each instruction is compressed or not. However,
the main shortage is that the hardware will be a burden when the program is large
enough. Thus, a block mechanism is adopted in the design to simplify the hardware

A New Technique for Program Code Compression in Embedded Microprocessor 161

for the address conversion. As shown in Fig. 1, 128 sequential instructions will be
organized as a block, whose correlative information item contains a bitmap and its
base address. Using an item of the Address Conversion Table (ACT), any compressed
instruction in the corresponding block can be accessed normally by the processor.

Fig. 1. The fast decompression in PCPP

As shown in the left part of the Fig. 1, the instruction address is decomposed into
three parts. The sixteen most significant bits are used for the ACT index, and they are
compared to the tags held in the buffers. Once the tag matches an entry and there is a
cache miss, the corresponding ACT entry is used for address conversion. If the ACT
entry is not in the buffers, it will be read from memory using the ACT index. The
refill continues after the ACT entry is present. Then, if the compressed cache line is
fetched from the main memory, the decompression unit will decide any an instruction
to be decompressed or not, according to the corresponding bit in the bitmap. In the
right part, the compressed instruction is split into two parts, the high significant bits
are used as the dictionary index, and the low significant ones are used for the offset.
The PCPP only needs to do SUB or ADD operation between them to recover the
instruction (an XOR operation may be added because of the pretreatment).

Fig. 2. Overall memory system organization

Then, Fig. 2 shows the simple instruction memory hierarchy in a typical system.
From the analysis above, the logic of the address conversion is very easy, and its
controller only consumes around 1.1k gates in the following experiment on the ARM
architecture. Then, the process of its address conversion just needs 2 ns in the 0.18us

162 Ming-che Lai et al.

process. Therefore, it can be concluded that the decompression of the PCCP is
real-time and only needs little hardware cost for the implementation.

4 Experiments

Finally, the experiments are performed on ARM and OR1200 architectures and the
corresponding compression results are analyzed in the below.

Table 1. The compression result on the ARM architecture

No. Program Name Original Code Size Dictionary size Compression Ratios
1 ammp 270.2KB 1678 0.678225
2 go 422.7KB 1888 0.635728
3 mcf 60.0 KB 994 0.703374
4 gzip 87.6 KB 890 0.709907
5 vortex 618.0KB 1854 0.673422
6 vpr 207.3KB 1750 0.709019
7 bzip2 82.9 KB 830 0.706707
8 twolf 269.0KB 1872 0.708113

All the simulations performed in the Table 1 use a number of commonly available
programs in SPEC 2000. For better compression performance in PCCP models, the
length of the compressed instruction is chosen to be 16 bits. As a result, the ratios of
compressed program size (including dictionary) over original program size in each
benchmark distribute between 59% and 67% with a constraint that the dictionary size
can’t exceed 8 KB. But the overhead of the ACT is approximately 3.61% of original
program size. So the inductive conclusion from the result shown in the Table 1 is that
the compression ratio is approximately 67.8%. With the same constraint, the
compression ratio on the OR1200 architecture achieves 63.1%.

Fig. 3. The compression ratio under different dictionary constraints

Then, the size constraint of the dictionary is set to infinity, 8KB, 4KB and 2KB
individually on the experiment. Fig.3 shows four bars representing the different
compression ratio in the different size. The first bar is so similar to the second and the
third one that the dictionary constraint size beyond 4KB seems to have little influence
to the compression ratio. But 2KB size constraint is quite different. The compression

A New Technique for Program Code Compression in Embedded Microprocessor 163

ratio has a relative increase here. So 4KB is chosen for the dictionary size in the
implementation at last.

With the dictionary size of 4KB, the experiments are performed on the ARM
architecture again. The configuration of its instruction cache is 16-Kbyte, 1-way
direct mapped instruction cache with 64-Bytes per line. The statistics in the Table 2 is
about the memory traffic caused by the program code. And the result shows that there
is a sharp decrease in the traffic of its 32-bits bus because of the compressed code.

Table 2. the memory traffic caused by the program code

No. Program Name Memory traffic
without code compression

Memory traffic
with code compression

1 ammp 6.21 E+09 Bytes 4.39 E+09 Bytes
2 go 1.39 E+09 Bytes 1.10 E+09 Bytes
3 mcf 2.07 E+09 Bytes 1.35 E+09 Bytes
4 gzip 2.13 E+10 Bytes 1.37 E+10 Bytes
5 vortex 2.60 E+10 Bytes 1.86 E+10 Bytes
6 vpr 5.14 E+09 Bytes 3.31 E+09 Bytes
7 bzip2 9.60 E+09 Bytes 6.23 E+09 Bytes
8 twolf 1.81 E+10 Bytes 1.17 E+10 Bytes

5 Conclusions and Future Work

This paper presents a new code compression algorithm for embedded system. As
mentioned above, the standard to evaluate a code compression method can’t be
limited to the compression ratio. The other key factors should be paid more attention
to, i.e. the compression ratio, the limited hardware cost, the real-time decompression,
the small additional table, the low dependence to the processor and so on. Compared
with Lekatsas [8] and other excellent code compression methods as mentioned above,
the PCPP has an attractive compression ratio and little influence to the processor
itself. Besides these, it decompresses in the real time only with low hardware cost.

The following related problems are to be studied further. The first is to apply the
PCCP to the VLIW architecture [3] and evaluate the performance. The second is to
study on the power impact to attack the problem of power consumption in the future
for better performance [2].

References

1. T. Kemp, R. Montoye, J. Harper, J. Palmer, and D. Auerbach. A Decompression Core for
PowerPC. IBM Journal of Research and Development, Vol. 42(6):807–812, November
1998.

2. Ismail Kadayif and Machmut T.Kandemir, “INSTRUCTION COMPRESSION AND
ENCODING FOR LOW-POWER SYSTEMS” 15th Annual IEEE International
ASIC/SOC Conference, pp.301-305, 2002.

164 Ming-che Lai et al.

3. Y. Xie, W. Wolf, and H. Lekatsas. A Code Decompression Architecture for VLIW
processors. Proceedings of the 34th Annual International Symposium on
Microarchitecture, pages 66–75, December 2001.

4. C. Lefurgy, P. Bird, I.-C. Chen, and T. Mudge, “Improving code density using
compression techniques”, Proceedings of the 30th Annual International Symposium on
Microarchitecture, December 1997.

5. K.D. Kissell. MIPS16: High Density MIPS for the Embedded Market. Silicon Graphics
Group,1997.

6. Advanced Risc Machines Ltd. An Introduction to Thumb. March 1995.
7. Wolfe and A. Chanin, “Executing Compressed Programs on an Embedded RISC

Architecture,” International Conference on Microarchitecture, 1992.
8. H. Lekatsas and W. Wolf, “Code compression for embedded systems,” in ACM/IEEE

Design Automation Conf., San Francisco, CA, June 1998, pp. 23–28.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 165-171, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Design of System Area Network Interface Card
Based on Intel IOP310

Xiaojun Yang1, 2, Lili Guo1, Peiheng Zhang2, and Ninghui Sun2

1 School of Information and Communication Engineering, Harbin Engineering University,
Harbin 150001, China

guolili@hrbeu.edu.cn
2 Institute of Computing Technology, Chinese Academy of Sciences,

Beijing 100080, China
{yxj, zph, snh}@ncic.ac.cn

Abstract. A design of system area network interface card (NIC) based on the
Intel IOP310 I/O processor chipset is proposed in this paper. The chipset makes
it powerful for the NIC to offload the processing of communication protocol
from the host CPU. A network interface unit (NIU) based on memory bus is
embedded in the NIC. The NIU not only thoroughly compensates for the lack
of high performance data transfer channel in the embedded system, but also ef-
ficiently utilizes the memory bus bandwidth and direct memory access (DMA)
engine to reduce the latency for data transfer between the host and network.
The NIC is a part of DCNet, which is the system area network (SAN) of Dawn-
ing 4000A Cluster1. The testing results of DCNet show that the NIC obtains
competitive communication performance compared with Myrinet, SCI, and
QsNet, and prove that the way to design high performance NIC is feasible.

1 Introduction

With the enlargement of supercomputer scale and the improvement of node perform-
ance, the demands for bandwidth, latency and reliability of system area network
(SAN) are becoming more and more important. At present, the SAN used in cluster
architecture supercomputer is usually SCI [1], Myrinet [2], and QsNet [3].

An effective network interface card (NIC) is the critical aspect for a SAN to
achieve high performance. The NICs of the above three SANs are all based on a SoC
(System on a Chip) approach. However, with the development of embedded technol-
ogy, more and more embedded systems have particular advantages such as processing
capability, I/O, cost, and potential to be improved. Now it is possible to design a high
performance NIC using universal embedded system. Based on the Intel IOP310 I/O
processor chipset, a NIC is designed for DCNet, which is the SAN of Dawning
4000A Cluster. In order to achieve the high bandwidth and low-latency of the com-

1 This research was supported by the National High-Tech Research and Development Plan of

China under Grant, No. 2002AA104410.

166 Xiaojun Yang et al.

munication, a network interface unit (NIU) based on memory bus is embedded in the
NIC.

The remainder of the paper is organized as follows. Section 2 briefly introduces
the NIC and the Intel IOP310 I/O processor chipset. Section 3 details the design of
DCNet NIC. Section 4 presents the results of the performance evaluation. Finally,
section 5 concludes the paper and discusses the future work.

2 Related Work

In this section, we make overviews of the NIC technology and the Intel IOP310 I/O
processor chipset.

2.1 NIC Technology Overview

SAN is the high performance interconnection for a supercomputer. It consists of the
switch, NIC, and communication protocol. Summary of the above three interconnects
is given in Table 1 [4]. The table shows that SAN possesses high performance in
bandwidth and latency. It is essential to construct the high performance SAN.

Table 1. Summary of SAN specifications and estimated cost

SAN Bandwidth (MB/s) Latency (μs) Cost/Port (Euro)
QsNet (Quadrics) 360 5 4770
Myrinet (Myricom) 245 7 2050
SCI (Dolphin) 2D 5 5 200 4 1590

The processing and transferring capability of hardware is an increasing require-
ment of a NIC. It needs a high-speed processor and a low-latency data access channel
to process the communication protocol. It is necessary to have a high bandwidth data
transfer channel and an effective transfer mode (e.g., DMA) in order to assure the
data transfer performance. Today’s SANs such as SCI, Myrinet and QsNet all have a
dedicated I/O processor and onboard memory, which offloads the protocol handling
from the host CPU and ensures that all available PCI bandwidth is dedicated to data
communication. They all support DMA and use PCI bus [5].

2.2 Intel IOP310 I/O Processor Chipset Overview

The Intel IOP310 I/O processor chipset with Intel XScale technology is the first
product in Intel's fourth-generation of I/O processors. It contains two devices: the
Intel80200 processor based on Intel XScale microarchitecture [6] and the Intel80312
I/O companion chip [7]. The chipset brings a dramatic increase of I/O performance.
When used as an add-in card, the chipset provides the benefit of offloading the proc-
essing of the communication protocol from the host CPU.

Design of System Area Network Interface Card Based on Intel IOP310 167

The Intel80200 processor is compliant with the ARM Version 5TE instruction set.
It has the good performance for moving and processing large amount of data quickly,
and hiding memory latency. The Intel80312 I/O companion chip is designed to work
with the Intel80200 processor to provide a cost effective solution for the intelligent
add-in cards. It is a multi-function device that integrates the PCI-to-PCI Bridge Unit,
DMA Controller, Integrated Memory Controller, and Application Accelerator Unit
(AAU), into a single system chip.

3 Design of NIC Based on Intel IOP310 I/O Processor

In this section, we illuminate the design of a NIC based on the Intel IOP310 I/O proc-
essor chipset. The architecture of NIC, the data transfer modes, and the control pro-
gram of NIC are illustrated.

3.1 Architecture of NIC

The Intel IOP310 I/O processor chipset lacks a high performance data transfer chan-
nel between the host and network, which is absolutely necessary to a high perform-
ance NIC. In order to solve the issue of the universal embedded system, as shown in
the Figure 1, a network interface unit (NIU) based on memory bus is embedded in the
NIC. The NIU efficiently utilizes the memory bus bandwidth and DMA engine to
implement a high performance data transfer channel between the host and network.
Figure 1 shows the function block diagram of NIC.

Fig. 1. DCNet NIC architecture

The NIC includes Intel80312 Companion Chip, Intel80200 Processor, 64MB
Memory, 8MB FLASH, 8259 Interrupt Controller, 8254 Interval Timer, 16550
UART, and the NIU. This architecture not only offloads the communication protocol
processing, but also supports two DMA engines between the host and network.

168 Xiaojun Yang et al.

The NIU consists of Memory Target Interface (MTI), Status/Control Registers
(SCR), and Network Interface (NI). The MTI is a virtual memory device. It converts
the memory bus [8] to a simple local bus, which is used to communicate with the NI.
The SCR is the NIU operation registers based on FLASH bus. The Intel80200 proc-
essor can access these registers. The NI performs the physical and data link level
protocols. It is the same for the memory controller to access the MTI and the local
memory. The data that the memory controller has written to the MTI will be sent to
network, and the data coming from network is stored in the MTI and then will be
taken away by the read operation of the memory controller.

Table 2 describes the NIC memory map. The address range of SDRAM Bank1
dedicates to the MTI of NIU. The address range of Flash Bank0 dedicates to the SCR
of NIU and peripherals such as the UART and timer.

Table 2. The NIC memory map

Address Range Layout
FE9EFFFF to FE800000h SCR of NIU and On-Board Devices (Flash Bank0)
FE7FFFFF to A4000000h MTI of NIU (SDRAM Bank1)
A3FFFFFF to A0000000h SDRAM Bank0
9FFFFFFF to 90020000h Reserved
9001FFF
F

to 80000000h ATU Outbound Transaction Windows

7FFFFFFF to 00800000h ATU Outbound Direct Addressing Windows
007FFFFF to 00002000h Flash Bank1
00001FFF to 00001900h Reserved
000018FF to 00001000h Peripheral Memory Mapped Register
00000FFF to 00000000h Initialization Boot Code From Flash Bank1

3.2 Data Transfer

Fig. 2. Packet definition. (a) Sending packet and (b) Receiving packet

The packet length used for the transaction in a SAN is unlimited. The cell of a packet
is a word (32bits). The packet definition is shown in figure 2, the sending packet
header carries the packet length and routing information, which will be thrown away
by the NIC and switch in the transaction processing, respectively. The receiving

Design of System Area Network Interface Card Based on Intel IOP310 169

packet header consists of the state information, which includes length and CRC check
result of the receiving packet. The CRC field is used for assuring the reliability of the
packet when received. The payload filed is the valid transfer data between the nodes.

The Intel IOP310 I/O processor chipset provides three data transfer modes: DMA,
AAU, and PIO. The Intel80312 provides two DMA channels that perform the data
transfer between the primary PCI bus and the local memory of the Intel IOP310 I/O
processor chipset. AAU performs the low-latency, high-troughput data transfer to and
from the local memory. PIO is the low-speed access mode that the Intel80200 ac-
cesses the devices located on FLASH bus. Because the NIU is a virtual memory de-
vice, the above three data transfer modes can be used all. A view of data transfer
between the host and the NIU in the embedded system is presented in Figure 1.

3.3 Control Program of NIC

The NIC achieves all functions of a SAN, such as parallel communication, reliable
and ordered communication, and timeout and resend mechanism. The control pro-
gram of NIC (NCP) is a significant part of overall communication protocol. It runs on
the NIC, and controls all the NIC operations for message passing. The design of NIU
makes the structure of NCP very simple. As shown in Figure 3, the NCP operation for
message passing is based on an event mechanism.

doIdle

doSend

doSendEnd

doPut

doPut

doPutEnd

doSendACK

Data

ReceiveEnd
Event

SendEnd
Event

Send
Request

Data Data

ACK ACK

Sender Receiver

Fig. 3. NCP operation for message send/receive

4 Performance Evaluation

The testing platform consists of 8 servers (dual Intel Pentium III 1.0GHz CPU, 1GB
memory, 64-bit/66MHz PCI bus, and Linux 2.4.18-SMP OS), 8 DCNet NICs and an
8-port DCNet switch. We test the hardware performance and the user-level communi-
cation performance.

The hardware performance of the NIC includes latency and bandwidth: 1.9μs in
ping-pong latency for small message and 333MB/s in maximal ping-ping bandwidth.
The testing result shows that the performance of hardware implementation based on
universal embedded system and the NIU approach is enough for a SAN.

170 Xiaojun Yang et al.

The user-level communication performance is the actual application performance
of a NIC. The testing results show that DCNet achieves 14.5μs in user-level ping-
pong latency and 218.0MB/s in user-level ping-ping bandwidth. The user-level com-
munication performance of DCNet is close to that of Myrinet, SCI, and QsNet, which
are based on a SoC approach. Furthermore. MPI programs correctly run on the 8
nodes platform based on DCNet. The BER performance of the NIC is less than 10-15.

The testing results show that the NIU is a reasonable solution to design high per-
formance NIC based on the low-cost and universal embedded system.

5 Conclusion and Future Work

In this paper, we have proposed the design of a NIC based on a universal embedded
system, which is the key technology of Dawning 4000A DCNet. The implementation
of the NIC obtains the reasonable user-level communication performance of DCNet.
Though the testing results of DCNet show that the NIC obtains unperfect user-level
communication performance compared with Myrinet, SCI, and QsNet, they prove
that the design of high performance NIC based on universal embedded system and the
NIU approach is feasible and effective. As shown in Figure 4, the performance prob-
lems of NIC will be readily solved with the application of other high performance
embedded systems such as Intel I/O processors [9].

s) MB/s)

Fig. 4. Performance prospect of NIC based on Intel I/O processors

The future work includes adding some functions to the NIU to reduce the latency,
and designing the next generation NIC based on the latest Intel I/O processors. The
performance of NIC based on universal embedded system will be close to that of NIC
based on the SoC approach more and more.

Design of System Area Network Interface Card Based on Intel IOP310 171

References

1. High Speed Network and Interconnect Products. http://www.dolphinics.com/. August 2003.
2. Myrinet Products. http://www.myri.com/. August 2003.
3. QsNet High Performance Interconnect. http://www.quadrics.com/. August 2003.
4. Cluster Design. http://www.clustervision.com/cluster_design.html. August 2003.
5. PCI Local Bus Specification, Revision 2.2. December 18, 1998.
6. Intel Corporation: Intel80200 Processor. November 2000.
7. Intel Corporation: Intel80312 I/O Companion Chip. December 2000.
8. Intel Corporation: PC SDRAM Specification, Revision 1.7. November 2000.
9. Intel I/O Processors. http://www.intel.com/design/iio/. October 2004.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 172-179, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Dual-Stack Return Address Predictor1

Caixia Sun1 and Minxuan Zhang2

1 College of Computer, National University of Defense Technology,
Changsha 410073, Hunan, P.R.China

cxsun1979@163.com
2 College of Computer, National University of Defense Technology,

Changsha 410073, Hunan, P.R.China
mxzhang@nudt.edu.cn

Abstract. Return address predictors used currently almost have the same archi-
tecture: a return address stack and a top-of-stack pointer, some of which may be
enhanced by repair mechanisms. The disadvantage of this type of return ad-
dress predictor is that either prediction accuracy is low or the hardware cost is
high. In this paper, we present a novel kind of return address prediction struc-
ture called Dual-Stack Return Address Predictor (DSRAP) which contains two
return address stacks: RAS_PRED and RAS_WRB. Just as the return address
stack in current return address predictors does, RAS_PRED provides predicted
target addresses for procedure returns. RAS_WRB provides data for repairing
RAS_PRED when a branch misprediction is detected. Results show that
DSRAP can acquire 100% hit rates if mispredictions caused by unmatched
call/return sequences or the stack overflow are ignored. Furthermore, DSRAP is
very easy to design.

1 Introduction

Branch mispredictions have become a serious bottleneck to better performance for
microprocessors with wide-issue and deep-pipeline. Each misprediction results in
several, even more cycles of pipeline stalls. The target address misprediction of pro-
cedure returns is one important source of mispredictions, because a procedure may be
called from many different locations, while the target of a particular return varies. If
we use the old target address as the predicted target of current return instruction,
misprediction might occur. Therefore, a special prediction structure is needed to deal
with procedure returns. A return address stack [1, 2] is a good choice to provide tar-
get address for each return instruction. Most current microprocessors include such a
return address stack. For example, in Alpha 21164, there exists a twelve-entry return
address stack [3], and in Alpha 21264, a thirty-two-entry one [4]. Many of Intel’s
processors, including Itanium [5] and Itanium2 [6], also include a return address
stack.

1 This work was supported by Chinese NSF project (60376018) and Chinese NSF project

(90207011).

Dual-Stack Return Address Predictor 173

A simple stack, however, fails in the presence of speculative execution. In the
branch prediction stage, branch instructions are predicted and subsequent instruc-
tions, which may include calls and returns, are fetched speculatively. If a mispredic-
tion is detected later, all instructions executed speculatively should be squashed. Calls
and returns update the return address stack in the branch prediction stage, while mis-
predictions are detected in the writeback stage, and as a result, calls and returns on a
wrong path corrupt the return address stack. Not to undo the effects of squashed in-
structions, return address misprediction might occur later. So a simple return address
stack cannot satisfy high-performance microprocessors that allow speculating.

In this paper, we propose a novel kind of return address prediction structure. We
call it Dual-Stack Return address Predictor (DSRAP) for that it comprises two return
address stacks. DSRAP can undo the effects of squashed instructions on the return
address stack and achieve 100% return address prediction accuracy if mispredictions
caused by the stack overflow or unmatched call/return sequences are ignored.

The remainder of this paper begins with a brief discussion of related work. In sec-
tion 3, the architecture of DSRAP is described, and some design issues are discussed.
The experimental environment and benchmarks are presented in section 4. In section
5, the simulation results are explained. Conclusions are given in section 6.

2 Related Work

Return address predictors used currently have the same architecture: a return address
stack and a top-of-stack (TOS) pointer. We call this kind of prediction structure Sin-
gle-Stack Return Address Predictor (SSRAP). In order to achieve higher return ad-
dress prediction accuracy, SSRAP may be enhanced by different repair mechanisms.
There are mainly three kinds of repair mechanisms used widely.

The easiest repair mechanism is to save the current top-of-stack pointer each time a
branch is predicted [7]. We call this scheme saving the TOS pointer in the rest of this
paper. A copy of the current TOS (C_TOS) is associated with each branch instruction
that is detected in the branch prediction stage. When a branch misprediction is de-
tected, the associated C_TOS is adjusted according to the type of branch mispredic-
tion and the TOS pointer is updated with the adjusted C_TOS. Saving the TOS
pointer is very cheap. However, when there exist instruction sequences like a return
followed by a call on the mis-speculated path, the return address stack would be cor-
rupted.

A more aggressive scheme is to also save the content of the top stack entry along
with the TOS pointer [8]. We call this scheme saving the TOS pointer and TOS con-
tent in the rest of this paper. This method can improve prediction accuracy greatly,
but it will still fail if two returns are followed by a call on the mis-speculated path.

The extreme is to save the entire return address stack at the time of each branch
prediction. We call this scheme saving the entire stack in the rest of this paper. For
this scheme can always undo the effects of squashed instructions on return address
stack, it can achieve 100% prediction accuracy unless unmatched call/return se-
quences exist or the return address stack overflows. Saving the entire stack, however,
is very expensive, so it is employed rarely.

174 Caixia Sun and Minxuan Zhang

3 Dual-Stack Return Address Predictor

3.1 Architecture

Different from SSRAP, Dual-Stack Return Address Predictor proposed here includes
two return address stacks, as shown in Fig.1. Just as the return address stack in cur-
rent return address predictors does, RAS_PRED provides predicted target addresses
for procedure returns. RAS_WRB provides data for repairing RAS_PRED when a
branch misprediction is detected.

RAS_WRB

Pointer module I

RAS_PRED

Pointer module II

Branch prediction dataBranch resolution data

Predicted target

Return-address IIReturn-address I

Misprediction or not

Prediction moduleWriteback module

Transfer m
odule I

Transfer m
odule II

Fig. 1. The Architecture of DSRAP. Branch prediction data include the type of a particular
branch instruction and its predicted direction. Branch resolution data include the type of a
particular branch instruction and its actual direction. Return-address II is the return address of
the call in the branch prediction stage. Return-address I is the return address of the call in the
writeback stage

RAS_PRED and RAS_WRB have the same structure and the same number of en-
tries. Two top-of-stack pointers, TOS_PRED and TOS_WRB, are defined to index
the two stacks. TOS_PRED is for RAS_PRED and TOS_WRB is for RAS_WRB.
TOS_PRED and TOS_WRB are both initialized to zero. Transfer module II reads the
stack entry indexed by TOS_PRED as predicted target of a return instruction or
writes return address to RAS_PRED. Transfer module I only writes return address to
RAS_WRB. Pointer module II and pointer module I are responsible for updating
TOS_PRED and TOS_WRB, respectively.

According to the architecture given in Fig.1, the hardware cost of DSRAP can eas-
ily be compared to that of SSRAP. Suppose that the return address stack contains n
entries of p bits each, and up to m branches are in-flight. A return address stack needs
pn bits and a top-of-stack pointer needs logn bits. So the total cost of DSRAP is
2*(pn+logn) bits, independent of the number of in-flight branches m. Single-stack
return address predictors all require pn+logn bits for the return address prediction
structure, but additional bits for repairing are different. Saving the TOS pointer re-
quires mlogn bits; saving the TOS pointer and TOS content requires m*(p+logn) bits;
saving the entire stack requires m*(pn+logn) bits. Therefore, the total costs of these

Dual-Stack Return Address Predictor 175

three return address predictors are (pn+logn)+mlogn, (pn+logn)+m*(p+logn) and
(pn+logn)+m*(pn+logn), respectively, which are all dependent of m.

3.2 Design Issues

Stack operations. We employ the same stack model as described in [8]. RAS_PRED
and RAS_WRB are all modeled as a circular LIFO buffer. A push operation causes
the top-of-stack pointer to increase by 1 and a pop operation causes the top-of-stack
pointer to decrease by 1. For the stack is circular, TOS will be (i+1) mod n after a
push operation and (i-1) mod n after a pop operation, supposing that the stack has n
entries and the current top-of-stack pointer is i.

 RAS_PRED and RAS_WRB can both overflow and underflow. For RAS_PRED,
an overflow occurs when a call is predicted taken and RAS_PRED is full, either be-
cause of stack corruption or because there are more calls in program than stack en-
tries. The stack wraps around, which results in that the pushed return address over-
writes the oldest stack entry. If an overflow has occurred in RAS_PRED, a later re-
turn that is predicted taken will cause an underflow by popping an already-popped
entry, and as a result, the return instruction receives an invalid target. For
RAS_WRB, an overflow occurs when a taken call is retired and RAS_WRB is full,
only because there are more calls in program than stack entries. If an overflow has
occurred in RAS_WRB, a later taken return will cause an underflow by popping an
already-popped entry.

Stack updating. In the branch prediction stage, if a call instruction is detected and
predicted taken, TOS_PRED increases by 1, and an associated return address is
pushed onto RAS_PRED. If a return instruction is detected and predicted taken, the
stack entry indexed by TOS_PRED pointer is popped from RAS_PRED as the pre-
dicted target address of the return instruction, and TOS_PRED decreases by 1. Calls
and returns predicted not taken would not change RAS_PRED and TOS_PRED.
Instructions except for calls and returns would not change RAS_PRED and
TOS_PRED, either. RAS_WRB and TOS_WRB would not be changed in this stage.

In the writeback stage, if a taken call instruction is retired, TOS_WRB increases by
1, and an associated return address is pushed onto the RAS_WRB. If a taken return
instruction is retired, TOS_WRB decreases by 1. Predicted target address of a return
instruction is provided by RAS_PRED, not by RAS_WRB, so the data in the stack
entry indexed by TOS_WRB pointer will not be used. Calls and returns not taken
would not change RAS_WRB and TOS_WRB. Instructions except for calls and re-
turns would not change RAS_WRB and TOS_WRB, either. If a branch misprediction
is detected, all the entries in RAS_PRED are updated with the corresponding entries
in RAS_WRB, and TOS_PRED is updated with TOS_WRB regardless of the reason
of misprediction; otherwise RAS_PRED and TOS_PRED would not be changed in
this stage.

176 Caixia Sun and Minxuan Zhang

4 Methodology

We use the modified version of SimpleScalar’s sim-outorder [9] to collect results.
SimpleScalar provides a simulation environment for modern out-of-order processors
which allow executing speculatively. Table 1 shows the baseline configuration of the
simulator used. The changes made to the simulator for our experiment are localized to
the fetch stage and the writeback stage.

Table 1. Baseline configuration of the simulator

Parameter Value
Processor core

RUU size 64 instructions
LSQ size 40
Fetch queue size 8 instructions
Fetch/Decode width 4 instructions/cycle
Issue width 4 instructions/cycle(out-of-order)
Commit width 4 instructions/cycle(in order)
Functional units 4 integer ALUS, 1 integer multiply/divide, 1 FP add, 1 FP multiply

Branch prediction
Branch predictor Combining: 4K 2-bit selector, 12-bit history; 1K 3-bit local predic-

tor, 10- bit history; 4K 2-bit global predictor, 12-bit history
BTB 2048-entry, 2-way
Mispredict penalty 2 cycles for misfetch, 7 cycles otherwise

Memory hierarchy
L1D cache 64K, 2-way (LRU), 32B blocks, 1 cycle latency
L1I cache 64K, 2-way (LRU), 32B blocks, 1 cycle latency
L2 Unified, 8M, 4-way (LRU), 32B blocks, 12-cycle latency
Memory 100 cycles
TLBs 128 entry, fully associative, 30-cycle miss latency

Table 2. Benchmarks

Benchmark Inputs Warm Up Instructions
gzip input.graphic 824M
vpr ref inputs 105M
gcc cccp.i 221M
mcf inp.in 511M
crafty crafty.in 926M
parser ref.in 1051M
eon ref inputs 26M
perlbmk scrabble game 601M
gap ref.in 271M
vortex persons.1k 2451M
bzip2 input.compressed 2576M
twolf ref inputs 255M

Dual-Stack Return Address Predictor 177

The SPEC2000 integer benchmarks [10] are used. All benchmarks are compiled
using gcc -O3 -funroll -loops. The inputs of benchmarks are given in
Table 2. Table 2 also shows the number of warm-up instructions performed to avoid
the program’s initial phases and any warm-up effects.

5 Simulation Results

From section 3 we notice that the hardware costs of DSRAP and SSRAP are different
when the stack size is equal. So we will first evaluate DSRAP by comparing it with
SSRAP from two aspects: when the stack size is equal and when the hardware cost is
equal.

DSRAP can undo the effects of squashed instructions on the return address stack,
so speculative execution would not cause return address mispredictions. Mispredic-
tions in DSRAP are caused by unmatched call/return sequences or the stack overflow.
The return address is unpredictable if there are unmatched call/return sequences.
Fortunately, for most programs, unmatched call/return sequences are so rare that we
can ignore the mispredictions caused by them. The overflow depends on the stack
size only, and it can be avoided completely if the return address stack is large enough.
Therefore, for DSRAP, we only need to consider the effects of stack size on predic-
tion accuracy. In the second part of this section, we will show the effects of stack size
on prediction accuracy of DSRAP.

5.1 Prediction Accuracy Evaluation

When the stack size is equal. Fig.2 shows the prediction accuracy of each return
address predictor when the stack size is equal. The return address stack has 16 entries.
Compared to saving the TOS pointer, DSRAP improves prediction accuracy dramati-
cally, by an average of 9.58%. Compared to saving the TOS pointer and TOS content,
DSRAP improves prediction accuracy remarkably, especially for vpr, gcc, perlbmk,
gap and twolf, by 3.70%, 1.60%, 2.70%, 1.50% and 2.20% respectively. DSRAP can
achieve the same prediction accuracy as saving the entire stack does, which accords
with the theoretical analysis, because they can both undo the effects of squashed
instructions on the return address stack.

When the hardware cost is equal. Fig.3 shows the prediction accuracy of each re-
turn address predictor when the cost is equal. The stack in DSRAP has 16 entries.
The stack size cannot be too small; otherwise, stack overflow will dominate predic-
tion accuracy. In order to consume the same hardware resources, the size of stack in
saving the TOS pointer is fewer than 32, so does the size of stack in saving the TOS
pointer and TOS content, and the size of stack in saving the entire stack is not more
than 16 (m>1, generally). In our experiment, the size of stack in these three mecha-
nisms is 32, 32 and 16 respectively, so the results will be biased towards these three
kinds of return address predictors. Now with the same hardware resources consumed,
compared to saving the TOS pointer, DSRAP improves prediction accuracy by 9.47%

178 Caixia Sun and Minxuan Zhang

on average, and compared to saving the TOS pointer and TOS content and saving the
entire stack, DSRAP can also acquire higher hit rates.

0.7
0.75

0.8
0.85

0.9
0.95

1

gzi
p vp

r
gcc mcf

cra
fty

par
ser eon

per
lbm

k gap
vo

rte
x

bzi
p2

tw
olf

Saving pointer only Saving pointer & content Saving the entire stack DSRAP

Fig. 2. Prediction accuracy of each return address predictor with a 16-entry stack

0.7
0.75

0.8
0.85

0.9
0.95

1

gzi
p vp

r
gcc mcf

cra
fty

par
ser eon

per
lbm

k gap
vo

rte
x

bzi
p2

tw
olf

Saving pointer only Saving pointer & content Saving the entire stack DSRAP

Fig. 3. Prediction accuracy of each return address predictor with the same cost

5.2 Effects of Stack Size on Prediction Accuracy

Fig.4 shows the prediction accuracy of DSRAP with different stack sizes. When the
stack size is 0, BTB (Branch Target Buffer) provides the predicted target of a return
instruction. For all benchmarks except for gzip and bzip2, prediction accuracy in-
creases rapidly before the stack size reaches to 16. vpr, gcc, perlbmk, gap, vortex and
twolf can benefit a little from a further increase to 16 entries. Almost no benchmarks
can benefit from more entries than 16. So for most programs, a stack with 8-16 en-
tries is enough to avoid stack overflow.

Dual-Stack Return Address Predictor 179

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 4 8 16 32 128

Stack size

gzip
vpr
gcc
mcf
crafty
parser
eon
perlbmk
gap
vortex
bzip2
twolf

Fig. 4. Prediction accuracy of DSRAP with different stack sizes

6 Conclusion

Recall that the cost of each kind of SSRAP is linear with the number of branches in
flight m. The larger m is, the higher the cost of SSRAP is. The cost of DSRAP, how-
ever, is independent of m. Therefore, with the pipeline of high-performance micro-
processors deeper, DSRAP becomes cheaper relatively. Furthermore, DSRAP can
achieve 100% return address prediction accuracy if mispredictions caused by the
stack overflow or unmatched call/return sequences are ignored. Therefore, for the
microprocessors with wide-issue and deep-pipeline, DSRAP is a good choice.

References

1. D.R.Kaeli and P.G.Emma: Branch history table prediction of moving target branches due to
subroutine returns. In Proc. ISCA-18(1991)

2. C.F.Webb: Subroutine call/return stack. IBM Tech. Disc. Bulletin (1998)
3. Alpha 21164 Microprocessor: Hardware Reference Manual (1995)
4. L.Gwennap: Digital 21264 sets new standard. Microprocessor Report (1998)
5. H.Sharangpani, K.Arora: Itanium Processor Microarchitecture. IEEE Micro (2000)
6. C.McNairy, D.Soltis: Itanium2 Processor Microarchitecture. IEEE Computer Society (2003)
7. T.Yeh: Return address predictor that uses branch instructions to track a last valid return

address. U.S. Patent No. 6,253,315(2001)
8. K. Skadron, P. Ahuja, M. Martonosi, D. Clark: Improving Prediction for Procedure Returns

with Return address-Stack Repair Mechanisms. In Proceedings of the International Sympo-
sium on Microarchitecture (1998)

9. D. Burger, T.M. Austin, S. Bennett: Evaluating future microprocessors: the SimpleScalar
tool set. TR-1308, Univ. of Wisconsin-Madison CS Dept. (1996)

10. The standard performance evaluation corporation. WWW site. http://www.specbench.org

Electronic Reading Pen: A DSP Based Portable

Device for Offline OCR and Bi-linguistic
Translation

Qing Wang1,2, Sicong Yue1, Rongchun Zhao1, and David Feng2

1 School of Computer Science and Engineering
Northwestern Polytechnical University, Xi’an 710072, P.R. China

qwang@nwpu.edu.cn
2 School of Information Technologies

The University of Sydney, NSW2006, Australia
feng@it.usyd.edu.au

Abstract. In the paper, a portable off-line OCR and bi-linguistic trans-
lation system (Chinese to English, English to Chinese)—Electronic Read-
ing Pen (ERPen) is designed and implemented. The constitution of ER-
Pen hardware is designed and several modules, including CCD line array
acquisition, wheel driven unit, FLASH management and USB interface
are implemented. Moreover, the embedded software, consisting of im-
age preprocessing, character segmentation and recognition, and corpus
based postprocessing, is also discussed and implemented. A novel seg-
mentation approach, central growth algorithm, is proposed and applied
in ERPen system. Experimental results have shown that ERPen is effec-
tive to tackle printed character recognition and translation.

1 Introduction

With the rapid development of economy and broad communication between
different regions and areas in the world, there exist a lot of language barriers
in multi-language inter-translation for people so that a portable bi-linguistic
or multi-linguistic translation device based on Optical Character Recognition
(OCR) is widely demanded. In the last decades, printed character recognition
[1,2] was gradually applied into commercial area from the experimental proto-
types. A great number of products can be found, such as TH-OCR[3], Han-
OCR[4], FormAgent, DocAgent[5] and so on. However, most of the commercial
systems are based on the document or form images scanned by the scanner and
run on the desktop. Although a few products are designed and implemented in
embedded systems, such as mobile phone, PDA, electronic dictionary and so on,
the kernels of the character recognition are still based on online handwriting
input instead of offline character recognition.

In the paper, an embedded off-line recognition and bi-linguistic interpreta-
tion system based on DSP chip, which is also called as Electronic Reading Pen
(ERPen), is designed and implemented. The hardware framework of ERPen is

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 180–187, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Electronic Reading Pen 181

designed and several key modules, including CCD line array acquisition, wheel
driven unit, FLASH management and USB interface, are implemented. On the
other hand, several key issues of the algorithms are discussed in detail, which
include scanned image preprocessing, character segmentation and recognition,
corpus based postprocessing, and translation. Meanwhile, a novel segmentation
approach, central growth algorithm, is proposed in embedded software, which is
based on region connectivity and dynamic programming. The cutting paths are
obtained by central growth algorithm and a simplified cost function is defined
to reduce the complexity of candidate decision. Moreover, a modified function
based on second order derivative of the projection is also defined and used to
evaluate the possibility of the cutting paths.

After a quick and easy scanning on the interested text area, the image of Chi-
nese or English words is captured into ERPen system and corresponding text
is translated and displayed on the LCD screen correctly. The ERPen system
contains over 300,000 words and phrases in Chinese and English. The overall
recognition rate for Chinese and English words are 99.2% and 98.3% respec-
tively. At the same time, the processing time is very little. All of these results
have proven that ERPen system is very effective and efficient.

The paper is organized as following. The framework of hardware system is
described in the Section 2. In Section 3, the processing flow of the software
system and key modules for segmentation, recognition and postprocessing are
discussed. The experimental results and analysis are given in Section 4. Finally,
the conclusion and further work are drawn in Section 5.

2 Hardware System

2.1 Constitution

The hardware system consists of a main module of DSP and four sub-systems,
which are image acquisition, result display, USB interface, and storage manage-
ment of feature set and dictionaries (Chinese to English — CTE and English to
Chinese — ETC), as shown in Fig.1.

DSP Module. Considering that ERPen system has the requirements of real-
time processing, low power consumption and small size of the shape, our initial
design of processor unit is to make use of DSP chip since DSP chips have more
advantages than traditional MCUs. In the final phase of the design, the ker-
nel of DSP module utilizes TMS320-54X chip [6,7], on which image acquisition
control, image processing, character segmentation and recognition, dictionaries
management and word searching are carried out respectively.

Image Acquisition Module. The image acquisition part is mainly based on a
300 dpi Line Array CCD and wheel-driven control unit. The digital image from
CCD is transferred into DSP module via parallel port and the sync signal and
interrupts generated by wheel-driven control unit guarantee the image quality.
Basically, the 8-bit gray scale image is captured and sent to binarization module.
However, we found it very time-consuming so that a fixed threshold is used.

182 Qing Wang et al.

Fig. 1. The framework of the hardware modules and procedures in ERPen.

Result Display Module. The output sub-system is operated by DSP. The
recognition and translation results are shown on the LCD (122 × 32 pixels).
LCD is controlled by two micro chips, either of which is enabled by a trigger.

Storage Management Module. The storage module has 32M FLASH mem-
ory, which contains the extended programs, the labelled feature sets, ETC and
CTE dictionaries, and some of scanned images, which can be upload to PC for
further processing. DSP unit controls and accesses the data in FLASH through
the data buses and extended I/O ports.

USB Interface Module. The scanned images can be uploaded into PC via
USB interface. In ERPen, we select PDIUSBD12 chip as USB control unit, and
8 bit parallel data bus of PDIUSBD12 are connected with 8 bit data bus of DSP
chip. USB interface is activated by PC and interrupted by DSP.

2.2 Improvements

In hardware design, we consider that digital line CCD array has digital output
so that we omit the traditional scheme, which uses A/D modules and RAM to
store the image. This strategy not only reduces the processing time, but also
simplifies the hardware design. The image signal of CCD is controlled by three
interrupts, which are Field Sync FST↔INT1, Line Sync LST↔INT2, and Pixel
Sync PVB↔INT3. The following are these three interrupt functions.

interrupt void c int1()
{

cap=0;

order=0;

}

interrupt void c int2()
{

order=0;

}

interrupt void c int3()
{

if (cap<32768) {
if (order) {
order=0; data2=CAPD;

*(pStart+cap)=(data1&0xff)+(data2<<8);

cap++;}
else { order=1; data1=CAPD;}

}
}

Electronic Reading Pen 183

At the same time, the advantages of DSP chip are considered so that we can
control and write/read FLASH memory directly by DSP. Moreover, USB inter-
face is designed in the system in order to send scanned images or recognized
results to PC and upgrade the firmware from PC, respectively. In some embed-
ded system, USB protocol and interface may be implemented and controlled by
MPU. Due to the requirements of ERPen, we utilize PDIUSBD12 and access it
via TMS320-54X chip.

3 Software System

3.1 Framework

After we complete the hardware design, the software system is to solve the
OCR and bi-linguistic translation. As a result, the software system is composed
of the following modules: text region scanning, image preprocessing, character
segmentation, character normalization and feature extraction, isolated character
recognition, postprocessing, translation and display, as shown in Fig.2.

3.2 Key Issues and Implementation

Considering that DSP based hardware system has less resource and lower pro-
cessing ability comparing with desktop computers, it is necessary to design high
performance embedded software in order to satisfy the requirements of real time
recognition and low power consumption. The key issues of software include char-
acter segmentation, feature extraction, classifier design and postprocessing.

Character Segmentation. Character segmentation is the first important step
for OCR system so that there are many approaches proposed in the literatures,
for example, vertical projection based method [2], knowledge based method [11],
contour based method [12], foreground and background analysis based method
[13] and so on. Besides the detection and segmentation of word strings, it is
more difficult to separate the whole word into isolated characters. Since ERPen
is designed to process Chinese and English words, it is necessary to deal with
character separation properly. Due to the regularity of Chinese document and
little connectivity among characters, it is comparatively easy to separate Chinese
text lines by vertical projection. On the other hand, for English words, it is more

Fig. 2. The flowchart of the software modules in ERPen.

184 Qing Wang et al.

difficult to find out the gaps between characters since most of them may be so
close as if they were connected regions, for example, ‘ff’, ‘ft’, ‘fr’, ‘fi’, ‘rn’, ‘rt’
and so on. On the other hand, connected components could be processed as split
parts after image preprocessing, such as ‘m’→‘rn’,‘w’→‘vv’ and ‘d’→‘cl’ [10] in
case of stroke pixel losing caused by the simplified preprocessing algorithm.

In the system, we propose a region connectivity and dynamic programming
based approach to tackle character segmentation, which is also called as central
growth algorithm (CGA). The detail of CGA is shown in the following steps.

1. Select the spare points on the center line as candidates for pre-cutting.
2. If there exists a path to approach the top and bottom of the word within

a small strip from the candidate point, this path is regarded as a cutting path.
3. Otherwise, if the width of the cut region is greater than the predefined

threshold or the average width of the character, it means that the box contains
more than one character and these characters are touched with each other.

Herein, the vertical projection function p(m), is utilized, and the second order
derivative of p(m), the Peak-Valley Projection Ratio Function f(m), is also used
to further cut the adhesive characters [9].

f(m) = [p(m − 1) − 2 × p(m) + p(m + 1)]/p(m) (1)

where p(m) is the vertical projection value at m-th column.
4. Terminate if all of the candidates are processed completely.

Feature Extraction. After obtaining isolated characters, the coarse and fine
statistic features are extracted from the normalized image (36×36). Suppose the
stroke pixels are white (255) and the background pixels are black (0). Two kinds
of features are used for classification, which are Coarse Periphery Feature (CPF)
and Average Line Density (ALD).

1. CPF is based on the periphery image, which is generated by the run length
of the blank line from the border to the first stroke pixel. CPF features reveal
the shape information and periphery distribution of the characters. Before we
extract CPF feature, we first obtain the peripheries of the character and fill out
the inner vacancies of the borders, as shown in Fig.3b. Then the periphery image
is partitioned into 4× 4 grids, one of which has 9 × 9 = 81 pixels. Moreover, we
re-partition the inner part (27 × 27) of the character into 3 × 3 meshes (shown
in Fig.3d), and the number of white pixels is calculated. Therefore, we can get
16 + 9 = 25 dimensional CPF features.

2. ALD is extracted from the first order differential image on vertical and hor-
izontal directions respectively, which reflects the inner structure of the strokes.
We first obtain differential images along the vertical and horizontal directions
(see Eq.2 and 3). Then we divide the differential images into 9 × 9 grids and
81 + 81 = 162 dimensional ALD feature can be extracted.

Sh(i, j) = |C(i + 1, j) − C(i, j)| i, j ∈ [1, N], C(N + 1, j) = 0 (2)

Sv(i, j) = |C(i, j + 1) − C(i, j)| i, j ∈ [1, N], C(i, N + 1) = 0 (3)

where C(i, j) is the image intensity at pixel (i, j).

Electronic Reading Pen 185

Fig. 3. Feature extraction and region partition. a). Original images; b).
Vacancies-filled border images; c). Feature extraction; d). Partition scheme

Hierarchical Classifiers Design. In ERpen system, character classifiers are
designed as three stages. The first one is applied as pre-classification so that 25
dimensional coarse features and City Block Distance (high tolerance to noise
infection and low computation) are used to pre-select 30 candidates. Then the
second stage classifier focuses on 162 dimensional fine features by Euclidean Dis-
tance in order to emphasize on the difference of similar characters and generates
10 fine candidates. At the last stage, the similarity measure is computed (see
Eq.4) since it is more precise than distance measures.

R(X, G) =
m∑

i=1

(xi × gi)/
√√√√ m∑

i=1

x2
i ×

m∑
i=1

g2
i (4)

where X = (x1, x2, . . . , xm) is the feature vector of the unknown character and
G = (g1, g2, . . . , gm) is the template vector from training samples, respectively.

Post-processing. Basically, the correctly recognized words are translated into
English or Chinese by CTE or ETC dictionaries directly. However, since there
exist wrong cases more or less in accordance with segmentation and recognition
errors, it is necessary to design a serial of rules to modify the recognized word.
From the experiments, we find out that four kinds of errors for English words
were caused by wrong segmentation and recognition, which are, 1) Replacement
error: recognize one character as another one; 2) Mergence error: recognize sev-
eral characters as one character; 3) Deletion error: miss characters in recognition
phase characters, and 4) Insertion error: insert redundant characters into a word.

To deal with issues mentioned above, many methods using word based or se-
mantic level post-processing are proposed and can produce good performance
[14]. However, we can not simply carry out these algorithms in ERPen system
since all of them have high computation complexity. After a great number of ex-
periments on database with 70,000 words, we have summarized a serial of rules,
including replacement, insertion and deletion, to solve these problems.

186 Qing Wang et al.

4 Experimental Results

4.1 Recognition Rate

The recognition of Chinese and English characters by ERPen is listed in Table.1.
The upper part of the table shows the correct recognition rates by three stage
classifiers for Chinese character. The most right column is the final recognition
result after using corpus and rules based post-processing. The lower part of the
table shows the corresponding results for English characters.

Since we have fully considered the effectiveness of the character segmentation
and recognition, the experimental results are reasonable. The precise results show
that the algorithms of text image preprocessing, character segmentation and
recognition and post-processing are effective and satisfied with the requirements
of ERPen system.

4.2 Processing Time

Besides high recognition rate and correct translation result, the computation
time is also important when evaluating the performance of ERPen system.
Through a lot of experiments, we get the average computing time, which is
0.153s for each Chinese word and 0.287s for English word, respectively.

The performance of speedy processing is based on the simplification of the
preprocessing procedure and some other algorithms. The results of processing
times have shown that the design and implementation of hardware system is
efficient and will fulfill the demand of real time processing.

4.3 Problems

Although we have successfully designed the hardware and embedded software,
the problem of high consumption of power still exists. According to the original
design, ERPen can work using 2 AAA Alkaline batteries and last for one month
continuously. However, the developed system can not satisfy this requirement.

5 Conclusions

In the paper, we describe the hardware and software frameworks and imple-
mentation of ERPen, a kind of portable device using offline printed character

Table 1. Recognition rate for printed Chinese and English characters

Classification Correct Correct rates after
method Recognition Rates (%) postprocessing(%)

Chinese first stage 89.7

second stage 99.0

similarity 99.1 99.2

English first stage 83.4

second stage 94.8

similarity 95.4 98.3

Electronic Reading Pen 187

recognition and bi-linguistic translation. We fully consider the characteristics of
TMS320-54x chip and the requirements of real time processing: small size, and
huge storage in terms of hardware design. At the same time, an embedded soft-
ware configuration for ERPen is well designed to deal with several key processes
of image preprocessing, character segmentation and recognition, and rules based
postprocessing. Experimental results have shown that ERPen has high recogni-
tion and correct translation rate (99.2% for Chinese words and 98.3% for English
words) and high processing speed. In the future work, we will put our emphasis
on the problem of power consumption.

Acknowledgements

The work described in the paper was partially supported by National Natu-
ral Science Fund (No. 60403008), ”The Developing Program for Outstanding
Persons” fund by Northwestern Polytechnical University, Natural Science Foun-
dation of Shaanxi Province, P. R. China, and ARC grant, Australia.

References

1. Mantas, J.: An overview of character recognition methodologies. Pattern Recogni-
tion. 19 (6), (1986) 425–430

2. Casey, G., Lecolinet, E.: A Survey of methods and strategies in character segmen-
tation. IEEE Trans Patt. Anal. Mach. Inetll. 18(7), (1996) 690–706

3. http://www.wintone.com.cn
4. http://www.hw99.com/
5. http://www.ceresoft.com
6. Zhang, X., Cao, T.: Principle and development application of DSP chips (Second

Edition). Publish House of Electronics Industry, China. (2000)
7. Dai, M., Zhou, J.: Structure, principle, and application of TMS32054X DSP. Press

of BUAA, China. (2001)
8. Khan, S.: Character segmentation heuristics for check amount verification. Ph.D

Dissertation, MIT, USA (1998)
9. Liu, G., Wei, F. etal: A segmentation method of cursive handwritten digit string

based on limited dynamic programming. J. of Beijing Univ. of Post and Telecom-
munication. 26(1), (2003)14–18

10. Lu, Y., Haist, B. et al: An accurate and efficient system for segmenting machine-
printed text, 5th Advanced Technology Conf. U.S. Postal Service. 3(1992), 93–105

11. Liu, G., Ding, X. etal:Knowledge synthesis decision based character segmentation
algorithm. Computer Engineering and Application. 17(2002)59–63

12. Strathy, N., Suen, C., Krzyzak, A.: Segmentation of handwritten digits using con-
tour features. Proc. 2nd Int. Conf. on Document Analysis and Recognition(ICDAR),
Tsukuba Japan. (1993) 577–580

13. Chen, Y., Wang, J.: Segmentation of single- or multiple-touching handwritten nu-
meral string using background and foreground analysis. IEEE Trans Patt. Anal.
Mach. Inetll. 22(11), (2000)1304–1317

14. Dey, S.: Adding feedback to improve segmentation and recognition of handwritten
numerals. Ph.D Dissertation, MIT, USA (1999)

Formal Co-verification for SoC Design with Colored
Petri Net�

Jinyu Zhan, Nan Sang, and Guangze Xiong

School of Computer Science & Engineering
University of Electronic Science & Technology of China

Chengdu 610054, China
zhanjy@uestc.edu.cn

Abstract. The complexity of SoC is increasing rapidly. It is an important trend
that SoC design is always based on the reuse of both IP cores and software com-
ponents. In consequence, new verification techniques are needed, which over-
come the limitations of traditional methods and are suitable for SoC at the same
time. This paper introduces a computational model for SoC based on colored Petri
net, formulates the IP cores, components and user defined logics, and presents a
method to translate the architecture design into the colored Petri net model. And
a formal co-verification approach of SoC using CPN tools is also proposed. The
method concentrates on verifying the correctness of the design. An example of
the audio and video architecture design of the PDA platform illustrates the ef-
fectiveness of our approach on practical applications. Finally, the experimental
results are given.

1 Introduction

With the development of embedded system technology, the integration level of hard-
ware is higher and higher. SoC (System on Chip) becomes a mainstream design ap-
proach of embedded systems. And the development of SoC is a challenge to the verifi-
cation of embedded systems.

For the levels of complexity typical to modern electronic systems, traditional vali-
dation techniques like simulation and testing are neither sufficient nor viable to verify
their correctness. First, these techniques may cover just a small fraction of the system
behavior. Second, long simulation times and bugs found late in prototyping phases have
a negative impact on time-to-market.

Co-verification is a new technology to verify the software and hardware of embed-
ded systems. Different from traditional method, co-verification emphasizes parallel pro-
cessing and the interaction between software and hardware. Co-verification is not only
beneficial to reduce the time-to-market and design cost for the embedded products, but
also gives a better understanding of the system behavior, contributes to uncover ambi-
guities, and reveals new insights of the systems.

� This work was supported by the National High Technology Research and Development Pro-
gram (863), under Grant No. 2003AA1Z2210.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 188–195, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Formal Co-verification for SoC Design with Colored Petri Net 189

One main idea of SoC is the reuse of the IP (Intellectual Property) cores, which
can reduce the time-to-market and design cost [1]. The conception of software compo-
nents is like IP cores of SoC. Both of them emphasize the importance of design reuse.
This paper presents a hardware/software formal verification method for the SoC design
based on both IP cores and software components. Once the architecture of the IP cores,
components and UDLs(user defined logics) are defined, the correctness of the whole
system can be verified.

This paper is organized as follows. The related works are given in section 2. In
section 3, we formally define the IP cores, components, UDLs and the whole systems
using colored Petri nets. In section 4, we illustrate our method through an example. In
section 5, our approach is proved effective by verifying the audio and video architecture
design of a practical PDA platform. Finally, some conclusions are drawn in section 6.

2 Related Works

In the field of hardware/software co-verification of the embedded systems, there are
two research directions. One is simulation, and the other is formal verification. In the
simulation method, the hardware of the whole embedded system is specified in hard-
ware description language such as Verilog HDL, VHDL, SystemC, HandleC, and is
established in software. It can realize the integrated debugging and modify the faults
of hardware freely, which avoids the waste of manpower and material resources. But
with many restrictions, the hardware description language can only describe a subset
of the hardware of common embedded systems. Therefore, more and more scientists
turn their attention to formal verification. Edmund M. Clarke presented the theory of
Model Checking [2] based on finite automata for hardware formal verification. In recent
years, Model Checking has been extensively used in hardware/software co-verification
of embedded systems. Predicate Abstraction presented by Graf and Saidi [3], which is
a method to verify the correctness of software, is modified by many scientists and used
in hardware/software co-verification of embedded systems in these years. Luis Alejan-
dro Cortes presented PRES method [4][5], which uses Petri Net to describe hardware
and software of the embedded systems at first and then verifies the description in hy-
brid automata model which was presented by Alur [6]. But these methods mentioned
above seldom consider the problems about the verification of SoC based on IP cores
and components, which is the purpose of this paper.

3 Formal Representation

IP cores are reused modules in SoC, while software components are reused modules
in the software systems. Though they belong to hardware subsystems and software
subsystems respectively, both of them embody the idea of module reuse. Therefore, they
can be formulated into one model. In this paper, reused modules are used to represent
both IP cores and components.

The verification of SoC consists of three parts, the verification of the reused mod-
ules, the UDLs and their interconnections. Reused modules, which are provided by
core vendors, must be verified before delivery, and can be regarded correct. There are

190 Jinyu Zhan, Nan Sang, and Guangze Xiong

many techniques to test or verify the UDLs [7][8] [9][10][11]. The correctness of the
UDLs can be guaranteed through these methods. Therefore, the verification of SoC puts
emphasis on verifying the interconnections among IP cores, components and UDLs.

Both UDLs and reused modules can be regarded as black boxes. Once the inputs
are given, the outputs are defined. So they can be represented as ”if input1, input2, ...,
inputm then output1, output2, ..., outputn”, in which input1, input2, ..., inputm are
the inputs of the UDLs or the reused modules, and output1, output2, ..., outputn are
the outputs of them. They all can be formulated into Petri net model shown in Figure 1.

core

in1 out1
t

in2

inm

out2

outn

in1

in2

inm

out1

out2

outn

Fig. 1. Formulate a core into a Petri net model

Definition 1. SoC based on IP cores and components can be modeled in a nine-tuple
CPN(Colored Petri Net)= (Σ, P, T, A, N, C, G, E, S), where

(1) Σ is the color set, determines the types, operations and functions that can be
used in the net. It is assumed that the color sets have at least one element each;

(2) P = {p1, p2, ..., pm} is a finite non-empty set of places, represents the inputs
and outputs of the cores in SoC;

(3) T = {t1, t2, ..., tn} is a finite non-empty set of transitions, represents the cores
in SoC;

(4) A is a finite non-empty set of arcs such that, P ∩ T = P ∩ A = T ∩ A = Φ,
defines the flow relation between places and transitions; I ⊆ P×T is a finite non-empty
set of input arcs, which defines the flow relation from places to transitions; O ⊆ T ×P
is a finite non-empty set of output arcs, which defines the flow relation from transitions
to places;

(5) N is a node function, defined from A into P × T ∪ T × P , which maps each
arc into a tuple where the first element is the source node and the second element is the
destination node;

(6) C is a color function, defined from P into Σ, which means that C maps the place
p to a color set;

(7) G is a boolean expressions, called guard function, which maps the transition t to
the Boolean function and are needed to evaluate to ”true” in-order when the transition
fires;

(8) E is an arc expression function, which maps the arc a to an expression, and
a transition in a CPN is enabled if it is possible to bind the variables in such a way
that the arc-expressions of all the input arcs evaluate when tokens are present at the
corresponding input places;

(9) S is the initialization function, which specifies the initial state of the Petri net.

Formal Co-verification for SoC Design with Colored Petri Net 191

Definition 2. A Marking M : P → {0, 1} is a function that denotes the absence or
presence of tokens in the places of the net. Therefore, the Petri net CPN is safe or 1-
bounded, that is, a place may hold at most one token for a certain marking. M(p) = 1
whenever the place p is marked, otherwise M(p) = 0.

4 Verification and Analysis

In this section, a verification method for SoC’s correctness is represented, using the
model introduced above, is presented. It is illustrated through an example shown in
Figure 2. According to the definitions in Section 3, the Petri net model equivalent to the
architecture design of the example in Figure 2 is given in Figure 3.

core
1

core
3

core
5

core
2

core
4

core
6

Fig. 2. An example of an architecture
design

p1

p2

p3

p4

p5

p6

p8

p9

p11

p12

p13

t1

t2

t3

t4

t5

t6

p7

p10

Fig. 3. The Petri net model of the example

Therefore, the correctness of the architecture design is transformed into the analysis
of Petri net model. There are two main types of analysis that can be performed on SoC
architecture design represented in Petri net. The first one is liveness analysis. A given
marking, i.e. absence or presence of tokens in places of the net, may represent the state
of the system in the dynamic behavior of the Petri net. It is very important whether the
system ends at the needed states or is dead in the dynamic process. Therefore, deadlock
is a very important problem. Second is reachability analysis. In the dynamic behavior
of the Petri net, the designer could be interested in proving that the system eventually
reaches a certain state whose marking represents the completion of a task.

There are two traditional methods to analyze the Petri nets. One is the reachability
tree, and the other involves the matrix equations. But both are manual and very complex.
Therefore, we use CPN Tools [12] to analyze the Petri net model of the architecture
design. CPN Tools is a tool for editing, simulating and automatically analyzing Colored
Petri nets. All the needed analysis results of the Petri net model can be obtained through
CPN Tools. Then we can get the state graph of the example shown in Figure 4 from CPN
Tools. CPN Tools generates an analysis report of the Petri net model shown in Table 1
which contains statistical information, reachable information and liveness information
about the state graph. Therefore, we can conclude that the architecture design of the
example is not correct from Figure 4 and Table 1.

192 Jinyu Zhan, Nan Sang, and Guangze Xiong

1

2

3
4

6

5

7

8

t1

t2 t3

t4

t4

t3

t6

t6

Fig. 4. The state graph of the example

Table 1. Analysis results of the example

State Graph Reachable Properties Liveness Properties
Nodes: 8 Reachable State: p1, p2, p3, p4, p5, p6, Dead Transition: t5
Arcs: 8 p7, p8, p9, p10, p11, p13 Live Transition: t1, t2, t3, t4, t6
Status: Not Full Unreachable State: p12

Now let us analyze the fault of the architecture design. p2 is the input place of the
transition t1 and transition t2, while the CPN is 1-bounded according to definition 2.
So there are exclusive relations between transition t1 and transition t2. We modify the
architecture design shown in Figure 5 to get rid of the exclusive relations. The modified
Petri net model is given in Figure 6. Then we can get the state graph of the net shown
in Figure 7 from CPN Tools. The analysis results of the modified Petri net model are
shown in Table 2. Then we can get that the modified architecture design is correct from
the data.

core
1

core
3

core
5

core
2

core
4

core
6

Fig. 5. the modified architecture design

p1

p2

p4

p5

p6

p7

p9

p10

p12

p13

p14

t1

t2

t3

t4

t5

t6

p8

p11
p3

Fig. 6. The modified Petri net model

1
2

3

7

12 18

8
11

t1

t2
t1

t2
t4

t3
t3

t4
4

t5

14t5

t6t6 15

16
t5

t4 t6t3
t4

5

6

t1
t4

9

10
1713t3

t1

t1

t6 t1
t5

t3

Fig. 7. The state graph of the modified architecture design

Formal Co-verification for SoC Design with Colored Petri Net 193

Table 2. Analysis results of the modified architecture design

State Graph Reachable Properties Liveness Properties
Nodes: 18 Reachable State: All Dead Transition: None
Arcs: 26 Unreachable State: None Live Transition: All
Status: Full

5 Verification of a Practical System

In this section, we will illustrate the verification of a practical system using our ap-
proach. The video and audio architecture design of a PDA platform is shown in Figure
8. The Petri net model equivalent to the architecture design is given in Figure 9. And
we can get the state graph of the Petri net model shown in Figure 10 and the analysis
results shown in Table 3 from CPN Tools. Therefore, the audio and video architecture
design of the PDA platform is correct according to Figure 10 and Table 3.

Audio Data
Capture Unit

MP3 Encoder MPEG4 Encoder

User
Interface

Synchronization Unit

Code Checker

Video Data
Capture Unit

MP3 Decoder MPEG4 Decoder

Audio Displayer Video Displayer

Wireless Net

Sender

Receiver

Audio Data Capture Unit and Video Data Capture Unit
are IP cores. They transform voice and image into
audio and video information.
User Interface is a user define logic. It deals with user
requirements and sends them to MPEG4 and MP3
Encoder.

MP3 Encoder and MPEG4 Encoder are IP cores. They
deal with the compression and coding of the video and
audio information.
Synchronization Unit is a component. It deals with the
synchronization problems of the audio and video, and
sends information from sender to receiver through the
wireless net.
Code Checker is a component. It analyzes and checks
the information from sender, and outputs audio and
video information.

MP3 Decoder and MPEG4 Decoder are IP cores. They
deal with the decompression and decoding of the audio
and video information.
Audio Displayer and Video Displayer are hardware
devices. They display the voice and image.

Fig. 8. The audio and video architecture design of the PDA platform

6 Conclusions and Future Work

This paper presents a methodology to perform formal co-verification of SoC design,
which is composed of IP cores in hardware design, components in software design
and UDLs. A colored Petri-net-based design representation is used to capture impor-
tant features of SoC. The co-verification technique based on architecture design with

194 Jinyu Zhan, Nan Sang, and Guangze Xiong

p1

p2

p3

p4

p5

p6

p8 p13

p10

p11

p12

t1

t2

t3

t5

t6 t7

p7

p9
p14 p16

p15

t9

t8 t10

t11

t4

Fig. 9. The Petri net model of the audio and video architecture design

1

2

3

4

85

6 9
t2

t3

t1

t3

t4

t2

7

t1

t2

t3

t5

15
11

12 17

16

13 14

10

t2

t3

t4
t5

t1
t1

t5

t4
t7

22
t9
t8

19

18
21

23

20

t8

t9

t10

t11

t9

t10

t11

t8

t11

t10
t3 t6t1

Fig. 10. The state graph of the audio and video architecture design

Table 3. Analysis results of the audio and video architecture design of the PDA platform

State Graph Reachable Properties Liveness Properties
Nodes: 23 Reachable State: All Dead Transition: None
Arcs: 34 Unreachable State: None Live Transition: All
Status: Full

IP core-component reuse smoothly integrates with communication. The method can
translate the architecture design of SoC into a colored Petri net model simply and in-
tuitively. The colored Petri net model can be automatically analyzed many properties
such as liveness, reachability by CPN Tools. We also illustrate the verification of the
audio and video architecture design of the PDA platform using our approach, and give
the experimental results.

The performance, such as timing requirement and power consumption, is very im-
portant in SoC design. In this paper, we concentrate on the correctness of the architec-
ture design, but don’t consider the timing requirement and power consumption. There-
fore, these are the problems worth for further research.

References

1. Haase, J.: Design methodology for ip providers. In: Proc. DATE 1999. (1999) 728–732
2. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. (1999)
3. Graf, S., Saidi, H.: Construction of abstraction state graphs with pvs. In: CAV’97. (1997)

72–83
4. A, C.L., P, E., Z, P.: Formal coverification of embedded systems using model checking. In:

The 26th Euromicro Conference. (2000) 106–113
5. A, C.L., P, E., Z, P.: Verification of embedded systems using petri net based representation.

In: The 13th International Symposium on System Synthesis. (2000) 149–155

Formal Co-verification for SoC Design with Colored Petri Net 195

6. Alur, R., Henzinger, T.A., Ho, P.H.: Automatic symbolic verification of embedded systems.
IEEE Transaction on Software Engineering 22 (1996) 181–201

7. Marinissen, E., Arendsen, R., Bos, G.: A structured and scalable mechanism for test access
to embedded reusable cores. In: The International Test Conference. (1998) 284–293

8. Yoneda, T., Fujiwara, H.: A dft method for core-based systems-on-a-chip based on consec-
utive testability. In: The 10th Asian Test Symposium. (2001) 193–198

9. Iyengar, V., Chakrabarty, K., Marinissen, E.J.: Test wrapper and test access mechanism co-
optimization for system-on-chip. Journal of Electronic Testing: Theory and Applications 18
(2002) 213–230

10. T, S., Y, Y., T, H.: Between-core vector overlapping for test cost reduction in core testing.
In: The 12th Asian Test Symposium. (2003) 268–273

11. O, S., A, O.: Parity-based output compaction for core-based socs [logic testing]. In: The 8th
IEEE European Test Workshop. (2003) 15–20

12. Online: CPN Tools, (http://wiki.daimi.au.dk/cpntools/)

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 196-202, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Hardware for Modular Exponentiation
Suitable for Smart Cards

Luiza de Macedo Mourelle1 and Nadia Nedjah2

1Department of Systems Engineering and Computation
2Department of Electronics Engineering and Telecommunications

Faculty of Engineering
State University of Rio de Janeiro, Brazil
{ldmm, nadia}@eng.uerj.br

Abstract. Smart cards use integrated circuits instead of magnetic tape. Its
architecture includes a processor, memory, input/output and, possibly, a
cryptographic coprocessor. The cost of smart cards is directly related to the size
of the integrated circuit. Our present focus is the cryptographic coprocessor,
which usually uses a public-key cryptosystem. In these cryptosystems, the main
operation is the modular exponentiation, which is performed using successive
modular multiplications. This operation is time consuming for large operands,
which is always the case in cryptography. Here, performance is another matter
of concern. For fast software or hardware cryptosystems, one needs thus to
reduce the total number of modular multiplications required. In this paper, we
propose a fast and compact hardware for computing modular exponentiation
using the m-ary methods, applying the addition chain method for the pre-
processing step. The cryptographic hardware is low-cost and concise, offering a
good solution for smart cards.

1 Introduction

The RSA encryption scheme [1], [2] is an example of public-key cryptographic
system. This kind of cryptosystem often involve raising large elements of some
groups fields, such as GF(2n) or elliptic curves [3], to large powers. The main
operation in such cryptosystems is the modular exponentiation, which is performed by
successive modular multiplications. As the plain text of a message or the cipher text
are usually large, i.e. 1024 bits or more, it is essential to attempt to minimise the
number of modular multiplications performed, in order to improve time requirements
of the encryption/decryption operations. Hardware architecture implementations of
the RSA cryptosystem are widely studied [4].

The paper-and-pencil method to compute C = TE mod M requires E-1 modular
multiplications, computing all powers of T: T T2 T3 ... TE 1 TE. The
window-based methods [1] consist of algorithms that perform modular exponentiation
with a nearly minimal number of modular multiplications. These methods have a pre-
processing step, which can be optimised with the use of the addition chain methods.

Smart cards are plastic cards with an integrated circuit on it. They guarantee more
security than the plastic cards with magnetic strip do. The smart cards are more

Hardware for Modular Exponentiation Suitable for Smart Cards 197

sophisticated, which contain a processor, memory, input/output components and a
cryptographic coprocessor. A typical architecture for smart cards is depicted in Fig 1,
in which the processor is based on the 8051 or 6805 microcontrollers. Smart cards
cost about ten times more than common plastic cards, with magnetic strip, do. The
cost of smart cards is proportional to the area of the integrated circuit, which is
directly associated to the complexity of the operations required and the architecture of
the system. Therefore, in order to minimise the cost of smart cards we should target at
the area required for its implementation. One of our aims is to obtain a cryptographic
coprocessor that offers minimum area with optimal performance.

 Fig. 1. Smart cards architecture

This paper is organised as follows: first, we concentrate on describing the m-ary
methods; then, we introduce the addition chain method; next, we present the
Montgomery’s algorithm used for the modular multiplication; thereafter, we propose
the architecture design for the m-ary modular exponentiation, based on the addition
chain method, together with an iterative and low-cost hardware for Montgomery’s
algorithm; finally, we summarise the work presented throughout this paper and draw
some conclusions.

2 Modular Exponentiation Based on the M-ary Methods

The m-ary methods for modular exponentiation [1] consist of three major steps: (i)
partitioning the binary representation of the exponent E in l-bit windows; (ii) pre-
computing all possible powers in windows one by one; (iii) iterating the squaring of
the partial result l times to shift it over, and then multiplying it by the power in the
next window, if this is different from 0. In other words, the m-ary methods partition E
in p windows of length l = log

2
m, where m is a power of two. Algorithm 1 describes

the m-ary algorithm, wherein M and E represent the modulus and exponent of the
cryptosystem, T and C stand for the text and the ciphertext, respectively, and, finally,
Vi denotes the decimal value of the ith window, where p-1 < i < 0.

processor coprocessor

memory input/output

198 Luiza de Macedo Mourelle and Nadia Nedjah

Algorithm 1. MME(T, M, E)
1: Partition E into p l-bit windows;
2: for i = 2 to m-1 Compute Ti mod M;

3: C := 1-pVT mod M;
4: for i := p-2 downto 0 do

5: C :=
l2C mod M;

6: if Vi 0 then C := C iVT mod M;
7: return C;
end.

The pre-processing step, shown in lines 2 and 3 of Algorithm 1, calculates all
possible powers of T, according to the window size l. However, we do not know
which powers will effectively take part in the final computation. In order to reduce the
amount of computation performed in the pre-processing step, we use the addition
chains method to obtain a sequence of powers to yield TE.

3 Addition Chains Method

An addition chain of length r for a positive integer N is a list of positive integers (a0,
a1, a2, ..., ar) such that a0 = 1, ar = N and ak = ai + aj, 0 i j < k r. Finding a
minimal addition chain for a given positive integer is an NP-hard problem. It is clear
that a short addition chain for exponent E gives a fast algorithm to compute TE mod M
as we have jaiaka TTT , if ak = ai + aj.

 A generalisation of the concept of addition chain is that of addition sequence. An
addition sequence for a list of positive integers V1, V2, …, Vp, such that V1<V2<
…<Vp, is an addition chain for integer Vp, which includes V1, V2, …, Vp. The length of
an addition sequence is the number of integers that constitute the chain. An addition
sequence for a list of positive integers V1, V2, …, Vp will be denoted by S(V1, V2, …,
Vp). For instance, considering V1=3, V2=7 and V3=11, a possible addition sequence
would be (1,2,3,4,7,9,11). An addition sequence of minimal length (or simply
minimal addition sequence), for the values of the partitions included in the non-
redundant ordered list (E), would optimise the number of modular multiplications
required in the pre-processing step of the m-ary methods for computing TE mod M
(line 2 of Algorithm 1). Finding this minimal addition sequence is an NP-hard
problem and we use genetic algorithms to solve it [5].

4 Hardware Architecture

Fig. 2 introduces the hardware architecture for the m-ary methods. The modular
multiplications are performed using Montgomery’s algorithm [6], for which we have
developed a hardware architecture (MODMULT) described later on in this paper. The
pre-processing step computes the powers of T, based on the addition sequence

Hardware for Modular Exponentiation Suitable for Smart Cards 199

provided, and stores these powers in a local memory (MEM). Each position of this
memory consists of two kinds of information: the high-order bits store the exponent,
as provided by the addition sequence, and the low-order bits store the corresponding
power of T. At the beginning, position 0 contains de decimal value 1 in its high-order
bits and T in its low-order bits.

Fig. 2. The architecture of the m-ary hardware

The powers are computed according to the addition chain rule: aK = aI + aJ, 0 I
J < K. K is initialised to 2 (REGADDRK=2), I to 1 (REGADDRI=1) and J to 1
(REGADDRJ=1). The memory location addressed by K is read and the high-order bits
of the word are loaded in REGK. The memory location addressed by I and J are,
subsequently, read and the word loaded in REGI (high-order bits) and REGA (low-
order bits), and in REGJ (high-order bits) and REGB (low-order bits), respectively.
The sum of REGI and REGJ is, then, compared to REGK. Once valid I and J are found,
the current contents of REGA and REGB are, then, modular multiplied. The result is
stored in memory location K. This value is, then, incremented and I and J are
initialised to K-1. The search for other valid values begins, by successively
decrementing I and J, until found. For example, using the initial values declared, the
first power computed is T2.

Each partition of the exponent E will be used to address the memory to obtain the
corresponding pre-computed power of T, as defined in line 3 of Algorithm 1. The
local memory is, in fact, an associative memory (MEM), in order to read the data based
on the value of the current exponent partition. During this step, signal match is
asserted for every read cycle from MEM.

200 Luiza de Macedo Mourelle and Nadia Nedjah

In each iteration of the exponentiation step, the partial result C is raised to the 2l
power and, then, multiplied by TVi modulo M, when Vi is not a zero partition (see lines
5 and 6 of Algorithm 1). The values of TVi modulo M are obtained from the
associative memory, according to the current partition of the exponent E. In order to
obtain the value of the current partition, we store exponent E in shift register REGE,
from which the most significant partition is retrieved to address the associative
memory (see line 3 and 6 of Algorithm 1). When a new partition is required, register
REGE is left-shifted l times. REGL is loaded with the length of the partition (l) and
decremented for each shift operation performed. The square-and-multiply loop
(starting in line 4 of Algorithm 1) consists of two main phases:

1. The first one performs l squaring of the partial result. For this purpose, the partial

result is fed-back to inputs A and B of the modular multiplier of Fig. 2;
2. The second phase performs the modular multiplication of the partial result with

the pre-computed power of T, when the current partition is not zero. The power
of T, i.e. TVi modulo M, is read from the associative memory, at the location
matching the most significant partition of register REGE.

The square-and-multiply loop is executed until the least significant partition of E is

reached. REGP is loaded with the number of partitions (P) and decremented once in
each iteration. The final result is then loaded into register REGC.

The pre-processing step consists of performing r 1 modular multiplications, while
the exponentiation step consists of l(p 1)+q | 0 q p 1 modular multiplications,
where q is number of non-zero partitions. The operands, however, differ from one
multiplication to another. The main work of the controller consists of setting up the
right operands for each one of these modular multiplications. The controller interface
signals are set according to the synchronous finite state machine SM=(S0, Q={S0, S1,
…, S19}, F={S19},), wherein S0 is the initial state, Q is the state set, F is the set of
final states and is the state transition function, presented as follows:

S0: Initialise the system; If start = 1 Then go to S1;
S1: REGE <= E; REGADDRK <= K;
S2: Read MEM(REGADDRK); REGADDRI <= K; REGADDRJ <= K;
S3: REGK <= MEM(REGADDRK); Decrement REGADDRI and REGADDRJ;
S4: Read MEM(REGADDRI);
S5: REGI <= high-order bits of MEM(REGADDRI);
 REGA <= low-order bits of MEM(REGADDRI);

S6: Read MEM(REGADDRJ);
S7: REGJ <= high-order bits of MEM(REGADDRJ);
 REGB <= high-order bits of MEM(REGADDRJ);

S8: If (REGI + REGJ) = REGK Then go to S12;
 Else if REGADDRJ=1 Then go to S10;
S9: Decrement REGADDRJ;
S10: Decrement REGADDRI;
S11: REGADDRJ <= REGADDRI;
S12: Start the modular multiplier;
S13: If modular multiplier has finished Then go to S14;

Hardware for Modular Exponentiation Suitable for Smart Cards 201

S14: Stop the modular multiplier;
S15: Write the result in MEM(REGADDRK);
S16: Increment REGADDRK; If REGADDRK > addition chain size Then go to S2;
S17: Read MEM(most significant window of REGE); Decrement REGP;
S18: If modular multiplication finished Then go to S19;
S19: REGA <= MEM(most significant window of REGE);
 REGB <= MEM(most significant window of REGE);
 If there are no more squaring to do Then Go to S21;
S20: If modular multiplication finished Then go to S19;
S21: Decrement REGP; REGL <= partition size;
S22: Decrement REGL; left shift REGE;
 If there are no more bits to shift Then go to S23;
S23: If the new partition is not zero Then go to S24
 Else If there are more partitions Then go to S20 Else go to S26;
S24: REGB <= MEM(most significant partition of REGE);
S25: If the modular multiplier finished Then
 If there are more partitions Then Go to S27;
S26: REGA <= modular multiplication result;
 REGB <= modular multiplication result into REGB; Go to S20;
S27: Indicate end of operation; If start signal unasserted Then Go to S0;

5 Results

The design is specified in VHDL [7] and a functional simulation [8] is then
performed. The project is synthesised [8] and the area and time requirements are
registered for different parameters. The figures are listed in Table 1. The hardware
area is given in CLBs while the response time is given in nanoseconds (ns). The
results show clearly that the proposed hardware is very efficient: it requires very
much less hardware area and encrypts/decrypts very much faster.

Table 1. Area and time requirements for the m-ary hardware that uses a minimal
addition sequence vs. the m-ary hardware that does not

M-ary Hardware
with addition sequence

M-ary Hardware
without addition sequence Operand size m

area (CLBs) time (ns) area (CLBs) time (ns)
2 492 3.1 509 17.3 64 4 441 2.9 897 15.0
2 811 7.3 912 22.9 128 4 721 5.8 1777 20.1

6 Conclusions

In this paper, we have presented a fast and compact hardware implementation for the
modular exponentiation based on the m-ary methods, using a minimal addition

202 Luiza de Macedo Mourelle and Nadia Nedjah

sequence of exponents. As the window size l, related to the partitioning of the
exponent E, increases, so does the amount of possible powers of T to compute during
the pre-processing step. Therefore, instead of computing all the possible powers of T
in the pre-processing step of the m-ary methods, we compute only those powers
present in the minimal addition sequence. We use genetic algorithms to obtain this
sequence. The pre-processing time decreases using a minimal addition sequence of
exponents, as the window size l increases. During the iterative step of the m-ary
methods for the exponentiation process, the pre-computed powers are retrieved from
the memory. Hence, the memory size required is smaller than if we compute all the
possible powers, thus reducing the overall area.

Acknowledgements

The authors wish to acknowledge the financial support provided by Fundação de
Amparo à Pesquisa no Estado do Rio de Janeiro (FAPERJ) and Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq) for the development of this
research.

References

1. Koç, Ç.K., High-speed RSA Implementation, Technical report, RSA Laboratories, Redwood
City, California, USA (1994).

2. Rivest, R.L., Shamir, A. and Adleman, L., A method for obtaining digital signature and
public-key cryptosystems, Communication of ACM (1978), vol. 21, no.2, 120-126.

3. Menezes, A.J., Elliptic curve public key cryptosystems, Kluwer Academic (1993).
4. Eldridge, S.E. and Walter, C.D., Hardware Implementation of Montgomery’s Modular

Multiplication Algorithm, IEEE Transactions on Computers (1993), 42(6), 619-624.
5. Nedjah, N., Mourelle, L.M., Efficient Pre-processing for Large Window-based Modular

Exponentiation using Genetic Algorithms, Proceedings of the 16th International Conference
on Industrial & Engineering Applications of Artificial Intelligence and Expert Systems,
Loughborough, England (2003), LNAI 2718, 625-635.

6. Montgomery, P.L., Modular Multiplication without Trial Division, Mathematics of
Computation (1985), vol. 44, 519-521.

7. Navabi, Z., VHDL - Analysis and Modeling of Digital Systems, McGraw Hill, Second
Edition (1998).

8. Xilinx Inc., ISE 6.1i, http://www.xilinx.com.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 203-209, 2005.
 Springer-Verlag Berlin Heidelberg 2005

PN-based Formal Modeling and Verification for
ASIP Architecture1

Yun Zhu, Xi Li, Yu-chang Gong, and Zhi-gang Wang

Dept. of Computer Science, University of Science and Technology of China, Hefei, Anhui
230026, China

yukiyun@mail.ustc.edu.cn

Abstract. This paper presents a novel extended timed Petri Net model called
PNPM Petri Net based Representation for Pipeline Modeling, and a
verification scheme based on PNPM called PPL-MC PNPM and Lambda
Calculus based Model Checker They focus on formal modeling and verification
especially for ASIP architecture with pipeline structure. In this paper, PNPM
elements have been defined, and their validity and usage are demonstrated.
Also, the scheme of PPL-MC is introduced.

1 Introduction

Figure 1 shows the design flow [1] of ASIP (Application Specific Instruction
Processors). Architecture DSE (Design Space Exploration) is an important step. To
uncover the flaws earlier and to realize the automatization of DSE need a validation
mechanism. Formal verification [4] is a widely-used method for validation, though it
is underdeveloped. Many are concentrated on some layers below architecture or
certain part of architecture, such as [2, 3].

Fig. 1. Flow of the software-hardware co-design

We want to do formal verification for our ASIP architecture DSE, so the first thing
come to us is how to formally model the ASIP architecture. Petri Net [6] is a
graphical and mathematical modeling tool especially applicable to asynchronous and

1Supported by the National Natural Science Foundation of China under Grant No.60273042; the

Natural Science Foundation of Anhui Province of China under Grant No.03042101.

204 Yun Zhu et al.

concurrent system. It [7, 8] is netlike, and can be represented as a 3-tuple N=(P, T; F)
with certain restrictions. We call P and T in the triple place-set and transition-set of N
respectively; and arc-set F reflects their relationships. Tokens are added to express
status messages and their distribution is called marking. The dynamic behavior of PN
model is guarded with its firing rule. Implementation of a transition must be atomic.
For TPx , the input and output of x are called pre-set and post-set of x (denoted
by x and x) respectively.

Petri Net is a precise system, and can be extended according to certain
requirements. The application of Petri Net for performance analysis of networks and
concurrent systems is already well developed. But applications to architecture
modeling are relatively few. The basic Petri Net is too simple to describe the structure
and behavior of complicated architecture, and the size of PN model is a big problem.

Aimed at the design of ASIP architecture, this paper first presents a novel extended
timed Petri Net model called PNPM (Petri Net based representation for Pipeline
Modeling), which can describe target architecture in a succinct and precision way.
Then a formal verification method based on PNPM is introduced, taking advantage of
PNPM, PPL-MC can efficiently verify various aspects of the target system..

2 PNPM — An Extended Timed Petri Net Model

2.1 Pipelined Architecture and PNPM

Pipeline is a key technique in modern ASIP architectures. It brings high performance
as well as some technical problems. Various pipelines are exploited in different
domain, but the basis of pipeline is always its units, behavior, timing and the
relationships among them.

There are two kinds of units in pipeline: storage units and execution units.
Denoting them by places and transitions respectively seems rational. PNPM is based
on 1-PN since the pipeline registers always have mono-value. It extends a token to a
pair k = (v, r), where v is the token value implying register value, and r is the token
time. So the marking M for each place p, when it has token in it, M(p) stands for the
token pair in it. M(p).v denotes the token value, M(p).r denotes the token time. vp and
rp are brief notations.

We also make each transition T have a formal description which can be stored and
used as independent text file. Shown as below, it includes information about action,
timing, and signal control and so on.

description_T6{ /*description for transition T6*/
 pipelinestage = 3 ; /*EXE */

enable = (vp9 = “R”) ; /*P9 connects toT6 with a testing arc*/
 action ={
 vp6 = vp3 op vp4; /*system behavior of T6*/
 }
 timedelay= 6 ; /*firing time for T6*/
 }

Enabling of transition in PNPM depends on the token pair in the place with testing
arc connecting to it. So the enabling and firing are defined as follows:

PN-based Formal Modeling and Verification for ASIP Architecture 205

Definition 2-1. Transition Tt is enabled at marking M iff:
enabletndescriptiopMtppMtp ._))(())((.

Definition 2-2. The firing of an enabled transition Tt changes a marking M into a
new marking M’, denoted by '[MtM . As a result of firing the transition t, the
following events occur:

timedelaytndescriptiortMrpMtp
vpMvtMtp

pMtp
actiontndescriptio

._}).(max{).(',
).(').(,

)(,
._

)3(
)2(
)1(

2.2 Modification for PNPM

For modeling the ASIP architectures with PNPM more precisely and succinctly, we
need to do some modification in PNPM.

Transition should not be disabled when its output places have tokens because
register with value can still get a new value to replace the old one. Structure with
inhibitor arc and testing arc shown in figure 2 (b) is a solution to it. T1 in figure 2 (c)
is an encapsulated symbol of T1 and T1’. And transitions in PNPM all imply such.

Fig. 2.transition with value-replacement semantics

Certain storages like system memory and register file, which have many memory
cells, are modeled in PNPM as multi-place, which encapsulate many normal places
into one abstract place. When simulating or evaluating, needed cells are parsed out
from it. We denote multi-place by a ring as in figure 3.

Thus manual-transition is a correspondence to multi-place. T5 denoted by in
figure 3 is a manual-transition express instruction decoding. It is coincided with
normal transition in the form, and could be implemented as a sub-PNAM; i.e., PNPM
supports systems modeled at different levels of granularity with transitions
representing simple arithmetic operations or complex algorithms. Also, we use
transient (a thick bar) to simply express transition with token replication semantics in
0 time delay. In Petri Net, one token can only take part in one transition at a time. By
using transient T1 in figure 3, the value of token in P1 (PC) can now be used by both
T2 (fetching instruction) and T3 (new PC counting) simultaneously.

206 Yun Zhu et al.

2.3 Formal Definition of PNPM

Since all the extended PNPM elements can be constructed from the basic PNPM
elements, we introduce the formal definition of PNPM.
Definition 2-3 A PNPM system is a 7-tuple,),,,,;,(0MACBFTP T where:

(1));,(FTP is a net;
(2) BooleanTB : . Tt , B(t) is a Boolean value or a Boolean expression

about the token values of tokens in the places connected to t with testing
arcs;

(3) TC : . is a finite set of sentences. Tt ,)(tC , sentence in C
(t) is either a evaluation of the token values in t with the token values in
t , or a behavior description of them after a “stall” instruction;

(4) })0{),(),(,(: RTCTBNTAT . Tt ,)(tAT is the value of the 4-
tuple (pipelinestage,enable,action,timedelay) corresponding to “description
_t”, where N is natural numbers, and }0{R is the set of non-negative
real numbers;

(5) })0{,(: RPM . Pp , M(p) denotes the token pair
associated with the place p. can be any possible type of the token value,
and token time is a non-negative real number.)(pM means that no
token in p at marking M. M0 is the initial marking of the net.

3 A PNPM Model for a 5-Stage Pipeline

Fig. 3. A PNPM Model for a 5 stage pipeline

Figure 3 is a graphical representation of a PNPM model. It is a five-stage pipeline
with stages IF, ID, EXE, MEM, WB in turn. The associations between PNPM
elements and architecture elements are shown in Table 1. The token in P9 indicates
the control signal with the value L, S, R or B corresponding to the Instruction Load,
Store, Reckon and Branch in turn. The token in P9 is issued from T5 in stage ID, and
the place P9 is connected to T6, T7, T8, T9 and T10 with testing arcs.

PN-based Formal Modeling and Verification for ASIP Architecture 207

T1 and T4 are transients. T2, T5, T9, T10, T11 and T12 are manual-transitions
connected to multi-places. Descriptions of all these transitions in figure 3 can refer to
description_T6 in 3.1.

Table 1. Correspondence between place/transition and architecture element

Places Arch. Units Transitions Architecture Behaviors
P1 PC T2 IF/ID.IR = MEM [PC]
P2 IF/ID.IR T3 PC = PC + 4

P3 ID/EXE.A T5
ID/EXE.A = REG [IF/ID.IR6...10]
ID/EXE.B = REG [IF/ID.IR11...15]

ID/EXE.Imm= (IR16)16##REG .IR16...31
P4 ID/EXE.B T6 EXE/MEM.ALUoutput = ID/EXE.A op ID/EXE.B
P5 ID/EXE.Imm T7 EXE/MEM.ALUoutput = ID/EXE.A+D/EXE.Imm

P6 EXE/MEM.
ALUoutput T8

if (ID/EXE.A = ID/EXE.B)
 PC = PC + ID/EXE.Imm – 4

else PC = PC
P7 EXE/MEM.B T9 MEM [EXE/MEM.ALUoutput] = ID/EXE.B
P8 MEM/WB.LMD T10 MEM/WB.LMD= MEM [EXE/MEM.ALUoutput]
P9 (ID.signal) T11 REG[IF/ID.IR11...15] = MEM/WB.LMD

T12 REG [IF/ID.IR16...20] = EXE/MEM.ALUoutput

4 PNPM Based Formal Verification

A formal verification can simply be expressed as “M |= P”. Where “M” is a system
modeling like state machine, “P” is a set of required properties usually represented by
logics. “|=” is the technique to deal with the relationships between “M” and “P”.

Based on the PNPM, which is designed for the formal modeling for ASIP
architectures, we have constructed a formal verification scheme. As shown in figure
4, PPL-MC (PNPM and Lambda Calculus based Model Checker) uses a Petri Net
based model PNPM to represent the target system, and Lambda Calculus[5] to specify
the expected system properties. The Lambda Calculus (LC) is a formal system
designed to investigate function definition, function application and recursion. It can
be used to cleanly define what a “computable function” is. Any computable function
can be expressed and evaluated using LC formalism with a single transformation rule
(variable substitution) and a single function definition scheme. It is thus equivalent to
turing machines, and system behavior restrictions can be easily described dependent
on its expressiveness and canonicity.

Since we use PNPM as “M” and use LC as “P” in our formal verification. The
most pivotal point left is the verification process “|=”, viz. the PPL-MC scheme. See
figure 4, it is composed of five main modules: two for input pretreatment, two major
checking modules, and an output management module.

The “PN-based Checking” module uses Petri net technique to check the initial
PNPM models on their reachability, liveness, boundness, fairness, and so on. The “L-
Formula Preliminary” module unrolls and simplifies the input LC formulas to regular
and straightforward form. If there exists illegality of the input, a feedback through the
export will return to the beginning.

208 Yun Zhu et al.

PPL-MC can perform two kinds of verification, one is “Equivalence Checking”
between two PNPM models, and the other is “Property Satisfying” between a PNPM
model and L-formulas. To spread the whole system model in fine grit will inevitably
lead to state space exploration, and the design of the complex system becomes
infeasible. In virtue of the modularized and hierarchical modeling ability of PNPM,
there can be a series of PNPM model of a single system at different levels and
different pipeline stages. So the consistencies between them become very important.
We provide a mechanism based on net morphism theory to automatically check the
equivalence of them. Property satisfying is realized by PPL-MC with an interpreter. It
constructs mappings between atomic transitions with formalized atomic operation in
PNPM and the atomic functions in LC; and the satisfaction between M and P can be
based on them. Also, the checking can be performed globally or in a particular stage.
Moreover, since PNPM has timing ability, constraints with timing can also be
checked.

Fig. 4.The PPL-MC Scheme

All these checking results above are drawn to a “diagnosis module”, which
automatically analyzes and decides what to do next, that is, to feedback and make
modifying, or to proceed.

PN-based Formal Modeling and Verification for ASIP Architecture 209

5 Conclusions

We have introduced and formally defined PNPM, a Petri Net based novel model
aimed at formal verification in DSE. The model is simple, intuitive, and applicable to
any abstract level of architecture in DSE. PNPM is a graphical and mathematical
model with extensions to capture important characteristics of various architectures by
describing the units, behavior, timing and their relationships structural and
hierarchical. We have presented an encapsulation approach to improve the correctness
and succinctness of PNPM. In addition, a five-stage pipeline has been studied to
illustrate the applicability of our approach to practical systems.

We have also constructed the scheme of a PNPM and Lambda Calculus based
Model Checker called PPL-MC. It uses PNPM as underlying sustainment for system
modeling. Detailed design of its modules is ongoing. Aimed at formal verification of
ASIP Architecture, taking advantage of PNPM, PPL-MC can efficiently verify
various aspects of the target system.

References

1. Li X, Zhou XH, Xiong Y, Lu L, Zhao ZX. XP-ADL: A key issue in Software and Hardware
Codesign[A].DPCS2002[C]. Wuhan: 2002. 100-104.

2. R.S.Tupuri, J.A.Abraham. A Novel Functional Test Generation Method for Processors using
Commercial ATPG[A]. Proceedings Intl Test Conference[C]. San Jose, California, 1997.
743-752.

3. Jeffrey Su, David Dill, Jens Skakkeb. Formally Verifying Data and Control with Weak
Reachability Invariants[A]. FMCAD'98[C]. California, USA: Phillip J. Windley, 1998-11-
04. 387-402.

4. E. M. Clarke, J. M. Wing. Formal methods: state of the art and future directions. ACM
Computing Surveys, 28(4):626--643, Dec. 1996.

5. H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in
Logic and the Foundations of Mathematics. NorthHolland, Amsterdam, The Netherlands,
Revised Edition, 1984.

6. Yuan CY. Principle of Petri Net[M]. Electronics Industry Press, 1998 (in Chinese). 25-75.
7. Jiang CJ. Behavior Theory and Applications of Petri Net[M]. Higher Education Press, 2002.

19-28.
8. Lin C. Stochastic Petri Net and System performance evaluation[M]. Tsinghua University

Press, 1999. 1-44.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 210-215, 2005.
 Springer-Verlag Berlin Heidelberg 2005

The Design and Performance Analysis of Embedded
Parallel Multiprocessing System

Guanghui Liu, Fei Xia, Xuejun Yang, Haifang Zhou, Heng Zhao, and Yu Deng

Institute of Computer, National University of Defense Technology
410073 Changsha, China
nudtlgh@sohu.com

Abstract. The performance of traditional embedded satellite-carried system is
limited by various conditions. It makes people find out a better solution. This
paper presents a solution of embedded parallel multi-processing system which
orients to satellite-carried application. The system consists of two double-
processor parallel systems. In addition, theory analysis and program simulation
are used to analyze the system’s performance. Compared with single-processor
embedded system, the design can not only improve system performance
observably but also satisfy the requirement of satellite business processing
better.

1 Introduction

The embedded system is used more and more widely. However, in some severe
circumstances which are restricted by various factors (e.g. temperature range,
radiation-hard ability), its processing ability cannot be largely improved. Some
application fields demand for high processing ability of embedded system (e.g. the
image data processing of aerospace remote sensing, multimedia data processing),
making the single processor of embedded system unqualified for the job. This forces
system designers to explore new methods to improve the processing ability of
embedded system. A reasonable solution for overcoming the low performance of
embedded application is the parallel multi-processing technology. This paper
discusses the design and performance analysis of embedded multi-processing system
based on satellite-carried parallel computer system and furthermore explores on the
concept of embedded multi-processing system. Presently, the most representative
project about satellite-carried computer system is SCS750 of Maxwell Technology,
Besides, Proton 100k™ of Space Micro Inc and ISC series of GD-AIS Company are
all good candidates for satellite-carried computer. All the above solutions employ the
parallel computer architecture, they provide enough processing ability for all kinds of
satellite business management and pay load processing which is increasing steadily.

The Design and Performance Analysis of Embedded Parallel Multiprocessing System 211

2 System Design

The architecture of the highly-reliable embedded multi-processors system for satellite
and its behavior are described in detail in this section.

2.1 System Architecture

Fig. 1. The architecture of Highly-reliable Embedded Multiprocessors system

The solution is designed for satellite-carried system, whose working environment is
critical. Therefore it demands high reliability. The whole system exploits multi-level
reliable design strategies, including dual-computer cold backup in system level, dual-
CPU processing and degraded running in unit level and redundant design in logic
level.

The whole system is consisted of CPU module, fault tolerance module, I/O module
and power supply module. As can be seen in figure.1, the CPU module, bridge, and
the I/O module coupled with them make up of an independent computer. There are
two computers of this kind in this satellite-carried system, which are named computer
A and computer B (Computer B is the cold backup for computer A) respectively.
CPU modules are consisted of two CPUs, two local memories, two ROMs, one
shared-memory and one bridge.

On one hand, the fault tolerance module monitors the working state of system by
connecting to bridge through I2C bus. On the other hand, it is connected to power
module by I2C bus, achieving the function of degraded running on a certain computer
(A or B) or system switching when the fatal fault is detected.

When the system is powered on, the power supply module supplies voltages for
computer A in default and the whole system begins to work. The fault tolerance
module monitors the working state of computer A. When there is an error coming
from a certain CPU, system enters the state of degraded running. Meanwhile, with the
assistance of the normal-stated CPU of computer A, the fault tolerance module boots
computer B and completes the state transition of the whole system. Then computer B

212 Guanghui Liu et al.

begins to work. The process above can be called system switching. If there is an error
coming from a certain CPU of the current computer (computer B), the system enters
the state of degraded running again, without taking the system switching process. In
this situation, the normal-stated CPU can still assure of completing all system
functions.

As the key unit in CPU module, bridge includes several important functions:

 Protocol transformation between local memory bus and PCI bus, which transforms
one of the two types of transaction on two buses to the other,

 Bus control and arbitration, which sequences the concurrent I/O accesses from two
CPUs and implements the arbitration function for PCI bus,

 Synchronized communication mechanism between two CPUs, which assures the
shared-memory of being accessed critically, and thus assures the data in shared-
memory of consistency,

 DMA and interrupt control, which deal with the DMA request and interrupt request
from peripheral equipments,

 Redundant interface for I2C bus, which makes the communication between bridge
and fault tolerance module reliable.
The architecture of the solution introduced here is in some sense similar to SMP,

but each processor has its own local SRAM. The memory access model is likely
between NORMA and UMA. CPUs for this solution are all commercial processors
and communications between them are not through crossbar network but bridge. The
shared-memory is hung onto the bridge and the whole system looks symmetric. All
processors can access the shared-memory and I/O devices coequally but each
processor has its own operating system located in the local SRAM. Because
processors used in space is much slower than which on the ground, data can be
accessed directly from or to local SRAM despite of the processor-memory gap
without the help of cache. Therefore, as shared data is located in shared-memory and
private data in local memory, problem of cache-coherence can be avoided.

2.2 Strategies of Improving Performance

The system uses close coupling architecture of shared-memory. Here gives the
strategies of improving performance in this design:

 Exploiting dual-CPU strategy, which obviously makes the processing capability of
system more powerful,

 System is symmetric and shared-memory is introduced, so high degree of
parallelism can be exploited,

 The two CPUs each have their local memory for private data, which brings two
major benefits. First, it is a cost-effective way to scale the memory bandwidth if
most of the accesses are to the local memory in the node. Second, it reduces the
latency for accesses to the local memory,

 The two CPUs share one memory space, which is employed for data exchange and
transfer. This communication mechanism has several advantages compared to
message-passing mechanism. First, it makes programming easier when the
communication patterns among processors are complex or vary dynamically during

The Design and Performance Analysis of Embedded Parallel Multiprocessing System 213

execution, and similar advantages simplify compiler design. Second, when
developing applications using the familiar shared-memory model, it focuses
attention only on those accesses that are performance-critical. Third, it aims at the
characteristics of relative independence among applications and small
communication items. The overhead for communication will be lower, use of
bandwidth will be more efficient, and efficiency of communication will be higher.

3 Parallel Performance Analysis

The index of performance to judge the parallel processing capacity of systems is
application speedup. Speedup can be presented as S= Ts/Tp, “Ts” represents serial
execution time, “Tp” represents parallel execution time. How to exploit the parallel
processing capacity to the utmost is related extremely to the software and hardware
structure of the system and the characteristics of application. The design employs the
architecture of dual-computer redundant cold backup. On the normal state, two CPUs
of single computer are running collaterally. They employ shared-memory to
communicate with each other and their program space is independent.

The software system of multi-processors on satellite is an embedded real-time
operating system. The kernel code of system software can be controlled less than
100kB. If instructions are loaded from ROM directly, the program will not use
dynamic storage space. Because of banding with applications, the system cost can be
ignored, so the speedup is extremely decided by task allocation and exploiting of the
parallelism degree of application programs. However, the measurement of accurate
speedup must be combined with particular application type. When tasks are
distributed and the proportion of communication is controlled reasonably, the speedup
can approach linear acceleration.

Analysis as far as application, there are two main parallel application patterns:
coarse grained task level parallelism suitable to the management of tasks on satellite,
and fine-grained algorithm level parallelism suitable to pay load. This plan can
support both parallel patterns above.

3.1 Coarse-Grained Parallelism

By analyzing the applications on satellite, it is known that tasks on satellite are not
calculation-intensive but independent with each other and the grains of
communication is also small. So the execution pattern of the program on the dual-
CPU system should be coarse-grained. What’s more, in order to simplify design and
satisfy the requirement of real-time, the task distribution on the dual-processor is
initialized statically, and dispatched dynamically. It can be supposed that within a
long execution time of full load, n tasks are equally distributed to 2 CPUs. Define the
tasks’ number on the two CPUs differently as “n1” and “n2”, and the serial execution
time of the task No. k is “ts

k”, then the single CPU’s execution time of n tasks Ts = ts
1+

ts
2+…+ ts

n, and the parallel time Tp = max{ Tn1,Tn2}, Tn1, Tn2 represent the execution
time on each CPU. Suppose Tp = Tn1 Tn2, Tn1 = ts + tc, among these, ts = (ts1+ ts

2+…+
ts

n1) Ts/2, which is serial execution time of n1 tasks and “tc” is the tasks’ remote

214 Guanghui Liu et al.

communication time. Communication among processors is mostly small-grained data
exchanging, which is very suitable to shared-memory communication mechanism.
According to the Amdahl’s Law, speedup can be represented as:

c

n

k

k
s

n

k

k
s

p

s

tt

t

T
T

S
1

1

1

.

(1)

On the ideal state, tasks are distributed evenly and there is no communication
among tasks, so speedup is 2. But actually there are necessary data exchanging among
tasks. According to the application characteristics on satellite, it can be estimated
optimistically that when the processing program of task is parallelized fully (by static
distribution or dynamic scheduling), the imbalanced execution time and cost of
communication can be controlled ranging from 5% to 15% of Ts. From formula
above, it can be concluded: (suppose the cost of communication is 10%):

67.1
%10

11
2
1

1
n

k

k
s

n

k

k
s

n

k

k
s

p

s

tt

t

T
TS

.

(2)

3.2 Fine-Grained Parallelism

The fine-grained parallelism is mainly applied to pay load processing, such as image
transaction. The application speedup is decided mainly by the design of parallel
algorithm. Here, a typical application of image processing is introduced as example to
analyze the system’s parallel capacity. In DFT algorithm, each output value of
calculation is independent. All calculation tasks can be divided equally to each
processor. There is little data-dependence between processors, so it is fit for this
parallel design of close coupled.

The Amdahl’s Law only evaluates parallel system performance from the aspect of
task parallel degrees, its shortcoming lies in not containing various architecture
characteristics of parallel processors, and uniform divisibility of task. But in fact,
these actual factors are vital to the performance of the parallel processing. About
above, advantages can be taken from the following timing model.

k kcomp kcomm ksync kidleT T T T T 1 k p . (3)

Here, “Tkcomp” is the execution time that No. k unit used to completes it’s
distributed subtask; “Tkcomm” is the time of data communication with itself and other
processing units; “Tksync” is the necessary waiting time when there is data exchanging
between multi-processors; “Tkidle” is the idleness waiting time of No. k processing
unit that before the last subtask is finished by some processing unit. So, the time to
finish all tasks — Tpar = max {Tk}, 1 k p. The execution time using same
algorithm on single processing unit is Tseri = T1comp + T2comp + … + Tpcomp, thus the
speedup of parallel processor is Sp = Tseri/Tpar p.

The Design and Performance Analysis of Embedded Parallel Multiprocessing System 215

3.3 The Consequence of Simulation Testing

Here gives two experiments, one is the computing of to 12th bit after dot, the other
is a 64 64 matrix multiplying.

Table 1. Experiments of computing and matrix multiplying

Experiment computing Matrix multiplying

of CPUs 1 2 1 2

Calculation To 12th bit

after dot

To 12th bit

after dot

64 64 64 64

Tkcomp 57265620 s 28881742 s 517884 s 260305 s

Tkcomm 0 1005104 s 0 5482 s

Sum of time 57265620 s 29886846 s 265787 s 265787 s

Speedup 1.916 1.948

4 Conclusion

Based on analysis and simulation above, it can evaluated optimistically that adopting
dual-CPU parallel architecture, the speedup can reach more than 1.6 compared with
single-CPU system in embedded specific application.

There are two major problems in this system. Firstly, though each processor has its
own local SRAM, with the increasing processors in the system, the load of shared-
memory will increase rapidly. Besides, because bridge is employed instead of
crossbar network, the scalability of system is constrained at the same time.

References

1. John L. Hennessy & David A. Patterson.: Computer Architecture: A Quantitative Approach.
(2002)

2. Chenxi Zhang etc.: Computer Architecture (Chinese). (2000)
3. White paper: Practical System Design and Debug Considerations for Multiprocessing in the

Embedded Environment. Broadcom Corporation. Printed in U.S.A. (2002)
4. Goodacre, J.: Understanding the Options for Embedded Multiprocessing. Information

Quarterly. Vol. 2, No. 2 (2003) 33-39

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 216-221, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Use Dynamic Combination of Two Meta-heuristics to Do
Bi-partitioning

Zhihui Xiong1,2, Sikun Li2, Jihua Chen2 and Maojun Zhang1

1 School of Information System and Management, National University of Defense Technology,
410073 Changsha, P. R. China

xzhnudt@vip.sina.com, maojun@mail.iscas.cn
2 School of Computer Science, National University of Defense Technology,

410073 Changsha, P. R. China
lisikun@263.net.cn, jhchen@nudt.edu.cn

Abstract. In order to solve the hardware/software bi-partitioning problems in
embedded system and System-on-a-Chip co-design, we put forward a novel bi-
partitioning algorithm, which is based on the dynamic combination of Genetic
Algorithm (GA) and Ant System Algorithm (ASA). The basic idea is:
1).Firstly, we use Genetic Algorithm to generate preliminary partitioning
results, which are then converted into initial pheromone required by Ant System
Algorithm, and finally we use Ant System Algorithm to search for the optimal
partitioning scheme; 2).While the Genetic Algorithm is running, we determine
the best combination time of GA and ASA dynamically, thus, the Genetic
Algorithm avoids too early or too late termination. Experiments show that our
algorithm excels GA and ASA in performance; moreover, we discover that the
bigger partitioning problems are, the better our algorithm performs.

1 Introduction

Hardware/software partitioning is a fundamental and critical process in embedded
system and SoC (System-on-a-Chip) co-design, which assigns system functions to
certain hardware/software architecture optimally under some constraints. For a
function set M = {m1, m2, ...,mn}, a k-way partitioning tries to find out a cluster set P
= {p1, p2, ...,pk} that satisfies the following conditions:

sconstraint eperformanc and esource

,,1,

1,

1

r

jikjipp

Mp

kiMp

ji

k

i
i

i

(1)

 Supported by National Nature of Science Foundation of China (90207019) and 863 Program
(2002AA1Z1480).

Use Dynamic Combination of Two Meta-heuristics to Do Bi-partitioning 217

If k=2, we call it bi-partitioning problem, in which case an embedded processor
and some hardware accelerators are used.

Kastner made a comprehensive survey on system level partitioning in [1], some
other typical researches include [2-8]. Based on Ant System Algorithm [9], Wang et
al. presented a new approach for task level resource bi-partitioning problems in [10],
which is a meta-heuristic method inspired by the study of the behaviors of ants.
However, the Ant System Algorithm lacks a reasonable initial pheromone, which
limits further improvement of performance.

Based on dynamic combination of GA [11] and ASA, we put forward an improved
task level bi-partitioning algorithm. In this approach, we use Genetic Algorithm to
generate preliminary partitioning results, then we convert these results into initial
pheromone required by Ant System Algorithm, and finally we run Ant System
Algorithm to search for the optimal partitioning scheme. Besides, we determine the
best combination time of GA and ASA dynamically. Experimental results indicate
that our algorithm provides a notable improvement.

2 Principle of Dynamic Combination of GA and ASA

After rigorous studies on the execution behaviors of Genetic Algorithms and Ant
System Algorithms, we have found that these two types of meta-heuristic algorithms
comply with the speed-time curves shown in Fig.1.

v

t

GA

ASA

va

t0

.c.a
.b.d

.e
tetatd tb tc

Fig. 1. Speed-time curve of GA and ASA

Genetic Algorithms run fast during time 0t to at , after that, the searching
efficiency decreases greatly; on the other hand, Ant System Algorithms run slowly
during time 0t to at because of the lack of initial pheromone, since the pheromone
has to be accumulated to a certain strength (after time at), Ant System Algorithms
converge to optimal results quickly. We call time at the optimal combination time.

To make use of the speed-time characters of GAs and ASAs, we consider dynamic
combination of them, the principle is: 1).To get initial pheromone, we run Genetic
Algorithms before optimal combination time at . 2).Then, after that, we run Ant
System Algorithms with the initial pheromone generated. 3).In order to determine the
optimal combination time at , we profile the colony fitness improvement ratio
between iterations of Genetic Algorithms dynamically.

218 Zhihui Xiong et al.

3 Bi-coloring Model of Bi-partitioning Problem

In order to represent hardware/software bi-partitioning problem, we use the bi-
coloring model introduced in [10].

First of all, we use task graph to describe behaviors of embedded systems or SoCs.
A task graph is a directed acyclic graph (DAG) G = (T, E), where T = (t0, t1, …, tn) is
a collection of task nodes, and E is a set of directed edges.

Then, we associate color c1 (such as red color) with the task nodes assigned to
software, color c2 (such as green color) with hardware. So, what we need to do is to
find the "optimal" coloring of task nodes using c1 and c2.

In order to associate the bi-coloring model with Ant System Algorithm, we further
model the bi-partitioning problem as an agent (i.e. ant) based stochastic decision
making process as detailed in [10]. An agent tries to construct a coloring on the task
graph based on the distributed and local heuristics.

For every task node ti, two steps are carried out by the agent. 1).The agent makes a
decision on how the task node ti should be colored. This decision is made by
considering the choices made on ti by its immediate predecessors. Once this decision
is made, the agent forces every inbound edge of ti to be colored in the same color as ti.
2).The agent guesses the color of each task node that immediately follows ti, i.e. for
every edge eij, it guesses the color of tj. The probability of assigning color ck to tj is
based on a global heuristic)(kC

ij and the local heuristic, while the local heuristic is
based on the local information from task nodes ti and tj .

4 Our Hardware/Software Bi-partitioning Algorithm

Similar to [10], we consider task level bi-partitioning and we use bi-coloring to model
the problem. There are three parts in our algorithm, i.e. the Genetic Algorithm part,
the joint part of the GA and ASA, the Ant System Algorithm part.

4.1 Rules on Genetic Algorithm

The rules on GA part of our algorithm include:
 Genetic Encoding: Use binary encoding [12]; 0 stands for color 1c (software), and

1 stands for color 2c (hardware).
 Object Function and Fitness Function: We seek for the shortest running time under

area constraints, so we define object function as sbest times minarg , and we define
fitness function as stimefitness /1 , Where stime denotes the run time of coloring
(partitioning) scheme s .

 Generation of Initial Colony: Use random method to generate initial colony.
 Selection Operator: We adopt the widely used Roulette Wheel Selection policy

[12].
 Crossover Operator: Use the Uniform Crossover policy, which exchanges each bit

of the two parent's code string with certain probability.

Use Dynamic Combination of Two Meta-heuristics to Do Bi-partitioning 219

 Mutation Operator: Bit reverses a selected gene (individual) by mutation
probability mp .

 Controlling Parameters: Our algorithm performs operator non-overlap genetic
operations. We set colony size 50N , crossover probability 6.0cp and
mutation probability 2.0mp .

 Terminate Conditions: In fact, they are consistent with the optimal combination
time. We set minimum iterations 15minGene , maximum iterations 50maxGene ,
iteration minimum improvement ratio %3min ratioimproGene and 3dieGene .

4.2 Rules on Ant System Algorithm

In order to make comparison, we set Ant System Algorithm rules the same as those of
[10] as far as possible. The main differences are:
 Pheromone Setting and Refreshing: We adopt MMAS (Max-Min Ant System)

introduced by Stutzle [13], the refreshing equation of pheromone is:

)()(if,)(
)()(if,)(

)()()1(
)(

minmin

maxmax

kkk
kkk

kk
k

ijijij

ijijij

bestijij

ij (2)

Where is the evaporation ratio of pheromone, max)(kij (min)(kij) is
maximum (minimum) strength of kc pheromone on edge ije (we set them (60)),
and bestij k)(is the increment of kc pheromone on edge ije done by the best ant in
current Ant System Algorithm iteration.

 Terminate Conditions: The Ant System Algorithm terminates if one of the
following two conditions is satisfied: 1).Ant System Algorithm iterates maxAnt
times. 2).Child iteration fitness improvement ratio is continually lower than

ratioimproAntmin for dieAnt iteration(s). We set 100maxAnt , 3dieAnt , and
%5.0min ratioimproAnt .

4.3 Joint of the Two Algorithms

The joint of GA and ASA is important in our approach; we mainly consider the
following problems:
 Optimal Combination Time: This is the same as the Terminate conditions

described in "Rules for Genetic Algorithm".
 Initial Pheromone Setting: Wang [10] set initial pheromone with a fixed value

1000 . We improve this by using Genetic Algorithm to get more reliable values.
In our algorithm, initial pheromone on edge ije is determined by

)()()(kkk G
ij

C
ij

S
ij , where)(kC

ij is a constant which indicates the kc pheromone

value on edge ije , this value corresponds to min in MMAS [13].)(kG
ij is the kc

220 Zhihui Xiong et al.

pheromone on edge ije , which is converted from the searching results of Genetic

Algorithm. We set)(kC
ij = min)(kij = 60, 0 i, j n, k=1, 2.

 Conversion from GA Results to Initial Pheromone: In the last generation of GA,
we select the top 10 percent best individuals to construct a genetic optimization
results set (denoted with gene

betterS %10 . Besides, we set initial value of)(kG
ij as 0, 0 i,

j n, k=1,2. For each result s in gene
betterS %10 , if the edge ije is colored kc , then)(kG

ij
increases 20 by itself.

5 Experiments

We use a similar experimental model to that of [10], and make comparison with the
partitioning method that is based on GA [7] and the method that is based on ASA.
Table 1 shows the data we have obtained. In order to make the comparison valid, we
use the same controlling parameters for these three types of partitioning algorithms. In
order to compare the algorithms’ speed performance, we have restricted that the three
algorithms process execution until the results have the same distance to the theoretical
optimal results.

To construct the experimental samples, we generate seven groups of DAGs
(denoted by 20DAG , 30DAG , , 80DAG respectively, the subscripts stand for total
number of nodes in each graph). There are 30 DAGs in each group, and the average
branching factors of the seven DAG groups are 5,5,7,7,9,9,11. We use the average
performance values of the thirty DAG samples as the final performance results.

In our experimentation, we use the following PC configurations: a).AMD Duron
700MHz processor, 128MB memory. b).Redhat Linux 7.3 operating system.
c).KDevelop 2.1 programming tools.

Table 1. Comparison of GA, ASA and our algorithm

GA [7] ASA [10] Our Algorithm Total DAG
Nodes Time (ms) Iterations Time (ms) Iterations Time (ms) Iterations

20 258 72.3 332 43.2 207 23.1 + 14.6
30 579 65.1 659 36.8 513 31.2 + 12.4
40 1296 83.6 1463 47.3 742 19.4 + 21.6
50 2694 89.2 2235 44.7 1662 27.7 + 18.3
60 4833 92.7 3280 68.7 2038 26.8 + 21.8
70 8436 68.0 5762 51.3 2679 21.4 + 19.4
80 15623 97.5 9368 55.1 3651 27.2 + 16.3

We can draw the conclusion from the table that, when the size of task graph (total

number of nodes) is relatively small (20~30 nodes), our algorithm performs almost
the same as GA and ASA. However, when the total number of nodes in the task
graphs exceeds 40, our algorithm performs better (faster). This is because when the
number of nodes increases, the searching space of partitioning problems grows up
exponentially, but our algorithm is not so sensitive to the increase of the search space.

Use Dynamic Combination of Two Meta-heuristics to Do Bi-partitioning 221

6 Conclusions

A novel partitioning algorithm based on dynamic combination of Genetic Algorithm
and Ant System Algorithm is introduced in this paper. This algorithm takes the
advantages of the two algorithms and overcomes their disadvantages. Experiments
show our algorithm excels GA and ASA in performance.

References

1. Kastner, R.: Synthesis techniques and optimizations for reconfigurable systems. Los
Angeles: University of California, 2002

2. Gupta, R., Micheli, G.D.: System-level synthesis using re-programmable components. Proc.
of the Euro. Conf. on Design Automation, (1992) 2-7

3. Ernst, R., Henkel, J., Benner, T.: Hardware-software co-synthesis for microcontrollers. IEEE
Design and Test of Computers 10 (1993) 64-75

4. Vahid, F., Jie, G., Gajski, D.D.: A binary-constraint search algorithm for minimizing
hardware during hardware/software partitioning. Proc. of the Euro. Conf. on Design
Automation, (1994) 214-219

5. Niemann, R., Marwedel, P.: Hardware/software partitioning using integer programming.
Proc. of the Euro. Design and Test Conf., (1996)

6. Kalavade, A., Lee, E.A.: The extended partitioning problem: hardware/software mapping,
scheduling, and implementation-bin selection. Design Automation for Embedded Systems 2
(1997) 125-163

7. Saha, D., Mitra, R.S., Basu, A.: Hardware Software Partitioning using Genetic Algorithm.
Proc. of the 10th Int'l Conf. on VLSI Design (1997) 155-160

8. Wiangtong, T., Cheung, P., Luk, W.: Comparing three heuristic search methods for
functional partitioning in hardware-software codesign. Journal of Design Automation for
Embedded Systems 6 (2002) 425-449

9. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating
agents. IEEE Trans. on Systems, Man and Cybernetics, Part-B, 26 (1996) 29-41

10. Wang, G., Gong, W.R., Kastner, R.: A new approach for task level computational resource
bi-partitioning. Proc. of IASTED Int'l Conf. on Parallel and Distributed Computing and
Systems (2003)

11. Holland, J.H.: Adaptation in natural and artificial systems. Michigan University Press
(1975)

12. Pan, Z.J., Kang, L.S., Chen, Y.P: Evolutionary Computation. Beijing: Tsinghua University
Press (1998)

13. Stutzle, T., Hoos, H.: MAX-MIN ant system. Future Generation Computer System 16
(2000) 889-914

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 222-228, 2005.
 Springer-Verlag Berlin Heidelberg 2005

A New Approach for Predictable Hard Real-Time
Transaction Processing in Embedded Database

Tianzhou Chen, Yi Lian, Jiangwei Huang

College of Computer Science, Zhejiang University,
Hangzhou, Zhejiang, 310027, P. R. China
{tzchen, yl, hjw}@zju.edu.cn

Abstract. Real-time transaction processing becomes concerns as embedded
time comes rapidly. However, the transaction process in real-time embedded
system still has some problems in resource utilization at present. In this paper, a
classification is designed to differentiate the hard periodic real-time transactions
and hard sporadic real-time transactions. The new processing algorithm for hard
sporadic real-time transactions is given. In time consuming and space
consuming, this design and implementation indeed do a great deal of good.

1 Introduction

Real-time database has improved the storage and manipulation of data in embedded
system these years. Most embedded database systems are also real-time. We refer to
these systems as real-time embedded database. Transactions in the system must be
scheduled in such a way that they can be completed before their corresponding
deadlines expires as well as satisfy database consistency constraint.

Real-time transactions can be grouped into three categories: hard deadline, firm
deadline, and soft deadline. [1] For a hard deadline transaction, missing a deadline is
equivalent to a catastrophe. For firm or soft deadline transaction, however, missing
deadline leads to a performance penalty but does not entail catastrophic result.

A lot of previous researches focus on transaction processing with pure deadline
monotonic scheduling. This method indeed enhances the utilization of the system
resource and guarantee the urgent transaction achieve. But this method cannot
guarantee all hard real-time meet its deadline. At the same time, some researches on
real-time transaction process focus on static pre-scheduled approach, which has some
problems. One of these problem is inefficiency: the system does not maximize the use
of the processor. A lot of processing time must be reserved for handling an event,
even though in reality that time is hardly ever used for hard real-time processing.

Major problem of previous researches is that they don’t consider how to cooperate
real-time and embedded system. As known, the flash acts as storage in most
embedded system. The maximum time of the I/O is up to 100000. Furthermore, the

 This work is supported by the national 863 high technology project and HP Embedded

Laboratory of Zhejiang University

A New Approach for Predictable Hard Real-Time Transaction Processing 223

embedded systems often work in remote area, which is not easy to maintain. Hence,
besides real-time requirement, another goal must be to decrease the access to flash
devices.

Observe that a real-time model [1] (called Kim & Son’s model following) do well
in transaction classification and responding process scheme. However, it is designed
for real-time database, not embedded conditions considered. Hence, it is not very
suitable to embedded database, because of too much access to flash device. To solve
this problem, we modify two of transaction types of it and develop two new type
transactions and responding process scheme.

2 Kim & Son Model Performance Analysis and Modification

Kim & Son model gives the classification of the hard real-time transaction in
conventional database based on the nature of transaction in real-time database
systems. This classification is summarized in Figure 1, except the new types.

Real-time embedded transaction

Hard real-time transaction Soft/firm real-time transaction

Periodic Sporadic

Type III
read-only

New Type II
update

Type II
 update

Type I
write-only

Type V
write-only

No restriction on
data access pattern
arrive pattern
data requirement
runtime requirement

 Unknown data requirement
Unknown runtime requirement

Known data requirement
Known runtime requirement

New Type I
write-only

Type IV
 read-only

Fig. 1. New classification of real-time embedded transactions

Suppose the classification applies to real-time embedded database. As known, the
flash acts as storage in most embedded systems, especially mobile devices. As known,
the space in flash storage device is often limited. Suppose 10 type I transactions are
running, each transaction writes 10 bytes every second. Nearly 10M data will
accumulate in flash one night. The flash storage device may expire in a week.
Another problem is that block is the minimum flash erased unit, and flash won’t
suffer from frequent erasing. The times of flash erased are up to 100000. Furthermore,
type II transaction comes periodic at the same way. This situation is aggravated.

The question comes up. Is it necessary to excuse the type I & type II transactions
periodic, writing every value from an external object to embedded database? Let us
consider a mobile medical information system as an example: Type I transactions are
transactions which write the dynamic physical status of a critical patient in motion in
the open from the sensor devices, such as heart beat sensor. Obviously type I
transaction (e.g. the heart beat of the patient) will go steadily rather than change up

224 Tianzhou Chen, Yi Lian, and Jiangwei Huang

and down frequently at most of the time. The derived data are more or less the same.
The necessary time the record need flushing into flash storage is at the checkpoint or
at the time when some abnormal data come. And the transaction only needs to write
the criterion function (e.g. the average value) to the flash device. When it comes to
type II transaction, the type II transactions can work only in key point such as when
the critical event happens to the patient. Hence, for the special status of embedded
real-time database, therefore, we do some modification on Type I and Type II, from
which we develop two new types, summarized by Figure 1.

New Type I & II, transaction of these types are picked up from the corresponding
Type I and Type II transactions, simple to previous transactions, which access the
flash with hard deadlines, and their runtime and data requirements are known in
advance. But they are not periodic. They only write the key data at the checkpoint
time or when some abnormal data come, rather than always.

It is believed that the classification is more efficient in processing transactions, and
improves overall system performance. Hence two new types of transactions appear.
Fortunately they are similar; both of them are sporadic, with known data requirement
and runtime requirement. Following is the corresponding process scheme.

3 Predictable Sporadic Transaction Processing Implementation

The transactions we will process are all sporadic, with known data requirement and
runtime requirement. Thus in an efficient real-time embedded database, two points
below must be concerned:

For one thing, since the limited resource in embedded system, the deadline
monotonic scheduling may be the first choice. But the major problem of this
scheduling is that it can’t guarantee all sporadic transactions to meet its deadline. For
another, it's important that systems operate correctly because the costs of even trivial
failures are high.

Before we can go through the computation, we need to make some assumptions
about the transaction. First, there is a fixed set of transactions with known data
requirement and known process runtime; Secondly, each time a transaction becomes
ready to run, it will run for only a bounded amount of processor time; Thirdly, before
a transaction completes, it won’t be restarted. Finally, the transaction with shorter
deadline has the higher priority. So the implementation in this paper uses a priority-
based algorithm to compute the worst-case response time of every new type
transaction, to filter some transaction out, and to guarantee remain transactions meet
their deadline with deadline monotonic scheduling.

Our first step is to find the worst-case response time from the time the transaction i
gets ready to the time the transaction completes. So we want to find an equation that
will calculate the worst-case response time of the ith transaction denoted by Ri, made
up of two parts: the worst-case execution time a transaction takes on its own, denoted
by Ci, and the time it takes to wait for higher priority transaction to execute, denoted
by Wi. The following equation represents this relationship:

Ri = Ci + Wi (1)

A New Approach for Predictable Hard Real-Time Transaction Processing 225

Here the deadline of a transaction i is denoted by Di, and a transaction must always
meet its deadline, namely Ri Di. Thus, the problem now becomes finding the worst-
case waiting time Wi. The term Pj

 is the so-called "the minimum interval" of two same
kinds of transactions. Although new type transactions are sporadic, the interval time
between two transactions of the same kind is integral times of the original periods of
primary type. (i.e., Pj T T= period of primary type). The total time that a given
transaction i may be waiting while transaction j is ready is given by:

jC
jP
iR

(2)

The first factor above is the time taken by a transaction j with higher priority when
it pre-empts and executes. Thus the value that adds this up for all the higher priority
transactions j, j hi (hi is the set of all transactions of higher priority than transaction
i) is the total time transaction i waiting in the system and get the following:

j
hj j

i
i C

P
RW

i

 (3)

We can integrate equation (1) and (3) and present the response time equation

j
hj j

i
ii C

P
RCR

i

 (4)

Because Ri appears on both the left- and right-hand sides of the equation, it is
difficult to work it out directly. But it is easy to construct a process. Suppose a
transaction i responses in Ri(n). At fact, in Ri(n), some higher priority transactions
may come, in result, the response time prolongs to Ri(n+1). Hence a recurrence
relation is formed to solve this problem:

j
hj j

i
ii C

P
nRCnR

i

)()1((5)

Step by step, if a value of Ri(n) satisfies the equation (4), it must be the smallest,
which is the first time when transaction i has enough response time to complete, i.e.,
the worst-case response time. And initialize the first value of Ri to zero and the
sequence will converge to the smallest value of Ri that satisfies Equation (4).

Let's have an example. Table 1 describes a set of transactions in New Type. The
transaction in table is in deadline monotonic priority order, with transaction 1 being
the highest priority and transaction 4 the lowest priority. Calculate the worst-case
response time of transaction 3. We start with an initial R estimate of 0. Table 2 shows
the steps in the calculation. The equation converges at 38ms. So the worst-case
response time of transaction 3 is 38ms. This is less than the deadline of 50ms and
proves that transaction 3 will always meet its deadline in all situations.

226 Tianzhou Chen, Yi Lian, and Jiangwei Huang

Table 1. Deadline Monotonic Analysis Example

Table 2. Calculation of worst-case transaction 3 response time

So far, it is known that which some of new type transactions (transaction 4 in

above example) can’t meet their deadline with deadline monotonic. Since these
transactions are picked up from the type I and type II transactions, let them back to
their primary type, periodic, using the primary process scheme. [1] Just as said that
simple is beauty.

4 Performance Analysis and Discussion

In the above chapter, two new type transactions are added to new model. Are they
minority in a practical system? According to the investigation, most transactions in
type I and type II can be translated into the new type transaction. Quote the above
mobile medical information example, the data derived from the heart beat rate,
temperature sensor, and most apparatus sensor can be translated to new type
transaction. Furthermore, these transactions quoted are great deal data producers.

And it is mentioned that the new type transactions, which are not suitable to the
new process scheme, must be back to their primary types. Are most new type
transactions suitable to new type process scheme?

It is a misconception that "hard real-time" means "no way to consult”. In the design
phase, all functions for the system is known and the design of the deadline is not only
referred to the attributes of the data, but also referred to the worst-case response time,
therefore, these deadlines must be designed appropriately in advance. Each time a
new scheme draft is developed, we can use the above the algorithm to compute the
worst-case response time of every transaction. Adjust most of all work.

This translation has at lease two advantages following.
First of all, decrease the production of the data and access to flash storage

distinctly, since most amounts of data from type I and type II transactions are
translated to new type transaction:

TRANSACTION P C D

1 250ms 5ms 10ms
2 10ms 2ms 10ms
3 330ms 25ms 50ms
4 1000ms 29ms 55ms

STEP Rn W Rn+1
1 0 0 25
2 25 5+3*2 36
3 36 5+4*2 38
4 38 5+4*2 38

A New Approach for Predictable Hard Real-Time Transaction Processing 227

Suppose in a normal embedded real-time system, the primary type I & type II
transactions produce more than 60 percents of the total amount of the data, denoted by
DI&II. The percentage of type I & type II transactions which are able to be translated
to new type transactions is denoted by NP. Suppose the values of the target data x are
in normal distribution. And the mathematical expectation is zero; the mean square
is 1; Namely,

22
)(2

2

2

2
1

2
1)(

xx

eexf (6)

If the new value xnew is Diff more or less than , it is regard as an abnormal value.
The table 3 and table 4 are the percentage of the total data with 60% and 80% primary
type I & type II transactions won’t write to the embedded database using new
transaction processing in different NP and different Diff:

Table 3. the percentage of total data with 60% primary type I & type II transactions won’t
write to the embedded database using new transaction processing

Table 4. the percentage of total data with 80% primary type I & type II transactions won’t
write to the embedded database using new transaction processing

Secondly, periodic transactions call for static pre-schedule, the system does not

maximize the use of the processor. For example, A new kind of transaction is added,

 Diff

NP

5.0

2

50% 11.5% 20.5% 28.7%

60% 13.8% 24.6% 34.4%

70% 16.1% 28.7% 40.1%

80% 18.4% 32.8% 45.8%

90% 20.7% 36.9% 51.5%

 Diff
NP

5.0 2

50% 15.3% 27.3% 38.3%

60% 18.4% 32.8% 45.9%

70% 21.5% 38.3% 53.5%

80% 24.5% 43.7% 61.1%

90% 27.6% 49.2% 68.7%

228 Tianzhou Chen, Yi Lian, and Jiangwei Huang

although there might be quite a lot of spare time across the schedule, there's not
enough spare time in any one place; a transaction has to fit within the spare time in a
single time slot. When this transaction executes for longer than the spare time in any
slot, there must be restructuring of the source code.

5 Conclusions

In a real-time embedded database application, above all, the scheduling algorithm
must guarantee that all the hard deadline transaction will complete by their deadlines
and then try the best with the remaining soft or firm deadline transactions. Secondly,
it must guarantee the utilization of the system resource and minimize the access to
flash storage device. This goal will be benefited from our new embedded real-time
database model.

In this paper, we translate a real-time data and transaction model to real-time
embedded database model and provide an improved framework to realize the
predictable real-time embedded transaction processing. However, we cannot
guarantee all the soft or firm deadline transaction, unknown data requirement and
unknown runtime requirement meet their deadline. We observe that no transaction
scheduling algorithms proposed so far address this problem completely even though
many research papers in the real-time embedded database field have pointed it out.
Hence, the goal of our research is to investigate a proper model for real-time
embedded data and transactions and an adequate software and hardware architecture
for real-time embedded database system.

Future work includes implementing a real-time embedded database with the
proposed architecture on our experimental board, and improving the functionality of
storing and manipulating data objects in our real-time embedded system.

Reference

1. Young-KuK Kim, Sang H.Son An approach towards predictable real-time transaction
processing (1993)

2. Pao-Ann Hsiung, Cheng-Yi Lin, Synthesis of real-time embedded software with local and
global deadlines, 2003

3. Aleksandra Tesanovic, Dag Nystrom, Jorgen Hansson, Christer Norstrom Embedded
Databases for Embedded Real-Time Systems:A Component-Based Approach 2002

4. Anindya Datta Providing real-time response state recency and temporal consistency in
database fro rapidly changing environments.

5. F.Eirayes, J. Rolia, and R. Friedrich The performance impact of workload characterization
for distributed applications using ARM.2000

6. Mario Baldi, Yoram Ofek, A comparison of ring and tree embedding for real-time group
multicast. 2003

7. Thomas A. Henzinger, Christoph M. Kirsch, The embedded machine: predictable, portable
real-time code. 2002

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 229-235, 2005.
 Springer-Verlag Berlin Heidelberg 2005

A QoS-aware Component-Based Middleware
for Pervasive Computing

Yuan Liao and Mingshu Li

Internet Software Technology Lab, Institute of Software,
Chinese Academy of Sciences, Beijing, P.R.China. 100080

{liaoy, mingshuli}@intec.iscas.ac.cn

Abstract. In this paper, a QoS-aware component-based middleware for perva-
sive computing is given. The design rationale is to cope with many constraints
of pervasive computing application including resource awareness, diversity,
QoS-sensitive. To introduce how we achieve those system goals, we describe
the details of this middleware including system architecture, service model,
QoS model, algorithms of service setup, implementation, and experimentation.

1 Introduction

It is very meaningful to design and implement a middleware support for applications
in pervasive computing environments. In pervasive computing environments, mid-
dleware developer would meet many design challenges including diversity and het-
erogeneity, resource-awareness, QoS-sensitive [2, 9]. To tackle those requirements, in
this article, we design a component-based and QoS-aware middleware-QuCOM
(Quality COMponent) for pervasive computing application. In QuCOM, a service is a
composition of components that have QoS specification defined in our proposed QoS
model. When a service is deployed, QoS requirements and the corresponding re-
source allocations of service component should be satisfied by invoking QoS-aware
resource management mechanisms of system. Therefore, our solution spans from QoS
specification in the development phase of an application service, to QoS enforcement
and resource management at runtime.

QoS management has been widely discussed in the area of middleware systems[1],
and QoS-aware middleware systems have emerged to assist a new spectrum of appli-
cations that require QoS in pervasive computing environments, for example, 2KQ[6],
Agilos[4], TAO[7], QuO[8], QoSME[3], QoS management framework of Gaia OS[2,
11], and Q-RAM[5]. However, component-based middleware in QoS-aware middle-
ware is very limited since QoS-sensitive application has little attention in component-
based software. Most work is based on object-oriented technologies, for example,
TAO, QuO, 2KQ, etc. The lack of suitable QoS model for component-based system is

 Research supported by the national high-tech research and development plan of China under
Grant No: 2002AA1Z2302 and 2004AA1Z2050.

230 Yuan Liao and Mingshu Li

one of major reasons. The remainder of this paper will show the details of QuCOM
including system architecture, service model, QoS model, algorithms of service setup,
implementation, and experimentation.

2 QoS-aware Resource Management Architecture

2.1 System Architecture

Fig. 1. Horizontal and Vertical view of QuCOM’s architecture

Fig.1 illustrates the horizontal and vertical view of QuCOM’s architecture from QoS
perspective. First of all, service is made up of components, which is described by
component specification including QoS and resource parameters defined by compo-
nent designer at development phase. At deployment time, those application-level QoS
parameters in component specification would be mapped into system-level QoS (e.g.
CPU deadline,period etc) enforced by QuCOM. QuCOM is implemented based on
CCM (Corba Component Model) middleware, which has four core components in
QuCOM system, namely, component container, service planner and component re-
pository.

The component container is an execution environment that provides the re-
sources required to execute components. And to guarantee the QoS of component, it
is responsible for resource reservation, QoS enforcement, and QoS adaptation. Com-
ponent containers can be implemented as processes running in heterogeneous envi-
ronment, such as Linux server, vxWorks embedded system, and WinCE PDA, which
satisfies the diverse and heterogeneous environments constraints of pervasive com-
puting application.

The component repository allows providers to register their component descrip-
tions and store components. Component descriptions include not only functional
interface description but also elements that describe the QoS and resource require-
ments of component.

A QoS-aware Component-Based Middleware for Pervasive Computing 231

The service planner is used to setup service. When an instance of service is initi-
ated, the service planner contacts the component repository to set up the service by
selecting appropriate mode of service components (to be described in 2.3). In execu-
tion phase of service, service planner is used to adapt the instance of the service to
runtime resource fluctuations by revising the mode of service components.

The resource servers reserve and allocate resource for QoS guarantee. During the
setup and execution phase of service, to guarantee the QoS of service component, the
component container contacts the resource server to allocate resources required.
Those resources are reserved and enforced by relevant resource server, such as CPU
server, communication server and memory server etc. For example, DSRT [12] can
be used to set up and enforcement CPU reservation and network bandwidth can be
reserved in RSVP-enable framework. From an implementation perspective, those
resource server are processes in user layer of OS and can be implemented in many
OSes easily.

2.2 Service Model

Fig. 2. Video Streaming Service and its QoS graph

A service is modeled as a collection of service components combined according to
control-flow and data-flow dependencies. In this paper, to simplify the discussion,
service is described by DAG (Directed Acyclic Graph) diagram, which is made up of
components and transitions. Transitions of a DAG are labeled with events or inter-
faces. Nodes of DAG are atomic components. For example, a video streaming service
is composed of video source component, which retrieves and transmits videos stored
in the server; video distributor component, which transcodes video format between
video source and video player; and video player component, as shown in Fig .2.

To capture the component QoS and resource requirement to achieve the QoS, we
define a QoS model of service component and service. QoS specification and mode
are described as follows:

Definition 1: QoS specification of a service component c is made up of QoS
modes and QoS transitions, i.e. QoSSpecc=(ModeList, TransitionList).
 ModeList is a list of QoS modes of c, i.e. ModeList={<Mode1, Weight1>, …<Modei,

Weighti> ,…, <Moden ,Weightn>}. Modei is a QoS mode, and component designers
set Weighti , which represents the weight of Modei.

 TransitionList is a list of transitions between QoS modes of c. Transi-
tionList={Transition1, …, Transition i, …, Transition n }. Transition I is a transition
to be called when QoS mode of component c is changed.

 Definition 2: QoS mode is associated with an input QoS vector QoSin, an output
QoSout, and resource requirement vector Res, i.e. Modei =(QoSin, Res, QoSout).

232 Yuan Liao and Mingshu Li

 Both QoSin and QoSout are QoS vectors of multiple application-level QoS parame-
ters. Therefore, they are enumerable and have the form [q1, q2,…, qm].

 Res is a vector of resource requirement, [r1, r2,…, rk], in which rj (1 j k) is the
amount of the jth resource required by service component c.
As we known, service is represented by a dependency DAG. From QoS perspec-

tive, nodes in the DAG represent the participating service components, while edges in
the DG represent the input/output and QoS dependencies between the service compo-
nents. An edge from service component C1 to C2 indicates that the output of C1 is the
input of C2; and the QoSin of C2 is satisfied by the QoSout of C1, which means that
each QoS parameter, the corresponding value in QoSin of C2 is equivalent to QoSout of
C1. If all of service component’s QoS is satisfied by their predecessor in DAG and
their resource requirement can be reserved, the service can be set up (to be described
in 2.3); then QoSin of the service is equivalent to QoSin of the initial component node,
QoSout of the service is QoSout of the final component node in DAG of service.

2.3 Service Setup

As defined in QoS model, each service component may have multiple QoS modes
associated with a certain resource requirement vector. When an instance of service is
initiated (i.e. service setup), the service planner should select a QoS mode for each
service component so that the mode has the highest possible weight value; and its
QoSin is satisfied. This is under the constraint that its resource requirement should be
satisfied by current resource availability. There are two steps during service setup:
first the service planner constructs a QoS graph based on QoS model of this service,
then selects appropriate QoS mode for each service component based on QoS graph
and available resource of system.

For each participating service component c, all of its QoS modes are represented as
nodes of QoS graph, as shown in Fig.2. In QoS graph, QoS modes of a service com-
ponent are partially ordered by their weight. Edges from one QoS mode QMi to other
QMj exist, if and only if QoSout of QMi is equivalent to QoSin of QMj.

After constructing the QoS graph, the service planner will select appropriate QoS
mode for each service component. The selection is based on two constraints: the
resource requirements of selected service component are satisfied by available re-
source and the QoS mode of highest possible weight should be selected. Firstly, we
find all of paths from the initial node to final node of QoS graph and calculate re-
source requirement of each path, which is sum of path component’s resource re-
quirement:

Respath=[
N

i
r

1
1 ,

N

i
r

1
2 ,…,

N

i
kr

1
].

(1)

where k is number of resource category and N is component number. Those are can-
didate paths. If and only if Respath can be satisfied, i.e.:

N

i
jr

1
 ravail (1 j k).

(2)

A QoS-aware Component-Based Middleware for Pervasive Computing 233

path is feasible resource reservation path. There are two cases:
1) There possibly exists more than one feasible path. To make a choice, those can-

didate paths are sorted with weight of their final node. The service planner selects the
path that has maximum weight of final component node in those candidates, and then
makes resource reservation for all components of the path.

2) The service planner can’t find out one feasible path for the new incoming ser-
vice snew. In this case, we use QoS negotiation mechanism as a way to grant the ser-
vice admission. This mechanism needs services to record their candidate paths and
resource requirements. Let a set of pairs ps={<Path1, Respath1, Weight1>, < Path2,
Respath2, Weight2>,…, < Pathn, Respathn, Weightn>} represents the candidate path set of
a service s, where Pathi is a candidate path , Respathi is its resource requirements as
defined by (1) and Weighti is its final component node weight; If there are m services
that have been set up in the pervasive computing environment, snew needs a negotia-
tion with the m services about resource when snew can’t be set up. The method is to
select a candidate pair p from the path set ps for each service including m services
and snew, such that Resp.path can be satisfied and make the sum of selected pair’s
weight be maximum. Therefore, the selection algorithm can be based on Integer Pro-
gramming (IP) [10]. The objective function is:

Max (
1

1

m

i
iWeight).

(3)

The constraint of the IP problem is that all selected pair’s paths are feasible re-
source reservation paths.

3 Experimentation

In order to evaluate QuCOM, we have developed a video streaming service including
three service components: video source, video distributor, and video player, as shown
in Fig.2, deployed on the same configuration PCs with different OS. The configura-
tion of PC is: Pentium IV 1.4GHz with 265M RAM. Video source and video distribu-
tor are running in different Linux server, while video player is in Windows 2000.
They are connected to a LAN through 100Mbits/sec Ethernet card.

Table.1. QoS specification of service components

Component Weight Mode QoSin Resource QoSout
150 Mode0 fps =20 Rescpu=20% fps =20 Video distributor
100 Mode1 fps =10 Rescpu=10% fps =10

In the experiment, we will change the available resource of CPU of host which
video distributor is running on, by adding load-simulating processes at t=45, 90, and
135 seconds, each attempting to use 25% of CPU resource. And total amount of CPU
resource that can be allocated for QoS guarantee is 90%. Due to space constraint, we

234 Yuan Liao and Mingshu Li

will only provide QoS specification of video distributor as table.1, where QoSin and
QoSout are frame rates of incoming and outgoing video streaming.

Time (second)

Fr
am

e
ra

te
 (

Fig. 3. Actual QoSout of video distributor component

Fig.3 shows the actual QoSout of video distributor component instance as available
resource of CPU is decreasing. In this graph, the x-axis represents the passage of time
in seconds from the component is deployed in a component server, and y-axis repre-
sents frame rate of outgoing video streaming, i.e. QoSout. From this graph, we can see
that frame rate is stable from t=0 to t=135 seconds, and from t=135 seconds to t=200
seconds. At t=135 seconds, frame rate changes from 20 fps to 10 fps since the 3rd
load-simulating processes attempts to use resource, which triggers QoS negotiation.
The outcome of this experiment demonstrates that QoS parameter of accepted service
component can be guaranteed since its resource can be satisfied and QoS negotiation
will make QoS mode of component change.

4 Summary and Future Work

In this paper, we present QuCOM, which is a QoS-aware component-based middle-
ware support for pervasive computing. In QuCOM, those essential works of QoS-
aware middleware including QoS specification, setup, enforcement, and resource
management are all covered. Based on the results from our development, we believe
that our solution can cope with many constraints of pervasive computing application,
such as resource awareness, heterogeneity and QoS-sensitive. However, at present we
don’t deal with resource fluctuations that some application is very sensitive to. In the
future, our work will be focused on QoS adaptation to fluctuating resource based on
feedback model.

References

1. C.Aurrecoechea, A.T.Campbell, and L.Hauw.: A Survey of QoS Architectures. Multimedia
Systems, Vol.6, no.3, pp. 138-151, 1998.

A QoS-aware Component-Based Middleware for Pervasive Computing 235

2. K. Nahrstedt, D.Xu, D. Wichadakul, and B.Li.: QoS-Aware Middleware for Ubiquitous and
Heterogeneous Environments. IEEE Comm, Magazine, Vol. 39, no.11, pp. 2-10, 2001

3. Patricia Gomes Soares Florissi.: QoSME: QoS Management Environment. Ph.D. Thesis,
Columbia University, 1996.

4. B. Li and K. Nahrstedt.: A Control-based Middleware Framework for Quality of Service
Adaptations. IEEE Journal of Selected Areas in Communications, Special Issue on Service
Enabling Platforms, vol. 17, no. 9, pp. 1632–1650, Sept. 1999.

5. R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek.: A Resource Allocation Model for
QoS Management. In Proceedings of the IEEE Real-Time Systems Symposium, pp. 298–
307, Dec. 1997.

6. K. Nahrstedt, D. Wichadakul, and D. Xu.: Distributed QoS Compilation and Runtime Instan-
tiation. In Proceedings of the Eighth IEEE/IFIP International Workshop on Quality of Ser-
vice, pp. 198–207, June 2000.

7. D. Schmidt, D.Levine, and C. Cleeland.: Architectures and Patterns for High-performance,
Real-time CORBA Object Request Brokers. In Advances in Computers, Marvin Zelkowitz,
Ed., Academic Press, 1999.

8. J. Zinky, D. Bakken, and R. Schantz.: Architecture Support for Quality of Service for
CORBA Objects. Theory and Practice of Object Systems, vol. 3, no.1, Jan. 1997.

9. M. Satyanarayanan.: Pervasive Computing: Vision and Challenges. IEEE Personal Commu-
nications, Vol.8, no.4, pp 10 –17, Aug. 2001.

10. H, Karloff.: Linear Programming. Birkhauser, 1991.
11. Manuel Román, Christopher K. Hess, Renato Cerqueira, Anand Ranganathan, Roy H.

Campbell, and Klara Nahrstedt.: Gaia: A Middleware Infrastructure to Enable Active
Spaces. In IEEE Pervasive Computing, pp. 74-83, Oct-Dec 2002

12. Wanghong Yuan, Klara Nahrstedt.: R-EDF: A Reservation-Based EDF Scheduling Algo-
rithm for Multiple Multimedia Task Classes. Proc. of the Seventh Real-Time Technology
and Applications Symposium, Taipei, Taiwan, pp. 0149. 2001.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 236-242, 2005.
 Springer-Verlag Berlin Heidelberg 2005

AnyCom: A Component Framework Optimization
for Pervasive Computing1

Wenzhi Chen, Zhou Jiang, and Zhaohui Wu

Department of Computer Science and Technology, Zhejiang University, China
wzchen@cad.zju.edu.cn, z8j1@zju.edu.cn, wzh@cs.zju.edu.cn

Abstract. Pervasive computing lays emphasis on the seamless integration of
human, computers as well as the environment, which challenges the traditional
component-based technology. In this paper, after analyzing many previous
component models, we discuss a series of problems involved in Pervasive
computing: How to administer plenty of embedded computing devices, how to
discover components initiatively, how to conquer the heterogeneity of different
components, how to implement component cooperation mechanism, and so
forth. Finally, we bring forward a new framework AnyCom (a component
framework for pervasive computing) and some experiments based on it.

1 Introduction

After a decade of hardware progress, many crucial elements of pervasive computing
that were exotic in 1991 now become viable commercial products. Small-embedded
systems widely appear in everything, ranging from daily application for mobile
telephones and PDA to critical systems for medical diagnostics, automotive
electronics, avionics missions, climate control, and manufacturing. Its main task is to
engage the physical world to interact directly with sensors and actuators. We
characterize a pervasive computing environment as one saturated with computing and
communication capability, yet so gracefully integrated with users that it becomes a
“technology that disappears.” However, besides the problems already identified in its
predecessors, namely distributed systems and mobile computing, pervasive
computing has some distinct characteristics as follows: effective use of smart
spaces invisibility context-aware, localized Scalability and masking uneven condi-
tioning [1].

As the complexity of embedded systems increases, pervasive computing requires
innovational software architecture. Therefore, applying thinking of middleware and
component based development into Pervasive computing software turns to be a

1 This work was supported in part by the Hi-Tech Research and Development Program of

China (863 Program) under Component-based Embedded Operating System and Developing
Environment (No.2004AA1Z2050), and Embedded Software Platform for Ethernet Switch
(No. 2003AA1Z2160); In part by the Science and Technology Program of Zhejiang province
under Novel Distributed and Real-time Embedded Software Platform (No. 2004C21059).

AnyCom: A Component Framework Optimization for Pervasive Computing 237

popular challenging research problem. A software component is defined as a unit of
composition with contractually specified interfaces and explicit context dependencies,
which can be deployed independently and is subject by third parties. However, when
developing a component, designers must consider the following points:

Component size. Components must have proper size to guarantee some quality
issues such as correctness, robustness and careful specification.

Component interfaces. To guarantee independence, component should maintain a
strict separation between interface specifications and interface implementation.

Component tools and infrastructures. Components must be implemented,
assembled, and interact with other components. Therefore, they require tools that may
be specialized to component assembly and construction, and also require some basic
support structures (infrastructure) providing the means for their interaction.

2 Related Work

We concentrate our attentions on systems that address issues such as configuration
and reconfiguration, composition of operating systems, component-based software for
embedded operating systems. Most of these systems try to define operating system
components. However, they use different design approaches and infrastructures.

Choices and OS-Kit[2] address operating system configuration and customization
issues as well as component software for operating systems. Choices uses a complex
object-oriented framework to build a full operating system. OS-Kit provides a set of
operating system components that can be combined to configure an operating system.
However, they don’t supply any rules to help build an operating system.

2K cares the adaptability issues to allow applications to be as customizable as
possible. UIC defines a standard skeleton structure targeted at object-oriented request
brokers (CORBA, Java RMI, and DCOM). GAIAOS, a middleware infrastructure to
enable active spaces, can manage different types of components through UOB
(Unified Object Bus). 2K [3], UIC [4] and GAIA[5], all designed by UIUC, have the
same weakness: lacking a series of tools to package, install and supervise
components.

Recently, the CCM [6] extends the CORBA object model by defining features and
services that enable application developers to implement, manage, configure, and
deploy components that integrate commonly. However, coupling of component meta-
data and functionality in CCM is still tight, reducing reusability in some degree.

3 Characteristics of AnyCom

After analyzing these previous systems, we conclude some necessary characteristics
required for AnyCom in order to support embedded system in Pervasive Computing.

Administering various devices. The embedded devices in pervasive computing
are uncountable, from small to big, from simple to complex. Optimized component
framework should be competent enough to administer all the devices.

238 Wenzhi Chen, Zhou Jiang, and Zhaohui Wu

Discovering components Spontaneously. Pervasive computing environment is
dynamic rather than static. New components may come into it, while expired ones
will leave away. The process of adding or deleting components should be carried out
dynamically at running time, with low (preferably no) human involvement.

Shielding heterogeneity of components. Components designed by different
developers probably differ in their granularity, memory size, interfaces, as well as
functionalities. How to shield the distinctness among diverse components and exploit
them effectively becomes a critical problem in pervasive computing.

Enabling communication in components. Only after organized systematically,
can all the distributed components connect and cooperate with one another to perform
an actual task. Communications between heterogeneous components are considerable
complex, involving authorization and authentication, coding and encoding, etc.

Everything is component. Not only all kinds of services and resources are
encapsulated as components, but also the tools and system services that manage other
ordinary components are regarded as special kinds of components. All of them are
encapsulated as Unified Components, which we will elaborate later in section 5.2.

4 Architecture of AnyCom

Fig. 1. Example of aware space in Z-CLP

By extending the reach of traditional computing systems to encompass the devices
and physical space surrounding the machines, entities, both physical and virtual, may
be allowed to seamlessly interact. Compared with the "Active Space" defined as a
generic computing system in GAIA [5], "Aware Space" is promoted in this paper,
referring to the specific physical space, in which one device can be aware of any
component, and beyond which the device can not be aware any component.
Components in pervasive environment are mobile rather than stationary, so they
cannot always be accessed in a fixed location. When a component moves in, it will be
added to the aware space; on the other hand, when it moves away, it will be deleted
from the aware space. The essence of aware space is the gathering of all components

AnyCom: A Component Framework Optimization for Pervasive Computing 239

of a specific device at a specific time. Figure 1 shows the Aware Space in AnyCom.
IBM PC, notebook computer, and mobile phone have their aware space respectively,
which overlaps in some extent. Therefore these devices can be aware of each other.

4.1 General Architecture

There are three types of elements in the Aware Space: first, the Task Manager,
responsible for task management; second, the Component Register, recording all the
available components currently; third, some unified components, providing the
various abstract services. (Figure 2 shows the general architecture of AnyCom)

Fig. 2. The general architecture of AnyCom

Task Manager collects information on the physical context and report relevant
events in the physical context. It may have different degrees of sophistication in each
environment, depending on the sensors deployed in that environment. Examples of
sophistication dimensions are user recognition (authentication,) location, activity, and
other people in the vicinity.

Task Manager also monitors Quality of Service information provided by the
components supporting the user task. Whenever that information becomes
incompatible with the requirements of the current task, or the monitored component
just dies, Task Manager queries the Component Register to find an alternative
configuration to support the task.

Component Register checks the aware space periodically, and keeps up-to-date
record of all the available components. Whenever a new component enters aware
space, it will be discovered and be recorded in the Component Register; similarly,
whenever a component moves away, its record will be deleted from it. Through
Component Register, the system can be conscious of how many components are
available at any time.

Task Manager

Local Component

 Register

Network

Unified
Component

Resolving
MPEG4

Unified
Component

Resolving
JPEG

Unified
Component

Text
 Editor

240 Wenzhi Chen, Zhou Jiang, and Zhaohui Wu

Component Register is divided into two parts: Local Registration to record local
components and Network Registration to record components from other devices.
Local components are relatively stable and administered by local devices; while
network components are liable to change frequently and can only be accessed after
authentication. For the sake of security, network components can’t be reconfigured or
destroyed by local devices.

Unified Component is an elementary capsulated unit, providing the abstract
services that tasks are composed of. More detailed concerning Unified Component
will be introduced later in section 5.2.

4.2 Unified Component

Aware Spaces are highly heterogeneous by definition. They include a variety of
hardware devices and diverse software protocols. However, in order to export a space
as a programmable entity, programmers must be offered a common interface to
manipulate components, regardless of specific properties and details of the hosting
device. Therefore, Unified Component is introduced to hide such heterogeneity.
Different types of common components (e.g., CORBA, Scripts, and Java Beans) are
encapsulated in Containers, manipulated by the Component Managers, and
descried by Component Control Blocks to form Unified Component.

A Container encapsulates a Unified Component implementation and provides a
run-time environment for the component it manages that can:

1. Activate or deactivate component implementations to preserve limited system
resources, such as main memory and CPU.

2. Forward client requests such as transaction, security, persistent State, and
notification services, thereby freeing clients from having to locate these services.

3. Provide some interfaces of the Unified Component to communicate with each
other, such as Facets, allowing component to expose different views to its clients,
Receptacles, offering a standard way to specify interfaces required for the component
to function correctly, and Event Channel, sending and receiving asynchronous events.

4. Provide some attributes of the Unified Component to be configured by clients or
other components when necessary.

A Component Manager is responsible for the lifecycle management of a Unified
Component, including: creating, deleting and modifying, and also for keeping track of
the component after it has been created. Moreover the component manager is a
default entry point to the Unified Component. Every component container instantiates
default a component manager. This component manager exports the functionality
required to manipulate components running in the component container.

Component Control Blocks (CCB) records plenty of meta-data of the Unified
Component, such as its ID, its property, its lifetime, its owner, its creating time, its
granularity, its function, its interface description, and its memory size. All the meta-
data is descried by XML in order to make it universal to most systems. Through CCB,
system can get enough information of a specific Unified Component, which helps to
perform a proper task.

AnyCom: A Component Framework Optimization for Pervasive Computing 241

5 Experiments and Conclusion

Our research work is a part of the National High Technology Development 863
Program of China. The AnyCom architecture has been already applied in some demo
systems: "Component-based GUI system", and "Simulated stock system". All these
demos are demonstrated in embedded, mobile and distributed computing devices
(PowerPC chips and StrongARM XScale chips), showing that the architecture is
competent for pervasive environment.

The following figures show the scenario of MMS (Mobile Music Space), in which
users are able to enjoy its favorite music without concerning about the location and
music transferring between different input devices. When the user who is listening to
the music from a mp3 player enters a new place (a vehicle space etc.), the music will
automatically be transferred to a more sophisticated device in the new place, and the
music will continue to be played.

Fig. 3. The scenario of Mobile Music Space

The component framework AnyCom facilitates software development in pervasive
computing, by solving problems such as: how to administer plenty of embedded
computing devices, how to discover components initiatively, how to conquer the
heterogeneity of components and how to implement component cooperation
mechanism.

Reference

1. M. Satyanarayanan: “Pervasive Computing: Vision and Challenges”, IEEE, Personal
Communications, 2001

2. B. Ford et al., “The Flux OSKit: A Substrate for Kernel and Language Research,” Proc. 16th
ACM Symp. Operating Systems Principles, ACM Press, New York, 1997, pp. 38-51.

3. Fabio Kon, Fabio Costa, Roy Campbell, Gordon Blair. The Case for Reflective Middleware,
Communications of the ACM. Vol. 45, No. 6, pp. 33-38. June, 2002.

4. Manuel Roman, Fabio Kon and Roy H. Campbell. Reflective Middleware: From Your Desk
to Your Hand. IEEE Distributed Systems Online Journal, 2001

242 Wenzhi Chen, Zhou Jiang, and Zhaohui Wu

5. Manuel Román, Christopher K. Hess, Renato Cerqueira, Anand Ranganathan, Roy H.
Campbell, Klara Nahrstedt. Gaia: A Middleware Infrastructure to Enable Active Spaces. ,
In: IEEE Pervasive Computing, pp. 74-83, Oct-Dec 2002.

6. Nanbor Wang, Craig Rodrigues, Chris Gill. A Qos-aware CORBA Component Model for
Distributed, Real-time, and Embedded System Development. In: OMG Workshop in
Embedded & Real-Time Distributed Object Systems, Object Management Group, 2003.

Association Based Prefetching Algorithm in

Mobile Environments

Ho-Sook Kim and Hwan-Seung Yong

Dept. of Computer Science and Engineering, Ewha Womans University,
Daehyun-dong Seodaemun-gu, Seoul, Korea

{khosook,hsyong}@ewha.ac.kr

Abstract. In this paper we propose a prefetching algorithm called STAP
(Spatial and Temporal Association based Prefetching algorithm). Our
methods are based on the analysis of the spatial and temporal associa-
tions of the user’s request using data mining techniques. First, we exploit
an ”associative class set” consisting of an itemset of service classes that
is close both spatially and temporally and frequently requested together.
With the first method, our prefetching algorithm can select a candidate
set that is spatially and temporally associated with the previous request
of a user. It is shown that through performance experiments STAP is
effective in improving system performance.

1 Introduction

With the development of wireless data communication and portable information
devices, mobile computing is becoming very popular. Especially, location-based
services(LBS) such as map service information or PDA based web surfing have
expanded rapidly. However, information services in the mobile hosts are limited
to the network resources provided by the wireless communication environment.
Data caching and prefetching on mobile hosts have been considered effective
solutions to improve mobile communication services and a plethora of techniques
have been proposed in literature to handle these issues [1,2,3]. But in real life,
mobile equipments have a small cache compared with a server’s spatial database,
which leads us to consider another criteria for precise prefetching on LBS.

In this paper, we propose a new prefetching algorithm, STAP (Spatial and
Temporal Association based Prefetching algorithm). To support LBS applica-
tions, STAP considers the spatial and temporal association among service classes
in users’ queries as well as the objects’ weights and user’s access pattern. STAP
uses an ”associative class set” to decide which objects are prefetched. The asso-
ciative class set is composed of a frequent itemset that is close both spatially and
temporally and requested frequently together. A frequent itemset is generated
using mining techniques such as clustering and the association rule. Through
performance experiments, we prove the efficiency of the proposed STAP by com-
paring it with a group of existing cache management algorithms.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 243–250, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

244 Ho-Sook Kim and Hwan-Seung Yong

Table 1. Access records of LBS

User ID User Position Class Object ID Object Position Access Time

A (323,334) Hospital 98 (432,400) 17:03:02

A (340,337) Terminal 54 (200,189) 17:04:35

A (355,339) Pharmacy 74 (450,388) 17:05:50

C (389,273) Hotel 77 (400,250) 20:04:23

C (402,250) Restaurant 63 (410,265) 20:07:40

2 Generation of the Associative Class Set

Table 1 shows the server’s access record format used in LBS. In Table 1, User
”A” accesses a special hospital that is far from him and then requires a pharmacy
near the hospital in a few minutes. User ”C” requires the hotel that is nearest
to his current position and then requires a restaurant near the hotel. Like these
examples, we are able to assume that there is a relation between the queries
required by the same user in a short time. We also assume that the objects
required by the related queries are located in close proximity to each other in
real space. In a location-based application, if a user finds a hospital and then
requires a pharmacy in a second, then we may assume that the pharmacy has
to be near the previous required hospital. In this case, the query type must
be as follows: ”Find a pharmacy which is located within 100 meters from the
hospital X”. In Table 1, User ”A” accesses a terminal and a pharmacy in a short
time after requesting the hospital. The location of the terminal is, however, far
from the hospital and the pharmacy, so we can determine that there is a spatial
association only between the hospital and the pharmacy. As the result, we can
classify the set of objects as two groups {98, 74} and {77, 63} that have both
the spatial and temporal relations simultaneously. The goal of our research is
to generate the associative class set based on the set of service classes such as
{hospital, pharmacy} and {hotel, restaurant} by association rules.

Figure 1 depicts the steps to generate the associative class set. First, we make
a user sequence that is the sorted list of each user’s access records by access time’s
order. And then we generate temporal transactions. Temporal transaction is a
group of requests where the time delay between requests is less than a certain
threshold such as the time window of [4]. A great deal of research [4,5] has been
conducted to resolve that problem. So we will skip the detailed explanation of
the generation algorithm of the temporal transaction. Next, we group objects
in each temporal transaction into several TSNO (temporal and spatial neighbor
objects) so that objects in each TSNO may be close to each other temporally
and spatially. In this step, we propose two clustering algorithms according to the
application purpose. The algorithms will be described in Section 2.1. in detail.
What we try to generate is not the associative object set but the associative
class set so that, we replace each object in TSNO with its class attributes.
Finally, we generate the associative class set as a meaningful frequent itemset
considering both temporal and spatial characteristics in mobile environments.

Association Based Prefetching Algorithm in Mobile Environments 245

Fig. 1. Generation steps of associative class set

Many association rule generation algorithms have been developed, and we use
PolyAnalysis 4.5 in [7] to generate the frequent itemset and association rule.

2.1 Discrimination of TSNO by Spatial Constraints

In this step, a variety of clustering algorithms may be applied according to
the purpose of their applications. Many researchers have investigated clustering
algorithms. Among of them, we utilizes two clustering algorithms suitable to
extract the business relations existed between spatial object’s classes.

Clustering Algorithm by Maximum Distance (CAMD): In CAMD,
all related objects are included in a circle of diameter r1. Here, r1 is a maximum
distance as the limitation of spatial constraints. For example, If Tom wants to
find a suitable spot to open a new restaurant. For this, the candidate area may
include many objects such as office buildings and shopping complexes having
a relationship with a restaurant within a constant distance. In this case, the
spatially related area may have a limitation that all objects are located within
a specific distance and may have a convex polygonal shape.

Clustering Algorithm by Connected Objects (CACO): In the CACO
algorithm, all related objects are defined as a connected neighbor set. It means
that every element of TSNO has at least one neighbor within distance r2. Here,
r2 is a distance as a limitation of spatial constraints and the length of r2 is
generally much smaller than r1 in CAMD. For example, the distribution of stores
according to a street or, the distribution of houses around a lake is made by a
set of long connected spatial objects in the shape of a snake.

246 Ho-Sook Kim and Hwan-Seung Yong

3 Association Based Prefetching Algorithm

The process of cache management is summarized as follows. When a user tries
to get the information of object a1, the mobile host checks to see if a1 resides
in its cache. If the cache doesn’t have a1, the mobile host requests object a1 to
the server. In the server, when a1 is requested, a prefetching mechanism decides
which objects are selected as candidate objects with high access probability, and
then the server sends object a1 and the recommended objects to the mobile host.
In the mobile host, the cache replaces the victim objects to make room for newly
prefetched objects.

Input: requested spatial data from a mobile host (a1), maximum distance
Output : recommendation object set
{

A = the class attribute of a1 ; // step 1
S = associative class sets which have the class A as one of elements; // step 2
C = all classes which are included in S; // step 3
Candidate objects = select all objects which are dist(object, a1) < maximum distance and

whose class attributes are included in C; // step 4
Calculate the prefetching score of object included in candidate objects; // step 5
Select recommendation object set from candidate objects by descending order of prefetching

score;
Recommendation object set = recommendation object set + landmark objects those are near

by a1; // step 6
}

Fig. 2. Spatial and Temporal Association based Prefetching algorithm

In this section, we propose a new prefetching algorithm STAP and compare
with SP. SP(Spatial property based Prefetching algorithm) considers user’s di-
rection and the distance between a user and an object when it recommends
candidate objects in the server. SP selects the closest n objects from the user,
which are located on the same direction as the user’s movement. Direction and
distance are commonly used criteria in cache management [1,2]. STAP, our pro-
posed algorithm, considers both temporal and spatial associations included in
the user’s consecutive queries, landmark information, as well as the weight at-
tribute of objects. Figure 2 shows how STAP works. When object a1 is requested
to the server, STAP selects A as the class attribute of a1. Then it finds associa-
tive class sets which include the class A. In step 3, STAP selects all classes which
are included in the same associative class set with class A. In step 4, it chooses
candidate objects, which are close to a1 and whose class attribute is one of the
classes generated in step 3. And then, it calculates the prefetching score of each
element in candidate objects. In step 6, we add the landmark objects close to
a1 to the recommendation object set. According to [10], when a user tries to get
geographic information about a particular area, he/she tends to require a land-
mark object such as a school or an administrative office that draws attention to
that area, and this query pattern can occur in many kinds of LBS. Finally, the
recommendation object set and a1 are sent to the mobile host. The prefetching
score used in STAP is calculated as in Equation (1).

Association Based Prefetching Algorithm in Mobile Environments 247

Prefetching score (a1, o1) = association score + weight score (1)

The association score of a1 and o1 refers to how deeply class O (object o1’s
class) is related to class A (object a1’s class). We assign the association score of
an object based on the support value of each associative class set. The weight
score of o1 may have different implications according to the applications. In
many cache algorithms, the access count of the object is used as the weight [2].
In [3], the weight is the Voronoi area based on the location of the other object
with the same class attribute.

4 Experiments

In this section, we implement the proposed algorithms and performed several ex-
periments to evaluate their performance. Experiments 1 and 2 show the changes
of the discriminated TSNO number according to the increase of maximum dis-
tance using COMD and CACO algorithms, respectively. We may estimate the
appropriate maximum distance value according to their results. Experiments 3
shows the performance of STAP.

4.1 Experimental Environments

In our experiments, we used a total of 50,000 objects. The total class number
reaches 500, and each class includes 50 to 150 objects. In the test area, 200
landmark points are randomly distributed. The weight of each object is assigned
randomly from 1 to 20. We subdivide the entire test area into 10 sub-areas of
different size and each sub-area includes objects of 5% to 20% of the total spatial
data. These data points are distributed randomly in the sub-area with Gaussian
distribution. The total number of queries used in our test is 90,735, and the total
number of users is 100.

4.2 Experiment Results

We generate the associative class set using 60% of queries in the query table,
and as a result, 77 associative class sets are generated when the support was
0.01%. Each associative class set has 2 to 5 class items. And then we evalu-
ates the performance of STAP using the rest 40 % of queries. As shown in the
graphs, we compare two prefetching algorithms, STAP and SP, using two differ-
ent cache replacement algorithms: LRU and FAR. LRU selects a victim for the
least recently used object in its cache. FAR (Furthest Away Replacement) in [1]
is the representative semantic based cache replacement algorithm in a spatial
database. It considers the moving direction of a mobile user, its speed, and the
distance from a user to objects when it selects the victim.

Experiment 1: Discriminated TSNO number with different max-
imum distance using CAMD algorithm We have tested the number of

248 Ho-Sook Kim and Hwan-Seung Yong

discriminated TSNO as the maximum distance increased from 60 to 100 by
applying CAMD algorithm. We prune the single-TSNO that includes only one
object (they have no influence on the generate association rule). As a result, the
number of discriminated TSNO decreases as the maximum distance increases.
When the maximum distance is too small, the number of single-TSNO increases
and then many single-TSNO have to be pruned. The result is shown in Figure
3(a).

Experiment 2: Discriminated TSNO number with different maxi-
mum distance using the CACO algorithm We have tested the number
of discriminated TSNO as the maximum distance increased from 10 to 50 by
using the CACO algorithm. As a result, the number of discriminated TSNO
decreases as the maximum distance increases. However, when the maximum dis-
tance is very small, the number of the single-TSNO increases so a large number
of TSNO are pruned. When the value of the maximum distance is more than
40, the number of the last generated TSNO decreases. Moreover, we have known
that there is scarcely any change in the number of the last generated TSNO when
the maximum distance is more than 30 as shown in Figure 3(b). In this case,
the maximum distance value 30 is the meaningful spatial constraint to generate
TSNO. The result is shown in Figure 3(b).

Fig. 3. TSNO number according to increase of maximum distance using CAMD
and CACO algorithm

Experiment 3: Cache hit ratios with different cache sizes We com-
pare the performance of three prefetching algorithms and two cache replacement
algorithms, increasing the cache size from 0.5% to 5% of the server’s database
size when the prefetch size is 2% of the mobile host’s cache size. Figure 4 shows
how the cache hit ratio increases as the cache size increases. As shown in the
graphs, the STAP method shows much better performance than both the SP and
No-Prefetch; moreover, it is known that when the same prefetching algorithm is
used, FAR has a better hit ratio than LRU.

Association Based Prefetching Algorithm in Mobile Environments 249

Fig. 4. Cache hit ratio of algorithms as the cache size varies from 0.5% to 5%

5 Conclusion

In this paper, we have proposed a new association-based prefetching algorithm
STAP that efficiently supports location-based services in mobile environments.
STAP considers the spatial and temporal association of the requested class and
the spatial data’s weight. To take both spatial and temporal associations of
classes into consideration, STAP exploits an ”associative class set”, consisting of
an itemset of service classes that is close both spatially and temporally and are
frequently requested together. The experimental results show that STAP out-
performs the SP by considering only the user’s location, direction, and distance.

References

1. Qun Ren and Margaret H. Dunham, “Using Semantic Caching to Manage Loca-
tion Dependent Data Mobile Computing”, Proceedings of MobiCom 2000, Boston,
Massachusetts, pp. 210-221 (2000).

2. Uwe Kubach and Kurt Rothemel, “Exploiting Location Information for Infostation-
Based Hoarding”, International Conference on Mobile Computing and Networking ,
pp. 15-27 (2001).

3. Baihua Zheng, Jianliang Xu, and Dik L.Lee, “Cache Invalidation and Replacement
Strategies for Location-Dependent Data in Mobile Environment“, IEEE Transac-
tions on Computers , 51(10), pp. 1141-1153 (2002).

4. Rakesh Agrawal and Ramakrishnan Srikant, ”Mining Sequential Patterns”, Pro-
ceedings of International Conference on Data Engineering , pp. 3-14 (1995).

5. Rakesh Agrawal, Tomasz Imielinski, and Arun Sqami, ”Mining Association Rules
Between Sets of Items in Large Databases”, Proceedings of the International Con-
ference on Management of Data (SIGMOD), pp. 207-216 (1993).

6. Yasuhiko Morimoto, ”Mining Frequent Neighboring Class Sets in Spatial
Databases”, Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining , pp. 353-358 (2001).

7. PolyAnalyst 4.5, ”http://www.megaputer.com.”.

250 Ho-Sook Kim and Hwan-Seung Yong

8. Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim, ”CURE: An Efficient Cluster-
ing Algorithm for Large Databases”, Proc. of the ACM SIGMOD Conference on
Management of Data, pp. 73-84 (1998).

9. Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu, ”A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with Noise”, Proc.
of ACM SIGMOD 3rd , pp. 226-231 (1996).

10. Y.-D.Seo, K.-H.Ahn, and B.-H.Hong, ”Analysis of Using Internet GIS”, Korea
Information Science Society SIGDB , 18(1), pp. 41-52 (2002).

11. Dhananjay S. Phatak and Rory Mulvaney, ”Clustering for Personalized Mobile
Web Usage”, Proceedings of the IEEE FUZZ’02 , pp. 705-710 (2002)

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 251-257, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Integration Policy in Real-Time Embedded System

Hyun Chang Lee

School of Information and Technology, Hansei University, 435-742

 604-5, Dangjung-Dong, Gunpo-Si, Kyunggi-Do, Korea
hclglory@yahoo.co.kr

http://www.hansei.ac.kr

Abstract. Interoperability of data between wire and wireless environment
makes it easier for embedded and enterprise systems to interact with each other.
They can exchange data, load and run application objects. These activities are
getting increasingly in demand where embedded systems interact with the en-
terprise world. Also, the availability of technologies that enable mobile access
to data has brought great expectations that users would be able to access infor-
mation any time, anywhere within embedded system environment. However,
the existing infrastructure and content are not well-suited for other types of ac-
cesses. In this paper, we present an incremental and efficient integration and
maintenance algorithm for analytical purposes by integrating updates generated
from embedded systems through a wireless PDA or smart phone, or hands-free
access. The proposed algorithm can also reduce the overhead in managing que-
ries for integration and maintenance.

1 Introduction

The explosion in the use and availability of accessing the analysis data through em-
bedded systems anytime and anywhere has great fascinating prospect. However, the
existing infrastructure and content are not well-suited for other types of accesses, e.g.,
devices that have less processing power and memory, small screens, and limited input
facilities, or through wireless data networks with low bandwidth. Thus, there is a
growing need for techniques that provide alternative means to access analysis content
and services. To access analytical information, we often refer to data warehouse.

Data warehouse is very large databases which contain historical, summarized, in-
tegrated and time variant collection of data from information sources with embedded
systems and integrates it into a single source where it can be queried by clients of the
warehouse. In short, a data warehouse is a repository of integrated information, avail-
able for queries and analysis (e.g., decision support, data mining)[4]. When relevant
information is modified by clients using embedded system like wireless PDA or smart
phone etc., the information is extracted from the embedded data source, translated
into a common model, and integrated with existing data at the warehouse. Queries
can be and analysis can be performed quickly and efficiently since the inte-
grated information is available at the warehouse.

252 Hyun Chang Lee

The relations stored at the warehouse represent materialized views over the data
source [2]. Because queries at the warehouse tend to be long and complex, a ware-
house may contain materialized views in order to speed up query processing [3]. As
changes through embedded systems are made to the data at the source, the views at
the warehouse become out of date. In order to make the views consistent again with
the source data, changes to the source data in commercial warehousing systems are
queued and propagated periodically to the warehouse view in a large batch update
transaction. An important problem in data warehousing is how to execute queries and
the periodic maintenance transaction so that they do not block one another, since both
queries and maintenance transactions can be long running [5].

One of various approaches is to allow users to see an inconsistent database state.
However, such inconsistency is not acceptable. During analysis it would be unaccept-
able to have the results change from query to query. Therefore, most of the research
on materialized views has focused on techniques for incrementally updating material-
ized views in order to make the views consistent, and numerous methods have been
developed for materialized view maintenance [1]. Some representative approaches for
data integration and maintenance are the eager compensating algorithm, ECA, and
recomputing view, RV, in centralized environment [7].

In this paper, we propose an incrementally efficient data integration algorithm in
embedded system environment in order to solve or reduce the overhead in managing
queries at warehouse. Our algorithm could also reduce server loads by transferring
the answer that would be compensated at the data warehouse to each data source. The
paper is organized as follows. In section 2, we briefly review related researches, and
in section 3, we provide data integration model. In section 4, we propose TCache
algorithm. Section 5 describes the performance of the proposed algorithm. In section
6, we conclude and discuss future directions of our work.

2 Related Research

To integrate updated data through real-time embedded environment, warehouse col-
lects information from one or more data sources using embedded systems and inte-
grates it into a single database, a large repository for analytical data and decision
support, where it can be queried by clients of the warehouse. A general description of
data warehousing may be found in [4] and the main problem that arises in the context
of a data warehouse is to maintain the materialized view at the data warehouse in the
presence of updates through embedded system like wireless PDA to the data sources.

When the simple update information occurring from source using embedded sys-
tem arrives at the warehouse, we may discover that some additional source data is
necessary to update the view. Most of the incremental algorithms to integrate and
maintenance data focus on immediate update, which updates the view after each base
relation is updated as illustrated in figure 1[1,6].

Some algorithms [7,8] are based on deferred update, which updates the view only
when a query is issued against the view. A simple approach of one algorithm in cen-
tralized environment is recomputing view, RV, algorithm. In RV, data warehouse can
recompute the whole view periodically, and the time to begin recomputing the whole

Integration Policy in Real-Time Embedded System 253

view is whenever update occurs at the data source. The major drawback in RV is
excessive consumption of resources and time.

Fig. 1. Query Processing model through embedded systems

A more appropriate solution would be to update the data warehouse incrementally
in response to the updates arriving from data source through embedded systems. Ea-
ger compensating algorithm, ECA, is an immediate and incremental integration algo-
rithm that avoids the overhead for recomputing whole view at a time. The algorithm
is applied to a centralized environment and contains the following problems. First,
data warehouse after receiving update information from embedded data source has to
manage the unanswered query set until all of answers arrive from embedded data
source. Second, all updates get to be transmitted from data source to the warehouse
without only information associated with the view. This causes an increase in the
amount and number of messages transferred between data source and warehouse. To
solve or reduce these problems, we propose an incremental integration and
maintenance temporary cache algorithm called TCache.

3 Model for Integration Policy

First, we mention the data model to be managed at the data warehouse environment.
The data model in this paper is based on [6]. Updates occurring at the data sources are
classified into three categories. Type one is a single update transaction where each
update is executed at a single data source. Type two is a source local transaction
where sequences of updates are performed as a single transaction. However, all of the
updates are directed to a single data source. Type three is a global transaction where
the updates involve multiple data sources.

For the purpose of this paper, we assume that the updates being handled at the data
warehouse are of type one and two. At each source, there are five types of message
from the data source to the warehouse. One is reporting the update information and
maintaining the reported update in a temporary storage to keep the order of update

254 Hyun Chang Lee

occurring at the source after receiving the update information from embedded sys-
tems. We call the storage temporary cache, TCache.

The next step is that source determines whether or not the update information is re-
lated to the tables associated with the view after receiving the view definition. If it is
not related, then process executing step. Otherwise just process next examining step.
The third step is examining the TCache storage and evaluating. Next step is just exe-
cuting the current the update information and as a last step, it is sending the answer
result corresponding to the update to the warehouse.

 Figure 2 shows the structure of the data warehouse environment for the data ware-
house and sources described above. It consists of n distributed sites for data sources
and another site for storing and maintaining the materialized view of data warehouse.
We assume that messages between each data source and data warehouse are not lost
and are delivered in the order in which they are sent. The database model for each
data source is assumed to be a relational data model. A data source may store any
number of base relations. Updates are executed atomically and transmitted asynchro-
nously to the data warehouse as updates occur.

Fig. 2. Data integration model at embedded system environment

4 Methodology of TCache

In this section, we describe the data integration and maintenance algorithm called
TCache. The basic steps to integrate data into warehouse are as follows. A notifica-
tion for update occurring from embedded system is sent to the warehouse to only get
a view definition. The warehouse receiving the request from the embedded data
source sends back the view definition to the data source. After receiving the view

User
Queries

Integration Policy in Real-Time Embedded System 255

definition, the source evaluates the query to determine whether or not it is related to
tables associated with the view. The answer corresponding to the query is generated
and sent to the warehouse. Warehouse receiving the answer from the data source
applies it to the materialized view to maintain a valid state for the updated view.

To explain the events that occur during data integration and maintenance, the
events that occur in the data source and the warehouse view are identified. The events
at the data source are ES_req, ES_chk, ES_eva, ES_exe and ES_sed while the events at the
warehouse are W_vie and W_ans.
1) Events at the embedded data source
 ES_req : the embedded data source enrolls the update information into TCache and
sends the update notification to the warehouse.
 ES_chk : the embedded data source determines whether or not the update is related to
the tables associated with the view after receiving view definition from warehouse.
If it is not related, then process ES_exe, else next step.
 ES_eva : the embedded data source examines the TCache to determine whether or
not there is any update among previous updates in TCache. If there is, then wait,
else process ES_exe step.
 ES_exe : the embedded data source executes the update and deletes the current up-
date in the TCache.
 ES_sed : the embedded data source sends the generated answer after evaluating.

The events, ES_req, ES_chk, ES_eva, ES_exe and ES_sed can be processed separately.
2) Events at the data warehouse

Suppose that the events of the data warehouse are processed in the following or-
ders of a transaction occurred from embedded system.
 W_vie : the warehouse receives an update U and sends the view definition corre-
sponding to the update to the embedded data source.
 W_ans : the warehouse receives an answer relation A from embedded data source
and immediately updates warehouse.
We will assume that events are atomic, and actions within an event follow the or-

der described above. For example, within an event ES_req, the embedded data source
first records the update information in TCache and sends the update notification to the
warehouse.

5 Performance Evaluation

In the previous sections, we mentioned several strategies for integration policy in a
data warehouse environment. In this section, we analyze the performance of the main-
tenance algorithm to integrate data in embedded system environment. We will briefly
compare it with the Strobe and Sweep algorithms including ECA. The main proper-
ties of TCache are that it reduces the amount of messages transferred between the
warehouse and embedded data sources, and also reduces server loads by transferring
the answer that would be compensated at the warehouse to each source.

The eager compensating algorithm requires that the data warehouse be in a quies-
cent state for incorporating the new views, whereas there is no such problem in the
proposed algorithm. It also increases the warehouse overhead because the data ware-

256 Hyun Chang Lee

house processes the operation to compensate temporary results generated that are sent
from each source. In addition it increases the response time because a subsequent
update has to wait until the preceding update is finished. In TCache algorithm, the
previous problems mentioned are reduced or solved because TCache algorithm han-
dles an update as a local compensation at each source. As a result, it can reduce the
server loads.

The main properties of TCache are that it reduces the amount of messages and the
number of messages transferred between the warehouse and embedded data source,
and also reduces server loads by transferring the answer that would be compensated
at the warehouse to embedded data source using TCache.

The method used in recomputing view is that warehouse can either recomputed the
full view whenever an update occurs at the data source, or it can recompute the view
periodically. We expect that the ECA is more efficient than the recomputing view
method because it is an incremental data integration and maintenance algorithm. The
ECA, however, needs more queries to maintain the view compare to recomputing
view method. ECA uses non-blocking method at the data source as mentioned in [1]
while TCache uses an optimistic blocking method. At the warehouse, ECA must wait
until all answers from the embedded data source arrive at warehouse while TCache
applies answers immediately without waiting. Figure 3 shows the performance result
of the number of bytes transferred as function of number of updates.

In figure 3, we omit the performance evaluation of worst case because there is a
wide difference comparing its performance with others. From figure 3, we see that
TCache algorithm shows enhanced result by reducing message transferred between
embedded data source and warehouse.

Fig. 3. Transferred Bytes (B) versus number of updates (K)

6 Conclusion

The ability to access the analysis data through embedded systems is a fascinating
prospect. Thus, there is a growing need for techniques that provide alternative means

Integration Policy in Real-Time Embedded System 257

to access analysis content and services. To access analytical information, we often
refer to data warehouse. A data warehouse is a subject oriented, integrated, non-
volatile and time variant collection of data from information sources with embedded
systems and integrates it into a single source where it can be queried by clients of the
warehouse. When relevant information is modified by clients using embedded system
like wireless PDA or smart phone etc., the information is extracted from the embed-
ded data source and integrated with existing data at the warehouse. Queries can be
answered, and analysis can be performed quickly and efficiently since the integrated
information is available at the warehouse. In order to make the views consistent with
the source data, changes to the source data are propagated incrementally to the ware-
house view.

Therefore, in this paper, we propose a new algorithm, TCache, to reduce the over-
head in managing queries at warehouse and the amount of messages. We also present
brief performance results for the TCache algorithm. The TCache algorithm has the
following advantages. It reduces the amount of messages and the number of messages
transferred between warehouse and embedded data source. The algorithm also applies
answers immediately without waiting. In the future, a more detailed performance
evaluation and analysis must be done to evaluate the effectiveness of the proposed
algorithm.

References

1. T. Griffin and L. Libkin. Incremental maintenance of views with duplicates. In M. Carey and
D. Schneider, editors, Proceedings of ACM SIGMOD 1995 International Conference on
Management of Data, pages 328-339, San Jose, CA, May 23-25 1995

2. D. Lomet and J. Widom, editors. Special Issue on Materialized Views and Data Warehous-
ing, IEEE Data Engineering Bulletin 18(2), June 1995.

3. V. Harinarayan, A. Rajaraman, and J.D. Ullman. Implementing data cubes efficiently. In
Proceedings of ACM SIGMOD 1996 International Conference on Management of Data,
pages 205-216, 1996.

4. W.H. Inmon and C. Kelley. Rdb/VMS:Developing the Data Warehouse. QED Publishing
Group, Boston, London, Toronto, 1993.

5. D. Quass and J. Widom. On-Line Warehouse View Maintenance. In Proceedings of ACM
SIGMOD 1997 International Conference on Management of Data, pages 393-404, 1997.

6. Yue Zhuge, Hector Garcia-Molina, and Janet L. Wiener. The Strobe Algorithms for Multi-
Source Warehouse Consistency. In Proceedings of the International Conference on Parallel
and Distributed Information Systems, December 1996.

7. D. Agrawal, A. El Abbadi, A. Singh and T. Yurek. Efficient View Maintenance at Data
Warehouses. In Proceedings of ACM SIGMOD 1997 International Conference on Man-
agement of Data, pages 417-427, 1997.

8. L. Colby, T. Griffin, L. Libkin, I. Mumick, and H. Trickey. Algorithms for deferred view
maintenance. In SIGMOD, pages 469-480, June 1996.

9. A. Gupta and I. Mumick. Maintenance of materialized views: Problems, techniques, and
applications. IEEE Data Engineering Bulletin, 18(2):3-18, June 1995.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 258-265, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Prism-WM Based Connector Interaction for Middleware
Systems

Hwa-Young Jeong1, Young-Jae Song2

1 Faculty of General Education, Kyunghee University, 130-701, 1, Hoegi-dong,
Dongdaemun-gu, Seoul, Korea

hy_0917@yahoo.co.kr
2 Department of Computer Science, Kyunghee University, 449-701 Yong-In City

Kyungkido, Korea
yjsong@khu.ac.kr

Abstract. A recent emergence of small, resource-constrained, and highly-
mobile computing platforms presents numerous new challenges for software
developers. Software developers use software architecture method for devel-
opment in this setting efficiently. Architectural styles represent composition
patterns and constraints at the software architectural level and are targeted at
families of systems with shared characteristics. We refer to development in this
new setting as programming-in-the-small-and-many (Prism). This paper pro-
vides a description and evaluation of connector’s interaction between connected
software components interface, a middleware platform intending to support
software architecture-based development in the Prism setting. Also, we con-
sider the characteristics of applied components in this connector, including the
bean request processing time and the memory use rate. Results of this research
show that components with small memory are given process preference and the
processing waiting time of component has been improved.

1 Introduction

In recent years, there has been a increasing trend of migration from the traditional,
desktop setting to highly distributed, mobile, possibly embedded and pervasive com-
puting environments. Such environments present daunting technical challenges: ef-
fective understanding of existing or prospective software configurations; rapid
composability and dynamic reconfigurability of software; mobility of hardware, data,
and code; scalability to large amounts of data, numbers of data types, and numbers of
devices; and heterogeneity of the software executing on each device and across de-
vices. Increasingly systems are implemented as compositions of independently-
developed components that must be integrated into working systems using various
interaction mechanisms, such as composing with one another, modifying, and main-
taining [4]. Thus, software engineering researchers and practitioners have success-
fully dealt with the increasing complexity of systems by employing the principles of
software architecture. Software architecture provides design-level models and guide-
lines for composing the structure, behavior, and key properties of a software system.

Prism-WM Based Connector Interaction for Middleware Systems 259

An architecture is described in terms of software components (computational ele-
ments) [1], software connectors (interaction elements) [2], and their configurations
(also referred to as topologies) [3]. An architectural style codifies architectural com-
position guidelines that are likely to result in software systems with certain desired
properties.

In this paper, we implement connector using Prism-MW [5,6]. Prism-MW pro-
vides highly efficient and scalable implementation-level support for the key aspects
of Prism application architectures, including their architectural styles. We say that the
middleware is architectural because it provides programming language-level con-
structs for implementing software architecture-level concepts such as component,
connector, configuration, and event. Thus, we propose the connector that supports the
service by the efficiency characteristic to handle the multiplex asynchronous requests
of component. The request process of component in connector follows the priority by
the efficiency characteristic to efficiently handle and operate components that request
service. The priority is set up by bean request processing time and memory use rate.
The component is applied in this suggested technique based on EJB, the server side
component model. Results from composition and operation of sample EJB present the
decrease in average waiting time of components waiting in connector and the increase
of count of processed component per unit time.

2 Related Research

2.1 Middleware Technology

Middleware is a class of software technologies designed to help manage the complex-
ity and heterogeneity inherent in distributed systems. It is defined as a layer of soft-
ware above the operating system but below the application program that provides a
common programming abstraction across a distributed system[9]. Recent improve-
ments in middleware technology and various standardization efforts, as well as mar-
ket and economical forces, have resulted in a multitude of middleware stacks, such as
those shown in Figure 1. This heterogeneity often makes it hard, however, to identify
the right middleware for a given application domain. Moreover, there exist limitations
on how much application code can be factored out as reusable patterns and compo-
nents in various layers for each middleware stack[10].

Fig. 1. Multiple Middleware Stacks

260 Hwa-Young Jeong and Young-Jae Song

There are a small number of different kinds of middleware that have been developed.
These vary in terms of the programming abstractions they provide and the kinds of
heterogeneity they provide beyond network and hardware [9]. That is Distributed
Tuples, Remote Procedure Call, Message-Oriented Middleware and Distributed Ob-
ject Middleware. Connector can represent various interactions from simple interaction
mechanism like procedure call to complicate interaction, client-server protocol and
database access protocol [7]. In the client-server style through the synchronous con-
nector like RPC, component communication uses request and response event. Con-
nector in charge of interaction is positioned between the client component and the
server component. As the interaction between components, the client component
sends the request for service processing to a connector and the connector relays it to
the connected server component [8].

2.2 Prism-WM Architecture

Prism-MW is a middleware platform that enables efficient implementation, deploy-
ment, and execution of distributed software systems in terms of their architectural
elements: components, connectors, configurations, and events. It also provides exten-
sible support for both monitoring and redeployment of resources at the architectural
level [11,12]. Figure 2 shows the simple architecture of Prism-MW [5,6].

Fig. 2. Link between two ports in Prism-MW. This shows a figure consisting of composition
with component and connector. Request events are forwarded from request ports to reply ports,
while reply events are forwarded in the opposite direction.

And it should impose minimal overhead on an application’s execution and should
be scalable in order to effectively manage the large number of devices, execution
threads, components, connectors, and communication events present in Prism systems.
Prism-MW should be extensible and configurable in order to accommodate many
varying development concerns across the heterogeneous Prism domain. These include
multiple architectural styles, as well as awareness, mobility, dynamic reconfigurabil-
ity, security, real-time support, and delivery Guarantees.

Prism-WM Based Connector Interaction for Middleware Systems 261

3 Prism-MW Based Connector Interaction

3.1 Connector Interaction by Priority Process

In this research, the connector is based on Prism-MW which has simple connecting
structure is designed to be applied to the priority considering the efficiency among
component specifications. Bean request processing time and memory use rate are
selected as the efficiency characteristic factors for this research. For the priority proc-
ess calculation, the range of selected efficiency characteristic value is decided in
proportion to its value and the weight decision table for calculating the weight is
composed. Therefore, the sum of each weight represents the relative value of the
efficiency characteristic value of request component and the component with small
weight sum is handled and performed first. And if the weight sums of request compo-
nents are the same, we handle them with FIFO method. Table 1 shows the weight
(W11 ~ Wn2) by weight decision table on the basis of the efficiency value (R11 ~
Rn2) of applied component and for this, we set up the weight according to the range
of each efficiency value as Table 2.

Table 1. Efficiency and weight of component. Rnm : Efficiency value of relevant component,
Wnm : Weight, (m:1 m 2).

Request Component efficiency
1 2 ….. n

Bean request processing time R11 W11 R21 W21 ….. Rn1 Wn1
Memory use rate R12 W12 R22 W22 ….. Rn2 Wn2

Table 2. Weight decision table according to the range

Rnm : Range (%) Wnm : Weight
0 < Rnm 25
26 < Rnm 50
51 < Rnm 75

 76 < Rnm 100

1
2
3
4

To decide the weight, the range of practical efficiency value Rnm is calculated by

the relative calculation. The sum of weight calculated by weight decision table is the
priority estimation value (Si) of relevant component and the priority is decided by this
value. Therefore, Si decides the final processing order calculated by adding up
weights of each efficiency factors.

Si =
2

1j
Wij , (ni1)

(1)

262 Hwa-Young Jeong and Young-Jae Song

3.2 Prism-MW Based Priority Connector Interaction

Prism-MW’s connector has been implemented in Java. Figure 3 shows the Prism-MW
based component composition using connector. In the connector, component process
order is calculated by the priority algorithm considering component characteristics.

Client Component

Component 1 Component 2

Connector

Component n

class PriorityPrimMW {
 static public void main(String argv[]) {
 Architecture arch = new Architecture
 ("PriorityTest");
 AbstractImplementation ClientcomponentImpl = new
 ClientcomponentImpl ();
 Component Clientcomponent = new Component("cp",
 ClientcomponentImpl);
 : :
 AbstractImplementation ComponentnImpl = new
 ComponentnImpl();
 Component Componentn = new Component("da",
 ComponentnImpl);
 Connector conn = new Connector("Conn");
 : :
 Port portcpReq=new Port(REQUEST); //create port
 Port portConnReq1=new Port(REQUEST);
 Port portConnReq2=new Port(REQUEST);
 Port portConnRepl=new Port(REPLY);
 Port portCom1Repl=new Port(REPLY);
 Port portComnRepl=new Port(REPLY);
 Clientcomponent.addPort(portcpReq);
 Component1.addPort(portcom1Rep);
 Componentn.addPort(portcomnRep);
 : :
 arch.weld(portcpReq, portComnRep);
 arch.weld(portConnReq1, portCom1Rep);
 arch.weld(portConnReq2, portComnRep);
 arch.start();
 }
}

Fig. 3. Prism-MW based component composition

Figure 4 shows the priority process in connector using Prism-MW.

Prism-WM Based Connector Interaction for Middleware Systems 263

public class ConnectorThread extends Connector imple-
ments Runnable {
 : :
 public void run() {
 CalculateWeight(); //calculate weight for decision
 of priority order
 //sum of weight calculated by weight decision table
 is the priority estimation value(Si)
 SumofWeight();
 PriorityOrder(); //this method decide priority
 order by Sumofweight()’s result
 while (true) { //port initialization for
 connector interaction
 Port p;
 Request r = null;
 Notification n = null;
 }
}

Fig. 4. Priority connector interaction using Prism-MW

4 Applied Result and Analysis

In order to compare this proposed technique with the existing technique, we embody
the conventional FIFO method that does not consider efficiency characteristic and the
proposed method in this paper considering priority in Prism-MW. Measurement re-
sults of efficiency characteristics of example components according to these condi-
tions are represented in Table 3.

Table 3. Efficiency characteristic of example EJB component

EJB Component ID
1 2 3 4 5 6 7 8 9 10

Bean request processing time(ms) 809 790 125517081309 955 763 782 920 860
Memory use rate (%) 7.28 7.20 8.31 8.33 8.25 8.03 6.96 7.02 8.05 7.48

In this test result, Process waiting time of components is shown in Figure 5. In

conventional FIFO method, the average waiting time of component processing is
4689.2ms and in this proposed technique, it is 3921.9ms. This result shows that the
average waiting time of this proposed technique is shorter.

These results shows that in the aspect of the whole system operation, this proposed
technique could carry out more component requests at the initial stage and make the
process waiting time of each component shorter. Also, by processing the component
with small memory load first, fast processing and quick response could be possible at
the initial stage.

264 Hwa-Young Jeong and Young-Jae Song

Fig. 5. Process waiting time of components

5 Conclusions

In order to efficiently operate the interaction between components in composition and
operation of the architecture-based component, this research suggests the technique
that handles the requested processing of component in the connector by the priority.
We set up the Prism-MW according to weight decision table on the basis of bean
request processing time and memory use rate that have much effect on the process
among efficiency characteristics of component. In order to handle component re-
quests, we set the order according to the priority on the basis of component character-
istic value.

But this proposed technique only uses bean request processing time and memory
use rate among the efficiency characteristics of component. Therefore, as future re-
search, the priority algorithm according to various functional characteristics and effi-
ciency characteristic appropriate for component composition characteristic and the
design of the connector that can be operated efficiently in the composition system of a
large scale are required.

References

1. C. Szyperski, “Component Software Beyond Object-Oriented Programming”, Addison-
Wesley / ACM Press. (1998).

2. N. R. Mehta, N. Medvidovic, and S. Phadke. Towards a Taxonomy of Software Connectors.
International Conference on Software Engineering (ICSE 2000), Limerick, Ireland, June 4-
11. (2000).

Prism-WM Based Connector Interaction for Middleware Systems 265

3. N. Medvidovic and R. N. Taylor, ”A Classification and Comparison Framework for Soft-
ware Architecture Description Languages”, IEEE Transactions on Software Engineering,
vol. 26, no. 1, January. (2000).

4 Bridget Spitznagel and David Garlan, "A Compositional Formalization of Connector Wrap-
pers", Proceedings of the 2003 International Conference on Software Engineering, (2003).

5 Nenad Medvidovic, Marija Mikic-Rakic, Nikunj Mehta, Sam Malek, "Software Architectural
Support for Handheld Computing", Computer, IEEE Computer Society, September, (2003).

6 Nenad Medvidovic, Sam Malek, and Marija Mikic-Rakic. "Software Architectures and Em-
bedded Systems." Proceedings of the Monterey Workshop on Software Engineering for
Embedded Systems (SEES 2003), Chicago, IL, September 24-26, (2003).

7 Marija Rakic, Nenad Medvidovic, "Increasing the Confidence in Off-the-Shelf Components:
A Software Connector-Based Approach", Technical Report USC-CSE-2000-518, University
of California, Irvine, November, (2000).

8 A. Ramdane-Cherif, L. Hazem, N. Levy, “Knowledge Repository Concerning Architectural
Styles For Building Component-Based Systems”. CoLogNET’02: Colognet Joint Workshop
on Component-Based Software Development and Implementation Technology for Compu-
tational Logic Systems. September, (2002).

9. Bakken, David, “Middleware.” Chapter in Encyclopedia of Distributed Computing, Ency-
clopedia of Distributed Computing, Kluwer Academic Press, (2003).

10. Aniruddha Gokhale. et. al., "Middleware for Communications", Edited by Qusay H. Mah-
moud, John Wiley & Sons, Ltd, (2001).

11. Sam Malek, Marija Mikic-Rakic, Nenad Medvidovic, “An Extensible Framework for
Autonomic Analysis and Improvement of Distributed Deployment Architectures”, In pro-
ceedings of ACM SISGSOFT Workshop on Self-Managed Systems (WOSS 2004), Newport
Beach, CA, Oct, (2004).

12. Marija Mikic-Rakic, Sam Malek, Nels Beckman, and Nenad Medvidovic, "Improving
Availability of Distributed Event-Based Systems via Run-Time Monitoring and Analysis.",
Proceedings of Twin Workshops on Architecting Dependable Systems (WADS 2004), Ed-
inburgh, UK, May 25, 2004 and Florence, Italy, June 30, (2004).

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 266-273, 2005.
 Springer-Verlag Berlin Heidelberg 2005

ScudWare: A Context-Aware and Lightweight
Middleware for Smart Vehicle Space

Zhaohui Wu, Qing Wu, Jie Sun, Zhigang Gao, Bin Wu, and Mingde Zhao

 College of Computer Science, Zhejiang University,
Hangzhou, Zhejiang, China 310027

{wzh,wwwsin,sunjie,gaozhigang,branwu,zmdd48}@zju.edu.cn

Abstract. With computing becomes more and more ubiquitous, it leads to the
highly dynamic and complex computing environments. In this new computing
circumstance, the need for novel middleware is widely recognized. Especially,
applications should be more context-aware and based on the lightweight mid-
dleware infrastructure. In this paper, we present ScudWare, an efficient con-
text-aware and adaptive middleware for ubiquitous computing in smart vehicle
space. ScudWare is based on smart OSEK OS, ICAR hybrid network and
TinyORB. Its main property is context-aware service based on ontology, which
can gather, manage, and disseminate context information for applications easily.
Using ScudWare ontology, we can easily tackle issues, such as wide variations
in information quality. In addition, we bring forward further discussion of the
smart vehicle space in ubiquitous computing environments.

1 Introduction1

In ubiquitous computing environments, people use smart embedded devices interact-
ing seamlessly with space and devices naturally and transparently. Ubiquitous com-
puting comprises many areas. However, in its core, the active environments, smart
devices, and people are essential elements. They adjust themselves continuously to
better cooperation and communication. Such user-centered ubiquitous computing
environments may require a context-aware and lightweight middleware to communi-
cate, operate resources and provide various services for real-time smart vehicle space
[1].

In smart vehicle space, traditional middleware solution is heavyweight, which has
not adaptive and reconfigurable mechanisms. In addition, the applications in the vehi-
cle space would require the middleware to execute more reliably and efficiently. At
present, many research efforts have focused on designing new middleware architec-
ture for smart space capable of supporting the requirements imposed by ubiquitous
computing. Gaia [2] coordinates software entities and heterogeneous networked de-
vices contained in active physical space, exporting services to query and utilize exist-

1 This research was supported by 863 National High Technology Program under Grant No.
2003AA1Z2080, "Research of Operating System to Support Ubiquitous Computing"

ScudWare: A Context-Aware and Lightweight Middleware for Smart Vehicle Space 267

ing resources. Active Badge [3] and ParcTab [4] are two projects aim to detect the
location of people with a mobile device. However, in our opinion, in ubiquitous com-
puting environments such as smart vehicle space, an ontology-based context-aware
and lightweight adaptive solution is needed.

The structure of the paper is as follows. Section 2 presents ScudWare infrastruc-
ture, highlighting smart vehicle space, and the middleware architecture is given. Sec-
tion 3 introduces ontology-based context-aware mechanism. Following this, section 4
gives a case study. Finally, section 5 summarizes the discussion and introduces some
areas demanding further investigation.

2 ScudWare Infrastructure

ScudWare consists of smart vehicle space and hierarchy architecture. Once people go
into smart vehicle space, they communicate with the smart embedded devices and
environments naturally through ScudWare infrastructure. People use services pro-
vided by this active space easily. The status of the devices may change spontaneously
and dynamically. Following, we give a detailed introduction of above aspects.

2.1 Smart Vehicle Space

Smart Vehicle Space is a workspace, which is embedded in computing devices, in-
formation devices and various sensors. This active space makes it convenient for
users to access information and service to work alone or cooperate with others. [5] [6]

Centralized processing system

Auto apperceiving System

Sensors Cameras
Sound

receivers

Smart Reasoning System

Ontology Context

Auto controlling System

Steering Communication entertaiment navigating security

Fig. 1. Smart Vehicle Space

It is composed of (1) auto apperceiving context system, (2) auto controlling system,
(3) context repository reasoning system and (4) centralized processing system, as
shown in Figure 1. Auto apperceiving context system aims to sense the status of the
environment, people and devices in the vehicle, including cameras, sensors, and
sound receivers. Auto controlling system comprises steering, communication, navi-

268 Zhaohui Wu et al.

gating, entertainment, security subsystem. Smart reasoning system uses correlative
context and ontology-based technology to make decisions. Particularly, the central-
ized processing system is the kernel for the smart vehicle space, controlling other
parts to communicate and cooperate effectively.

2.2 ScudWare Architecture

As Figure 2 shows, ScudWare is made up of four layers. The lowest layer is a real-
time operating system named Smart OSEK, which is developed by us. [7] The next
layer is ICAR hybrid network, which consists of six parts classified by their different
functions as shown in figure 2: Security assurance system, communication system,
control system, entertainment system, navigation system and environment system.
The third layer is TinyORB kernel. The fourth layer is the core services, including
ontology-based context-aware, discovery mechanism and smart reasoning toolkit.

SmartOSEK OS

ICAR Hybrid Network

J1939 IDB-1394 Ethernet

TinyORB Kernel

Core Service Layer

Ontology Context-aware Discovery

Smart Reasoning toolkit

Application

Fig. 2. ScudWare Architecture

Smart vehicle space is an integration network system; we call it ICAR Hybrid
Network. It consists of six parts according to the difference of their functions as
shown in figure 2: Security assurance system, communication system, control system,
entertainment system, navigation system and environment system. Because of their
different communication requirements, it is necessary to use J1939, IDB1394 and
Ethernet. The information exchanged in control system and environment system is
not heavy, so the speed of J1939 is enough to meet their needs. Furthermore, there are
some standards defined for in-vehicle control parts; it is favorable for communication
designing. Ethernet is used in security assurance system. Because there are video and
speed information, the big bandwidth is required. At present, the bandwidth of
Ethernet in general has been up to 100 Mbps or 1000 Mbps, which is enough for the
transmission of multimedia information. IDB1394 is a popular bus standard for in-
vehicle entertainment system. It has the transportation capacity of 400 Mbps, which

ScudWare: A Context-Aware and Lightweight Middleware for Smart Vehicle Space 269

can be used to connect parts of entertainment system. The navigation system and
communication system are connected to in-vehicle directly. There is an in-vehicle
computer, which is a center control unit and can process the information coming from
other parts. This computer acts as an interface between human and in-vehicle net-
work system.

2.3 TinyORB Kernel

TinyORB is a light version of real-time ORB (TAO). In addition, TAO is imple-
mented with reusable frameworks from the Adaptive Communication Environment
host infrastructure middleware toolkit. We keep the core service such as persistence,
real-time scheduling, fault tolerance, and we develop domain-specific middleware
service for smart vehicle space, mainly about discovery and ontology-based context
reasoning. In TinyORB, ontology-based context-aware object, distributed discovery
and peer-matching object are essential issues. We can use unicast and broadcast
mechanisms by special policy to inner-object communication, event notification and
cooperation. The devices and services can find what they are interested in easily and
discover compatible peer services without relying on an infrastructure or centralized
approach. TinyORB supports client-server and context-aware P2P computing model.

3 Context-Aware Framework

As the rapid development of embedded technology, it is not a dream for devices to be
intelligent. The idea of ubiquitous computing can be realized through multiple kinds
of intelligent devices, such as the Media Cup, which can sense the temperature of
coffee and notice the person. If daily objects can sense outside environment and be-
come adaptive to the change of environment, it will provide more and better services
to human being. With the development of sensor and wireless communication tech-
nology, mobile devices are widely used, such as cell phones and PDAs, with the abil-
ity to be context-aware, which means, the same device can provide personal and cus-
tomized services to different users. It can also liberate people from trivial things,
since the devices around human can predict his behaviors according to the environ-
ment he is in and the activity he is taking on, and react beforehand. Given the ability
augmented, it can even make decisions in the emergency quickly for the safety of
human beings.

3.1 Overview

According to Anied Dey, context is any information that can be used to characterize
the situation of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including the user and
application themselves.[8] The most important and widely used context is location
and identity. In addition, time, temperature, activity, the emotion of person, the ob-

270 Zhaohui Wu et al.

jects in the environment are all context. The dynamics can be divided to three classes.
Communication dynamics is about bandwidth, error rate, connection setup time, us-
age costs, security requirements, contention, disconnection rate, round-trip delay.
Environmental dynamics comprise of people presence, social situation, and physical
conditions. Location dynamics include the entire element associated with concrete
location, such as mobile IP allocation, authentication, and social influence when the
location of an entity is changed.

Context-aware is the ability to sense and use context. Any application that takes
advantage of context is context-aware application. Context-aware computing is the
ability of computing devices to detect, interpret, and respond to the change of envi-
ronment and system.

3.2 Ontology-Based Context Representation

Smart vehicle space is a special environment, in which we can examine the character-
istic by the context: The inside of vehicle is a relatively confined and cabined space,
the devices inside are limited and fixed, and the space for user to move is restricted.
The outside of vehicle is always in a status of rapid movement, but we need not con-
cern all the dynamics in the process. For example, we need not record all the people
when driving to work. It is not the target of smart vehicle space. What we need are
only those that can influence our system.

The characteristics above determine the definition of context in smart vehicle
space. We use the idea of ontology to describe the context information. The concept
of ontology comes from philosophy and means theory of existence. The new meaning
is provided by computer science region, such as AI. The most accepted definition is
“ontology is an explicit specification of a conceptualization [9]”. We can understand
ontology from two different aspects. Firstly, it is a vocabulary, which uses appropri-
ates terms to describe entities and the relations between entities. Secondly, it is the
knowledge base of a specific domain. Ontology is domain-oriented, which describes
domain knowledge in a generic way, and provides agreed understanding of the do-
main.

In our method, we divide the context of smart vehicle space to three parts: vehicle
context, environment context, and driver context. Vehicle context concerns the status
and attributes of the devices inside the vehicle, such as air-condition, wiper, light,
engine, ABS, and the seat. Environment context concerns all the environmental ele-
ments, which may influence driving, such as the weather, the road status, the finger-
post, and the signal lamp. Driver’s context concerns the status of driver, such as the
suitability and ability to drive, physiological parameters such as alcohol density, and
pupil diameter. We have used protégé to build context of smart vehicle space and
create instances. Protégé is an ontology editor tool, which provides GUI for the user
to create and manage ontology architecture. We also use Protégé to export files in
OWL format for smart reasoning. Figure 3 is the ontology described by OWL.

ScudWare: A Context-Aware and Lightweight Middleware for Smart Vehicle Space 271

Fig. 3. Ontology described by OWL

We define context by C=(S, P, O). S denotes the center of context. We use P to de-
scribe attributes. O is the value of attribute, or the operator, which is logic operator.
We also define the interested and important context scenario by SC= (sc1, sc2,…, scn)
and sc ci. The scenario integrates the situation of system and the entities involved.
We define predication cn+1=f(c1, c2,…, cn) and cn+1 denotes the high level context
reasoned or the reaction the system should take according to current context scenario.
For example :(Driver, Property, Alcohol) (Alcohol>= 0.04) (Driver, status,
Drunk). It descries if the driver’s alcohol level over 0.4, we conclude that he has got
drunk. Another, (Environment, Subclass, RoadSurface) (RoadSurface, Property,
Gradient) (Gradient >= -15%) (Vehicle, Subclass, Brake) (Brake, Property,
BrakeState) (BrakeState=light). This describes that the car is climbing down a hill
when the gradient is bigger than 15 degrees and specifies the brake to be set to a
slight work state.

3.3 Context-Based Process Method

In ScudWare, we divide the process into five stages: (1) Context acquisition (2) Con-
text storage (3) Context aggregation (4) Context analysis (5) Context-aware action.

Context acquisition: The stage is to gain the raw data from sensors and transform it
to ontology entities or attributes. The data imported are of different type and structure,
which must be abstracted so that it can be used by application.

Context storage: The acquired context must be stored to a repository for access
when necessary.

Context aggregation: we aggregate correlative context for a specific entity. The
target is to trace and record an entity.

Context analysis: we infer the status of an entity or the intention of a user. In
ScudWare, we have defined the logic in advance and detected the context of the sys-

272 Zhaohui Wu et al.

tem. If the current context satisfies the precedent of our logic, we think the conclusion
of the logic is satisfied, too.

Context-aware action: We specify appropriate action for every context scenario be-
forehand. In the running time, whenever the system reaches a scenario, the action will
be executed automatically.

As a result, this process is not serial and static, since the execution of the action
will lead to new changes of system and bring the system to a new context scenario.
Besides, there may be multiple process in progress and will interact with each other.
Fig 4 shows this process.

context widget

context
aggregator

context
reasonging

context activity

context storage

context widget context widget context widget

context
aggregator

Fig. 4. Context-aware process method

4 A Case Study

To demonstrate the application of ScudWare, we give a case as follows. It is time for
Mr. Smith to go to work. He comes in front of his vehicle; puts his palm on the lock
authentication machine. His fingerprint is sent to in-vehicle computer. In- vehicle
computer receives the data, analyses them, confirms him a legal driver, and then or-
ders to open the door. After the door opens, he gets into the vehicle, sits down, and
puts his ID card on the ID machine. At the same time, his weight is gained by sensor
and appearance is gained by camera. In-vehicle computer recognizes his identity, so
sends welcome command to audio device in entertainment system. A voice “welcome,
Mr. Smith” comes from the speaker. At the same time, in-vehicle computer orders
entertainment system to play his favorite music and environment system to adjust the
air quality according to his favorite. Mr. Smith inputs his destination into in-vehicle
computer. The optimal route and some selective routes are given. He selects the opti-
mal one and in-vehicle computer accepts his selection. The apperceiving subsystem
detects the vehicle’s work state is good, and reports work state to in-vehicle computer.
Then Mr. Smith begins to drive. This is the scenario of our work.

ScudWare: A Context-Aware and Lightweight Middleware for Smart Vehicle Space 273

5 Conclusion and Future Work

We have proposed the context-aware and lightweight middleware for smart vehicle
space in ubiquitous computing environments. The design of the ScudWare framework
is based on Smart OSEK, ICAR hybrid network, TinyORB and core services. Further,
we argue that it is crucial to focus on the ontology-based context-aware aspect of
cooperation and communication. The service should include providing actively, de-
pending on different context, continuously adjusting adaptively. Next, from a practi-
cal point of view, we give a case study of ScudWare.

This is however, a preliminary analysis and further work remains to be done to test
ScudWare architecture fully. Our future work includes: (1) improving TinyORB
kernel to support secure and reliable application; (2) extending the vehicle ontology-
based context presentation; (3) applying more adaptive mechanism to ScudWare.

References

1. Anand Tripathi. Next-Generation Middleware Systems Challenges Designing. Communica-
tions of The ACM Vol. 45, No. 6. (2002) 39-42

2. Manuel Román, Christopher Hess, Renato Cerqueira, Anand Ranganathan,Roy H. Campbell,
Klara Nahrstedt. Gaia: A Middleware Platform for Active Spaces. Mobile Computing and
Communications Review, Volume 6, Number 4. (2002) 65-67

3. The Active Badge System.(1992) http://www.uk.research.att.com/ab.html
4. The ParcTab Ubiquitous Computing Experiment.(1992) http://www.ubiq.com/parctab

/csl9501/paper. Html
5. Qing Wu, Zhaohui Wu, Bin Wu, Zhou Jiang .Semantic and Adaptive Middleware for Data

management in Smart Vehicle Space Proc. the Fifth Advances in Web-Age Information
Management, (2004) 107-116

6. Guoqing Yang, Zhaohui Wu, Xiumei Li, Wei Chen. SVE: Embedded Agent Based Smart
Vehicle Environment. Intelligent Transport System Conference 2003.(2003) 1745-1749

7. Wu Zhaohui, Wang Lei, Zheng Kougen. A Reliable OS Kernel for Smart Sensors. The 28th
Annual International Computer Software and Applications Conference.(2004) 572-577

8. Anind K. Dey. Providing Architectural Support for Building Context-Aware Applica-
tions.(2000) http://www.cc.gatech.edu/fce/ctk/pubs/dey-thesis.pdf

9. Cf. T. R. Gruber. A translation approach to portable ontologies. (1993)Knowledge Acquisi-
tion, 5(2):199-220.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 274-279, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Application of Cooperating and Embedded
 Technology for Network Computer Media Player

Yue Gao1, Bin Zhang1, Xichang Zhong1, Liuying Qu2

1 Hopen Software Engineering Co.,Ltd.
No.4 Southern 4th St, ZhongGuanCun, P.O.Box 2717 Haidian District,

Beijing 100080, P.R. China
gaoyue@mercury.cass.ac.cn

bzhang@hopen.com.cn
xczhong@sec.ac.cn

2 College of Computer Science and Engineering,
University of Electronic Science and Technology of China

Chengdu, Sichuan 610054, P.R. China
quliuying@163.com

Abstract. A network computer (NC) is a lightweight computer system like a
thin client. Although a network computer has many advantages, it is less
specialized to play multimedia files through network servers. The conventional
mode is that network server not only reads but also decodes multimedia data
and network computer just plays frames transmitted from network server. This
makes network server overloaded. In this paper, we analyze principles of
playing multimedia files between NC and network server, and apply
cooperating and embedded technology to resolve the problem. Also, the paper
details design and implementation of network computer media player and
touches upon the future works.

1 Introduction

1.1 Network Computer (NC)

A network computer (NC) is a lightweight computer system that operates exclusively
via a network connection. It only has devices like a monitor, keyboard and mouse,
and relies on network servers for storage and software [1]. So the main characteristic
of a network computer is that it can strongly depend on power of the network servers
and doesn’t have its own secondary storage such as a hard disk drive. Thus, we can
say that network computer is an example of thin clients1.

1 Thin clients are simpler computers or programs which are designed to work with a server, so

that the client requires less complexity, local storage, processing, or maintenance.

Application of Cooperating and Embedded Technology 275

A network computer has many prominent advantages. For example, it can reduce
the total cost of ownership (TCO2) and costs much less than a personal computer.
Also, network computers are safer than PCs.

However, a network computer is less specialized to play multimedia files via a
network server. Play effects which are displayed on NC terminals are unsatisfactory,
even the frames transmitted from the server could not keep consistent. The main
reason is relative to principles of playing multimedia files between NC and server.
After analyzing, we have found out that the network server is responsible for not only
reading multimedia data, but also decoding them. The data decoded is so numerous as
to make server overloaded. On account of limitation of network speed and NC’s
hardware configuration, at the same time, these factors will exactly weaken the
qualities of receiving data and playing multimedia files on a network computer. This
is the problem to be solved.

Aiming at this problem, cooperating and embedded technology is applied to solve
it successfully. We transfer the work of decoding multimedia data to network
computer, namely, NC decodes firstly and then plays. Network server just offers
multimedia files, while NC completes the work of decoding. In this paper, we will
introduce design and implementation of the sofrware of NC media player at length,
which has applied cooperating and embedded technology. We will call this software
cooperating and embedded media palyer at the following text.

1.2 Remote Desk Protocol (RDP)

In course of implementation of the cooperating and embedded media player, Remote
Desktop Protocol (RDP) is used to transmit media player’s skin from network server
to NC. Then we will introduce principles of RDP briefly.

Remote Desktop Protocol is designed to provide remote display and input
capabilities over network connections for Windows based applications running on a
server. The performance of the protocol is considered effective by most people for
LAN connections. RDP is a multichannel-capable protocol that allows for separate
virtual channels for carrying device communication and presentation data from the
server. It provides a very extensible base from which to build many more capabilities,
supporting up to 64,000 separate channels for data transmission as well as provisions
for multipoint transmission [2].

RDP uses its own video driver on the server side to render display output by
constructing the rendering information into network packets using RDP protocol and
sending them over the network to the client. On the client side, it receives rendering
data and interprets them into the corresponding Win32 GDI API calls. On the input
path, client mouse and keyboard messages are redirected from the client to the server.
On the server side, RDP uses its own virtual keyboard and mouse driver to receive the
keyboard and mouse events.

Since requirements of client computer are not exigent, RDP is applied on NC
popularly.

2 Abbreviation of Total Cost of Ownership, which is a very popular buzzword representing how

much it actually costs to own a PC. The TCO includes: Original cost of the computer and
software; Hardware and software upgrades; Maintenance; Technical support; Training [1].

276 Yue Gao et al.

2 Software Architecture

The software of cooperating embedded media player running on a NC consists of
three major modules: NC player module, server player module and Self-Defined
Transmission Protocol (SDTP). The three modules cooperate with each other and
complete the work of playing together.

2.1 NC Player Module

The NC player module interacts with network server via self-defined transmission
protocol (SDTP). NC player module receives media files’ data and control
instructions which are sent from network server, at the same time sends some
essential request and response instructions to network server. Then NC player module
decodes these data and explains the instructions in order to display on correct location
of NC terminal.

Code of NC player module is written on LINUX and embedded in NC.

2.2 Server Player Module

Server player module is mostly responsible for displaying interface of media player
which users can operate and control local media files on, and indicating virtual state
of playing. At the same time, the module sends user’s control instructions and deals
with feedback information of users. Server player module dose not play multimedia
files indeed, but reads binary data from hard disk of network server and transmits
them at suitable speed to network computer. Finally, NC decodes these multimedia
data and plays them.

The skin of media player on network server is transmitted to NC using Remote
Desktop Protocol (RDP). Area of playing on terminal of NC should cover upon the
skin of media player properly.

2.3 Self-Defined Transmission Protocol (SDTP)

For the sake of well communication between NC and network server, we define a
transmission protocol----SDTP. The protocol includes operations of communication
initialization, sending and receiving of data and instructions, closing connections and
so on. By virtue of characteristics of transmission, there are two channels to be
defined: one is bidirectional instructions channel based on TCP and this channel is
used to transmit instructions and feedback information between NC and network
servers; the other is single directional data channel based on UDP and it mainly sends
original multimedia data just from network server to NC.

In the abstract, SDTP is on top of Internet protocols, above TCP and UDP.
Moreover, the modules of server player and NC player are also on top of SDTP.
Detailed relation between three modules and transmission directions of data and
instructions are presented at Fig. 1.

Application of Cooperating and Embedded Technology 277

Bidirectional Instructions Channel

`

Single Directional Data Channel

SERVER
PLAYER

NC
PLAYER

Self-Defined Transmission Protocol
(SDTP)

Internet Protocols
(TCP/UDP)

Fig. 1. Software architecture of cooperating embedded media player

Code of transmission protocol is called by network server and NC respectively in
mode of library functions. Thereby, SDTP fulfills responsibility of communication
commendably.

3 Technical Details

3.1 Communication Procedure

Firstly, NC initializes the library functions of SDTP to monitor some port that is
defined beforehand and waits for setting up connection. When users operate the media
player’s interface on network server, the request of setting up connection is sent to
NC simultaneously. After network server has connected with NC, files data and
control instructions are transmitted via both of data and instructions channels.

Before sending multimedia files data to NC, network server sends coordinate
information of playing area to NC, in order to ensure that playing area can precisely
cover upon the skin of media player, which is transmitted from server. Afterwards,
NC can decode and play.

3.2 Structure of Loop Storage

Since we use UDP protocol to transmit multimedia data to NC, it is possible to appear
that packets are lost and out of sequence during the phases of sending and receiving.
As running environment of the software is in a LAN and network is stable in most

278 Yue Gao et al.

cases, the possibility of losing packets is little. However, the problem that packets are
out of sequence should not be ignored.

In order to solve the problem, we adopt loop storage structure. According to serial
numbers, each packet will be inserted to suitable place in the loop storage structure.
Compared with data packets, the size of storage is so large. As a result, those packets
will not be ignored even if they are delayed slightly. In this way, it can assure that
packets are in sequence in the course of nature.

3.3 Application of Buffering

Buffering plays a critical role in the course of sending and receiving multimedia data.
The data packets received from network server are put in a buffer of NC. Meantime,
network server sends data packets unceasingly until the percentage of capacitance of
NC buffer reaches a specific value (in this software, the value is 90%). Once the
percentage value is exceeded, NC sends information of “PAUSE” to network server
in time. Until some signal indicates that percentage of NC buffer’s capacitance is
lower than the value, the network server keeps at sending UDP packets of multimedia
data.

4 Test Results and Conclusions

In this paper we have presented the application of cooperating and embedded
technology for network computer media player. After a series of tests, it can be
certified that the cooperating and embedded media player alleviates burden of server
effectively, and improves quality of playing effects on NC terminals obviously. The
cooperating and embedded technology is pivotal part in the software.

The hardware and software configurations of server and NC in the experimental
environment are presented at Table 1.

Table 1. Hardware and software configuraion of server and NC

 Configuration Server NC
CPU Intel Pentium III ARCA1 166MHz

Memory 256M 64M
Hard Disk SCSI HD: 37.3GB 1 Nothing

OS Windows 2000 Server Orient Software

Aiming at several test targets mainly, we have contrasted the play effects of server

decoding multimedia data with that of NC decoding multimedia data. The test results
are presented at Table2.

Application of Cooperating and Embedded Technology 279

Table 2. Test results of contrasting playing effects

Test targets Server decode NC decode
Frames per second 4 fps 15 fps

Color bits 8 bit 16 bit
Resolution 352 288 800 600

Timbre Slight cacophonous Pure

5 Future Works

This cooperating and embedded media player in NC presented in the paper is still
confined to play multimedia files on network server via LAN. In order to improve
performance of network computer media player, we are trying to make this software
work on WAN environment and can play multimedia files not only on local server but
also on Internet server. Now we are endeavoring to achieve it.

Acknowledgements

This software of cooperating and embedded media player described in this paper is
the outcome of work done by NC production division of Hopen Software Engineering
Co.,Ltd. We hope that our thoughts about it will be useful to researchers and users of
embedded software and system.

References

1. Jupitermedia Corporation. Network Computer.
http://ewebnews.webopedia.com/TERM/N/network_computer.html.

2. Microsoft Corporation. Remote Desktop Protocol (RDP) Features and Performance.
http://www.microsoft.com/windows2000/techinfo/howitworks/terminal/rdpfandp.asp.

3. Andrew S. Tanenbaum: Computer Networks. 3rd edn. Prentice-Hall International, Inc (1996).
4. Douglas E.Comer, David L. Stevens: Internetworking With TCP/IP Vol3. Publishing House

of Electronics Industry (2001).
5. Anthony Jones, Jim Ohlund: Network Programming for Microsoft Windows, Second Edition.

Microsoft Press (2002).

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 280-286, 2005.
 Springer-Verlag Berlin Heidelberg 2005

QoS Adaptive Algorithms Based on Resources
Availability of Mobile Terminals

Yun Li1 and Lei Luo2

1School of Computer and Communications Engineering, Southwest Jiaotong University,
Chengdu, 610031, China
liy@coretek.com.cn

2Computer Science and Engineering College, University of Electronic Science and Technology,
Chengdu, 610054, China

Abstract. For mobile terminals, the resources availability always changes
continuously because of the mobility and services providing. Based on a
resource-aware architecture, the paper proposes an adaptive algorithm using
PID and fuzzy control model to adjust the QoS of terminals according to the
resources availability. In such architecture, resources can be allocated in stable
and agile way. Applications can be aware of resources, and make certain
reactions to the change.

1 Introduction

Comparing with the desktop computers, the resources which can be used in mobile
terminals are limited because of design requirements of low power consumption,
lightweight and small physical size. Although the resources will be enriched with the
continuously technical development, desktop computers without the consideration of
size, power consumption and weight can be benefited more from the development [1].
Furthermore, terminals are also limited from the network circumstances. The
available network connectivity and remote resources change dynamically. In a word,
the available resources of mobile terminals change continuously in dynamical and
unpredictable way. The terminal should be aware of resources, reacting early when
facing the decreased resource availability, and taking advantage during the increasing
of the resources.

The paper proposes an adaptive algorithm for mobile terminals based on a
resource-aware architecture using PID and fuzzy control model. In such architecture,
applications can be aware of resources, reacting early when facing the decreased
resource availability, and taking advantage during the increasing of the resources. So
the QoS of terminals can be adjusted according to the resources availability.

QoS Adaptive Algorithms Based on Resources Availability of Mobile Terminals 281

Resource Resource …

Resource Monitor

Resource Manager

App. Task …
App. Task

Cur App.
Task Adjustor

Collector

Other
Tasks Reference

value e(t) u(t)

y(t)

2 Resource-Aware Systems

Fig.1 is the architecture with resource-aware capability, which can be used to trace
resources and allocate resources to applications according to the availability of
resources. Resource Monitor monitors terminal resources and provides the
information to Resource Manager in quantity way. Resource Manager allocates
resources for application tasks according to some specific strategy to satisfy the
situation when multitasks compete to grasp the same resource. According to allocated
resources by Resource Manager, application can react and adapt to the resource
amount at last.

 Fig. 1. Architecture of resource-aware systems Fig. 2. Resource Manager

The flexibility of Fig.1 is achieved by keeping the Resource Manager outside the
Resource Monitor. This separation decouples application and Resource Monitor,
which allows Resource Manager to update the resources allocation independently
without worrying about the application. And an application can make its own action
decision on its on-demand resources independent of the existence of Resource
Manager.

Resource Monitor provides the availability of resources in the form of resource
object shown in Fig.3. By this structured form, new resources can be expanded easily
and applications can get the resource information according to interested abstract
level along the inheritance relation. Further more, the independence among the
different parts of systems can be further advanced.

Fig. 3. The Resource Object Hierarchy

M e m o ry P o we r CP U Re m o te S e rvi ce

E ve n t

E v en t Typ e
Cu rr en tV a l ue

E th e rn e t P P P Wi re l e ss

Ne two rk

282 Yun Li and Lei Luo

The Resource Manager can provide fairness and stability in resource allocation by
adjusting decision based on control theory. Shown in Fig.2, Resource Manager has
two components: Adjustor and Collector. Adjustor allocates resources to application
tasks dynamically based on resources amount provided by Resource Monitor and
status of application tasks related to resource consumption collected by Collector. If
there are competed resources among multitasks, Adjustor manages them, otherwise it
provides the amount of resources to application directly. In control model of Adjustor:
1. Use r to represent a specific resource, which can be denoted by <c, t, y(t), s(t), A(t),

N(t)>. c means the capability of resource, presented by the available largest number
of resource. t means the period of resource control, and for the reason of
simplification, it is a discrete number. y(t) means unsatisfied amount of r requested
by all tasks in the system at the time t. s(t) is the set of active tasks which compete
resource r at time t. A(t) is the task set in which requested amount of resource r
cannot be satisfied by Adjustor. N(t) is the task set in which allocated amount of
resource r by Adjustor can satisfy the requested amount of tasks.

2. Use to present application task, which can be denoted by <t, r(t), u(t)>. t means
time. u(t) means the amount of resource allocated to in time [t t+1] by Adjustor.
r(t) means the amount of resource requested by in time [t t+1].
So at time t, the unsatisfied amount of resource r can be presented by Equation (1)

approximately [2], [3]. For application task i, the control model in Adjustor can use
Equation (2) to compute ui(t) based on PID control theory[4].

)1(

0
)1()1()(

)1(
)1()(tS

i
i ctutyty

tt
tyty

(1)

)]2()1(2)([)]([)1()(tytytytywtutu ii (2)

In Equation (2), w is a reference and the object of control model in Adjustor is to
keep the y(t) near w. and are configurable arguments to keep the stability and
sensibility of resource allocation, which represents integral and derivative setting in
PID separately. controls the speed of transient response. If is higher, transient
response becomes faster, which leads to a more agile and less stable system.
controls the stability, and if is higher, the system is more stable, but increases
damping. and can be specified by a theoretical analysis way, but in practice,
estimation and experiment are common way.

3 Multi QoS Levels Based on Resource Availability

Generally, algorithms will produce certain outputs with specified inputs. For instance,
in sorting algorithms, for specified data elements, the sorting answer will be unique.
In mobile terminals, the concept of traditional algorithms should be extended to
consider the shortage and dynamical changing of resources. The computing will be
suitable for available resources, providing multi QoS levels for consumers. Such as in
multitasking systems, using design method of multi executing paths to satisfy hard
real-time requirements, tasks can discard non necessary contents in the situation of

QoS Adaptive Algorithms Based on Resources Availability of Mobile Terminals 283

shorting CPU resources so as to guarantee the necessary contents can be executed.
For this kind of applications, because of the different resources availability, a
specified input may result in a series of possible outputs, which is shown as in Fig.4.

Fig. 4. Multi QoS levels based on resources availability

Models based on fuzzy control are good solutions for these applications. So,
applications get resources allocated by Adjustor using PID, and consume resources
through fuzzy control model.

With fuzzy control model, decisions can be made by linguistic rules in rule base
and membership function of linguistic value based on the availability of resources at
present. For the control model, the inputs and outputs are all fuzzy sets. So the
quantitative resources amount allocated by Adjustor should be fuzzified, and the
outputs should be defuzzified to generate the decision needed by applications.

Rule base is composed of fuzzy linguistic control rules, which are represented as
linguistic values and linguistic variables. To create the rule base, the linguistic rules
and the membership functions of linguistic values should be determined. The fuzzy
linguistic rules can be described as conditional sentences as following [2]:

R(1): if X1 is A 1(1)and X2 is A 2(1) … and Xn is An
(1) then Y is B(1)

R(2): if X1 is A 1(2)and X2 is A 2(2) … and Xn is An
(2) then Y is B(2)

…

R(m): if X1 is A 1(m)and X2 is A 2(m) … and Xn is An
(m) then Y is B(m)

Here, R(k) k = 1, … , m represents the kth rule; X1 X2 … Xn Y are
linguistic variables; A 1

(k) … A n
(k) and B(k) k = 1, 2, …, m are linguistic values,

which are related to fuzzy sets. Each linguistic rule is related to a handling process
from fuzzy input to fuzzy output. After conversion, an adaptive decision can be
obtained from the fuzzy output.

4 Experimental Analyses

In the experimental environment, there are two application tasks, a browser task 1

and an auxiliary task. 1 is a periodic task, which displays the web contents
periodically, and auxiliary task is not periodic, which simulates the situation of
multitasks to compete the same CPU resource, and makes the available CPU resource

Process

Inputs
{d1, d2,, d3 ,… , dn}

Outputs

…

O1
O2 O3 Ok

W1
W2

W3
Wm

Resources
{r1, r2,, r3 ,… , rj}

284 Yun Li and Lei Luo

of 1 changing continuously. The varying network bandwidth is obtained through
switching randomly between Ethernet and PPP.

The service quality of 1 mainly depends on the following factors: web transfer
time and web quality. According to current resource availability, the web quality
should be high, and web transfer time should be short at the same time. This object
can be achieved by adjusting the contents of browsing web based on the resource
availability currently. The resources which should be considered in 1 are network
bandwidth and allocated CPU resource mainly. In 1, the rule base of adaptive
decision is:

if NetworkBandwidth is High, then
 ContentChoice is Full

if NetworkBandwidth is Low and CPU is Idle, then
 ContentChoice is GraphCompressed

if NetworkBandwidth is Low and CPU is NotIdle, then
 ContentChoice is AlteredTextOfGraph

The membership functions of linguistic functions show in Fig.5[4].

Fig. 5. Membership functions

In experiment, there are three files in Apache Server: flower.gif, flower.jpeg and
flower.txt, which represent the same image object in different format. flower.jpeg is
loss compression of flower.gif, and flower.txt is the altered text of image. For 1,
linguistic values Full, GraphCompressed and AlteredTextOfGraph represent the
following contents in HTTP requestion, which represent priority to transfer GIF
image, JPEG image and altered text respectively:

“Accept: image/gif; q=1.0, image/jpeg; q=0.8, text/plain; q=0.1”
“Accept: image/jpg; q=1.0, image/gif; q=0.8, text/plain; q=0.1”
“Accept: text/plain; q=1.0, image/jpeg; q=0.8, text/gif; q=0.1”
According to adaptive decision, 1 request web content according to the above

format from Apache Server every 20s. The Fig.6, 7, 8, 9 are the experimental results.
Fig.6 means the average data transfer rate. The data are obtained at the HTTP level,
representing the average data transfer rate from the requested web to the actual web
contents through PPP or Ethernet. Fig.7 means CPU resource allocated to 1. At the
situation of not using adaptive mechanism, the browser requests web contents by
some fixed ways- GIF, JPEG or altered text. The result is that: if the user wants to
obtain high quality image, the web transfer time may be too long in the short of
bandwidth; if the user wants to shorten the web transfer time, the high quality image
cannot be obtained even when the bandwidth is adequate. Fig.8 represents the web
transfer time without adaptive considering and Fig.9 represents the web access time
with adaptive handling. Using adaptive decision, 1 can decide automatically the
requested image format according to the current resource availability. So 1 can obtain

0

1

3 5

Network
Bandwidth

Low High

CPU

1

0.3 0.5
ContentChoice

AlteredTextOfGraph

Full
GraphCompressed NotIdle Idle

10 0.3 0.5 1

1

0(kb/s)

QoS Adaptive Algorithms Based on Resources Availability of Mobile Terminals 285

high quality image if the resource is adequate, and can ensure the short web transfer
time even if the resource is poor. By using adaptive mechanism, the browser can
obtain stable web browsing performance.

 Fig. 6. Average data transfer rate Fig. 7. CPU load

Fig. 8. QoS in general systems Fig. 9. QoS adjusted by resource availability

5 Conclusions

With the development of network and mobile communication, computing is more
flexible and free in resource usage. And pervasive computing will be such a
computing mode. In pervasive computing, the terminal is mobile to satisfy the
flexibility of service accessing. For mobile terminal, the available resources always
change dramatically and unpredictably, which makes the QoS can not be satisfied
well.

This paper provides a resource-aware architecture based on PID and fuzzy control
model, which allocates competed resources among multitasks through a stable and
agile way. And by fuzzy control model, application can make different decisions
based on the available resources allocated by resource-aware architecture and provide
multi QoS levels. Combined with this resource allocation and resource consumption
way, a flexible QoS can be obtained.

References

1. Brian D. Noble. Mobile Data Access. Carnegie Mellon University, 1998.
http://www.cs.cmu.edu/afs/cs/ project/coda/Web/docdir /bnoble-thesis.pdf.

0
0
0
1

C
PU

 lo
ad

D
at

a
tra

ns
fe

r
 ra

te
(k

b/
s)

time(s)
40 80 120 160

0.75
0.50
0.25time(s)

40 80 120 160

10

5

GIF GIF
JPG
TEXT

Tr
an

sf
er

 ti
m

e(
s)

time(s)
40 80 120 160

6

4

2time(s)
40 80 120 160

6

4

2

Tr
an

sf
er

 ti
m

e(
s)

286 Yun Li and Lei Luo

2. Baochun Li, Klara Nahrstedt. A Control-Based Middleware Framework for Quality of
Service Adaptations. IEEE Journal of Selected Areas in Communications, Special Issue on
Service Enabling Platforms, 17(9)(1999)1632-1650

3. LI Yun, LUO Lei. Resource-Aware Technology for Mobile Terminals. The First
International Conference on Embedded Software and System(ICESS2004), Hangzhou,
December 2004

4. Li Ren-hou, Intellectual Control Theory and Method, Xidian University Press(1999)

Semi-Videoconference System Using Real-Time

Wireless Technologies�

Cheng Jin, Jiajun Bu, Chun Chen, Mingli Song, and Mingyu You

College of Computer Science
Zhejiang University

Hangzhou, P. R. China, 310027
{chengjin, bjj, chenc, brooksong, roseyoumy}@zju.edu.cn

Abstract. We defined a novel system for wireless videoconferencing in
this paper. Compared with normal videoconferencing systems, our ap-
proach does not need any visual inputs except a neutral image of the
user. Our algorithm automatically calculates user expression features on
conference server by corresponding voice audio input. These features are
transmitted to end users’ mobile sets and final expression synthesis can
be done there. Since the large visual data is replaced by a small amount
of feature data, a great quantity of data bandwidth can be saved, thus
improving communication qualities under wireless conditions.

1 Introduction

Teleconference and videoconference are no longer new concepts in modern so-
ciety. They have been widely used in many areas, such as training, business
meeting, medical operations and etc. These applications usually need instant
communications between people from difference places.

Generally speaking, a teleconference is defined as a telephone meeting among
two or more participants. Sometimes it can also be held while one or several par-
ticipants sharing a same speaker phone. Without any doubts, this technology is
much more complicated than a simple two-way phone connection. Currently,
the most common way to hold a teleconference is all participants make phone
calls to a pre-arranged server and the server will handle vocal signal dispatch-
ing during the meeting. This technology requires low bandwidth of the network
because only vocal signals need to be transferred during the conference. How-
ever, since this monotype of signal (vocal) greatly limits the information (facial
expression, gestures and etc.) carried, this also causes difficulties in communi-
cation, especially when there are many participants involved in the meeting, or
these participants are not familiar with each other.

� This paper is supported by National High Technology Research by National High
Technology Research and Development Program of China (863 Program, No.
2004AA1Z2390) and Key Technologies R&D Program of Zhejiang Province (No.
2005C23047 & No. 2004C11052), and HP Labs.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 287–293, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

288 Cheng Jin et al.

A teleconference can be a conference, called a videoconference, if provided
with more equipments and special arrangements. In videoconference, partici-
pants can see still images or motion videos together with audio signals of each
other. By introducing multiple types of signals, participants can ”see” the cur-
rent speakers as if they were sitting in a same room, reducing the possibility of
misunderstanding. Since video signals are introduced into the conference, this
technology requires relatively high bandwidth to transmit both signals. Despite
the high maximum data bandwidth, up to 54 Mbps, that the new IEEE stan-
dard 802.11g defines, the maximum operating range of Bluetooth is only 300
feet under normal conditions. [2] It also needs special equipments such as video
cameras to capture visual information. Although these equipments are getting
cheaper and smaller, these factors still make it sometimes very inconvenient for
applications, which may need wireless connections.

In this paper, we try to solve this dilemma by raising the idea of Semi-
Videoconferencing System (SVS). The rest of the paper is organized as fol-
lows: Section 2 introduces some essential background knowledge and algorithms,
which are the fundamental of building the system. The detailed system structure,
including the network architecture, is described in Section 3. Finally, section 4
gives a conclusion and raises some interesting topics for further developing.

2 Preparation Knowledge

Section 1 points out that the main problem lies in the balance between band-
width, or ”size of data” in other words, and user satisfaction, which depends
greatly on types of signals received.

In order to transmit more types of information, larger bandwidth will be
required. For wireless applications, the recommended bandwidth for video is
usually 2 times or even higher than that for voice audio, both in GPRS and in
UMTS. Table 1 and 2 from [4] illustrate recommended 3GPP and RealMedia
Settings for Wireless Networks, respectively. At the same time, the video frame
rate is only about 5 to 8 FPS, which is far from satisfactory of human perception.

If the visual signals can be reduced or be replaced by comparatively much
smaller ones, the overall throughput can be tripled or even at a higher rate. Song
et al [6] attempted to synthesize highly detailed real-time human expressions
and facial motions on a given 3-D model by analyzing inputting voice signals.
In wireless applications, however, it is neither necessary nor possible to obtain
such results of high resolution. For instance, the size of the screen of a PDA
is usually 128mm x 96mm (SQCIF, Sub Quarter CIF), which means for a 5-
party conference, each side will be shown in a maxim of 64mm48mm area in
average. Achieving high-resolution results in such a small area is relatively not
cost-effective.

Meanwhile, recent research shows that audio signal may have greater influ-
ence on human perception than its visual counterpart. Sometimes, it can even
cheat human brains to make visual illusions. [1] It is also the reason why people
will not feel too much confused when watching dubbed films, because they tend

Semi-Videoconference System Using Real-Time Wireless Technologies 289

to care more about voice, facial expressions and gestures instead of detailed mo-
tions such as real movements. This indicates the possibility of using synthetic
faces to replace real images while playing voice audio streams simultaneously, if
the results of synthesis are good enough to make human eyes/brains to believe
they are the ”real” facial motions for the corresponding voice signals.

A novel way of expression mapping was introduced by Liu et al [3]. Given a set
of frontal images, or a facial expression library L, of one person A and an image
of frontal neutral face of another person B. Liu’s algorithm can automatically
synthesize a same set of facial expressions of B for each expression in L. We
apply this idea to expression mapping in video sequence synthesizing. Obviously,
it costs too much to perform mapping algorithm for every single frame, and it is
also not practical to setup such a large library that can include every possibility of
facial expressions. That is why the choice of using a set of predefined key-frames
as expression library is preferred. The connection of neighboring key frames is
operated by view morphing. [5]

Table 1. Recommended 3GPP Settings for Wireless Networks

Network Total Bit
Rate

Voice Audio Music Audio Video FPS

GPRS 15-25
kbps

AMR-NB
4750-7950 bps

AAC-LC 8
kbps

H.263 or MPEG4 10-20
kbpsSQCIF or QCIF

5-6

UMTS 50 kbps
or less

AMR-NB
10200 bps

AAC-LC 12-
16 kbps

H.263 or MPEG439.8
kbps (voice)34-38 kbps
(music) QCIF

6-15

Table 2. Recommended RealMedia Settings for Wireless Networks

Network Total Bit
Rate

Voice Audio Music Audio Video FPS

GPRS 15-22
kbps

RealAudio r©

5 kbps (sipr2)
or 6.5 kbps
(sipr0)

RealAudio r©

6 kbps
(cook8) or 8
kbps (cook0)

RealVideo r© 8 10-17 kbps
SQCIF or QCIF

5-6

UMTS 50 kbps
or less

RealAudio r©

8.5 kbps
(sipr1) 16
kbps (sipr3)

RealAudio r©

11 kbps
(cook1) 16
kbps (cook2)

RealVideo r© 8 34-41.5
kbps (voice) 34-39 kbps
(music) QCIF

6-15

290 Cheng Jin et al.

3 Semi-Videoconferencing System (SVS)

The processing procedure of our system is divided into two stages: pre-computing
stage and real-time state. This division is proved to make the system more effi-
ciently. Before giving the detailed introductions of these stages, we first illustrate
the network architecture for better understanding.

3.1 Network Architecture

There are two kinds of servers in the system, one is Synchronization server and
the other is the end-server. These two kinds of servers are connected by high-
speed cables.

The end-servers are equipped around the place where the conference will
be held. This kind of servers acts as base stations in telecommunication, which
connects all the users wirelessly or directly. The responsibility of the end-servers
is to manage communications with users and Synchronization server, including
sending voice data from the user side to Synchronization server, and sending
voice/feature data inversely.

Hand held computer

End Server

Cell Phone

End Server

 End Server

 End Server Sync. Server

Laptop Computer

Cell Phone

Fig. 1. Network Architecture of SVS

3.2 Pre-computing Stage

The purpose of this stage is to set up a facial expression library (FEL). From the
inputting sequential photographs, the system extracts the expression images and

Semi-Videoconference System Using Real-Time Wireless Technologies 291

Sequential Raw
Data

Extraction and
Alignment

HMM Based
Clustering

Processed
Data

State
Transition

Matrix

Fig. 2. Pre-computing Stage

User
Connection

User
Identification

Start
User Profile

Upload/
Download

During
Conference

End of
Conferene?

New
Participant
Coming?

Y

New Participant
Profile

Download
Y

N

N

My Turn to
Speak?

Get Current Speaker
Voice Signals and

Expression Features

N

Send My Voice
Signals to End

Server

Y

Closing
Connection

Inform the End
Server

End

Expression
Mapping

Fig. 3. Real-Time System Overview

292 Cheng Jin et al.

aligns them. An HMM based clustering algorithm is applied to divide these im-
ages into different categories and then find out State Transition Matrix between
them. This procedure makes it possible for the system to predict next expression
in real-time. Processed results are stored as FAP/FDP features instead of images
in each mobile set, which largely reduces the storage space.

3.3 Real-Time Stage

Figure 3 shows the system’s pipeline. After the user is successfully connected, he
will be asked to upload his/her profile, such as an image of his/her neutral face.
At the same time, the profiles of every other participant will be downloaded to
this newly coming user’s mobile set.

During the conference when a new participant enters the conference, the
system will pass his/her profile to every other participant to ensure everyone gets
the most-updated information. When the user is making a speech, his/her voice
signal will be transmitted to the end-server. To a certain participant, when other
users are speaking, their voice signals together with their synthesized expression
features will be passed from the end-server to this user’s local mobile set. If
there is more than one person speaking at the same time, each voice audio
signal is sent from the corresponding end-server to the Synchronization Server.
Expression features are calculated respectively for each voice audio there. After
it is finished, expression features of different speakers, together with blended
voice audio signal, are sent back to each End Server, and then from each End
Server to end users that are connected to it. The expression mapping/predicting
is performed locally. This is ensured by the computational ability of modern
mobile sets, which has been developed to a level that they are capable of handling
these complicated jobs. For instance, an HP iPAQ 5555 Pocket PC has a CPU
running at 400 MHz with 128 MB SDRAM, which is comparable to a low-end
desktop PC.

If the user decides to quit the conference or the conference is finished, the
last packet will be sent to the End Server indicating the current user profile can
be removed.

4 Conclusions

In this paper, we describe a novel scheme of videoconferencing system for wireless
application. The idea of using expression features instead of real video stream is
proposed, which greatly reduces the data quantity to be transmitted, and highly
improves the desirability of the teleconference.

There are also some further research directions that can be explored in the
future. Currently, all data flow directly to the Synchronization Server and the
expression feature synthesis job is also done there. This may make the Synchro-
nization Server overloaded. A possible solution is to let End Servers perform
expression feature synthesis, and the Synchronization Server plays an organizer
role in controlling point-to-point data flow between End Servers.

Semi-Videoconference System Using Real-Time Wireless Technologies 293

Another direction is to use Speech-to-Text and Text-to-Speech tools to reduce
data size to a much lower level. However, users may want to keep something
”real” in communication and there is still much work to do to improve these
tools.

References

1. Sound-induced Illusory Flash Perception: Role of Gamma Band Responses. J. Bhat-
tacharya, L. Shams and S. Shimojo, Neuroreport. 2002 Oct 7; 13(14): 1727-30.

2. The New Mainstream Wireless LAN Standard - IEEE 802.11g White Paper, Broad-
Com, 2003

3. Expressive Expression Mapping with Ratio Images. Z. Liu, Y. Shan and Z. Zhang.
SIGGRAPH 2001, Los Angeles, August 12-17. pp. 271-276

4. Encoding Recommendations for Mobile Devices, Version 2.0.2, RealNetworks, 2003

5. View Morphing, S. M. Seitz and C. R. Dyer, Proc. SIGGRAPH 96, 1996, pp. 21-30.

6. Audio-Visual based Emotion Recognition-A New Approach, M. Song, J. Bu, C.
Chen and N. Li, Proceedings of IEEE Computer Vision and Pattern Recognition,
2004, pp. 1020- 1025, vol.2, ISSN: 1063-6919

Smart Client Techniques for Online Game on

Portable Device

Huacheng Ke, Haixiang Zhang, and Chun Chen

College of Computer Science
Zhejiang University

Hangzhou, P.R.China, 310027
kehuacheng@zju.edu.cn

Abstract. In this paper1, a smart client model tailored for online game
on portable devices is presented. Based on the context of game environ-
ment, server-side programming paradigm and smart deployment tech-
niques are proposed to address the problems that emerge in online mo-
bile game development. Network traffic issues of such a model are also
discussed in this paper. An illustrative example is given in the last part
of the paper.

1 Introduction

Mobile game has evolved from simple single-player, disconnected game to com-
plex multiplayer, online game, as a result of the dramatic marketing growth of
portable computing device. Mobile client/server technologies are therefore being
applied to mobile game development. In previous research on mobile client/server
computing, different models have been proposed. Thin client model like Infopad
[6] can solve portability issues but cause high wireless traffic, which is rather
expensive for end users. On the other side, full client model like CODA [5],
WebExpress [2] reduces wireless traffic at the cost of client development work
on heterogeneous platform. For better adaptability, many flexible client models
have also been discussed [3]. However, without making use of game contexts,
these models are not customized for online games.

In general, online mobile game development has been bottlenecked due to
inherent drawbacks of mobile devices and environment:

– Platform heterogeneousity: Platforms on consuming portable devices such as
J2ME, BREW are highly heterogeneous, preventing application porting and
increasing development cost.

– Low computing power: Consuming portable devices possesses less powerful
CPU and limited storage, which restricts complex game logic and big re-
sources.

1 This paper is supported by National High Technology Research and Development
Program of China (863 Program, No. 2004AA1Z2390) and Key Technologies R&D
Program of Zhejiang Province (No. 2005C23047 & No. 2004C11052)

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 294–299, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Smart Client Techniques for Online Game on Portable Device 295

– Wireless connectivity problem: Wireless connection provides only poor trans-
fer speed, while end users pay much for wireless traffic.

– Difficulty in deployment: Online game usually requires frequent update.
However, in many mobile game business models, clients are not permitted to
modifying downloaded executable binary or will be charged additional fee.

To address these problems in online gaming, we propose a novel model named
Anyplay. The primary aspect of the Anyplay model that differs from previous
models is the role of portable devices as server managed terminal customized
for gaming: Fundamental game elements like graphics, audios are viewed as
basic Manipulable Objects in this model. They will be created, destructed and
manipulated based on control primitives received by Anyplay client. As a smart
client model, the portable client will choose suitable game resources based on its
physical features and these resources will be keeping updated based on version
check. As a server side programming paradigm, Anyplay provides generic support
for playing different games without change in client side.

This paper is organized as follows. After the overview of the whole system,
we discuss its detailed design and give some samples and some discussions in
packet size. Conclusions follow in the ending part.

2 Overview

As demonstrated in Figure 1, Anyplay system consists of centric game servers
and subordinate server-managed terminals. Game developers make game with
Anyplay SDK on server side, while the underlying infrastructure and wireless
communication are transparent to programmers. On portable devices, platform-
dependent terminals are implemented based on common protocols. These termi-
nals respond to server instructions to manipulate basic game elements and send
user input to server as well for interaction.

Anyplay model is a server side programming paradigm for online mobile
game, in which change to game logic is transparent to clients. As a smart client
model, automatic deployment technique keeps clients updated based on version
comparison and device capacity. Details of these techniques will be discussed in
following sections.

3 Smart Client Techniques for Online Gaming

The main idea of Anyplay model is to make use of game context to address
the problems we discussed in the first section. Details of these techniques are
explained as follows.

3.1 Smart Deployment

Smart deployment of game resources is the key to reduce wireless network traf-
fic and conquer platform heterogeneousity. Smart deployment consists of two
techniques: device adaptation and resource upgrade.

296 Huacheng Ke, Haixiang Zhang, and Chun Chen

Fig. 1. Anyplay Server and Server Managed Clients

When Anyplay enabled clients connect server for the first time, they retrieve
all resources necessary for gaming. We use device adaptation to overcome plat-
form heterogeneousity. In this scheme, the device notifies server with its type
ID when trying to establish connection. The server then retrieves the device’s
physic features and platform information from its database. Therefore, the server
is capable of providing different terminals with different resources (image, sound,
etc) according to their own features. Physical capacities taken into considera-
tion include hardware features such as computing power, display capacity, and
software platform differences as well.

Online gaming requires frequent updates. From the second time of connec-
tion on, terminal resources will be upgraded upon connection based on an auto-
matic version check between client and server side. Since Anyplay is a server-side
programming paradigm, changes of game logic are also transparent to clients.
Therefore this model solves application deployment problem for online games,
which requires frequent software updates.

3.2 Resource Cache Management

As the resource cache size in client size is limited, the client can not always down-
load all resources it needs to run a specific game. In these cases, we introduce a
priority based scheme to make best use of client cache. Frequently used global
resources are marked as higher priority to be kept in cache, while resources that
are rarely used will be swapped out when there is no free space in cache.

3.3 Object Oriented Manipulation

In Anyplay, we view gaming process in an object-oriented way: We define a hier-
archy of manipulable object classes to describe fundamental elements in gaming.

Smart Client Techniques for Online Game on Portable Device 297

Each class in such a hierarchy is called Manipulable Object (MO) and catego-
rized into two groups: Entity and Animation. Entity describes substantial objects
in gaming context, such as shape, image, audio clip; whereas Animation repre-
sents dynamics of Entities: for example, displacement can be applied to graphics
entities for game character object movement. We also introduce grouping mech-
anism in Anyplay model to describe aggregation of objects: EntityGroup for
complex objects while AnimationGroup for combined motions. Figure 2 shows
a hierarchical diagram for MO in UML [1]

Object

Entity Animation

Shape Image EntityGroup Displacement Rotation AnimationGroup

Fig. 2. Manipulable Object Hierarchy (partial) in Anyplay

Anyplay applications adopt a server side programming paradigm. In Anyplay,
we define several kinds of basic manipulation primitives:

– Creation: instruct the terminal to create an object, and name it with an
identifier

– Destruction: instruct the terminal to destroy an object specified by its iden-
tifier

– Animation: animate an entity by connecting it with an animation object
– Binding: bind a single object to an existing group

Formal specification in Z [4] of these primitives is defined as follows:

manipulation_primitive = creation_primitive |destruction_primitive
| animation_primitive | binding_primitive

creation_primitive = "CREATE" + object_encoding + object_id
destruction_primitive = "DESTROY" + object_id
animate_primitive = "ANIMATE" + entity_id + animation_id
binding_primitive = "BIND" + object_id + group_id
object_id = group_id | non_group_id
non_group_id = entity_id |animation_id

In Anyplay, All Manipulaple Objects must be created by a Creation Primi-
tive first, then referred by its ID. Creation Primitive actually associates object
ID with its encoding. Different Manipulaple Objects are encoded based on their

298 Huacheng Ke, Haixiang Zhang, and Chun Chen

own characteristics. For example, a circle can be described by its center posi-
tion, radius, line color and style. However, big resources like bitmap or audio
clip are described with an index in pre-downloaded resources package in smart
deployment step.

3.4 Scenario-Based Object Creation

By observing Anyplay Primitive specification, it is straightforward that Creation
Primitive will consume most bandwidth since it encodes objects rather than
simply refer to some IDs. To avoid this, we need to exploit the opportunity
within the inherent characteristics of game context.

A scenario-based scheme to avoid unnecessary object creations is proposed. A
scenario is defined as ”from the perspective of a specific client, a certain period in
which a same batch of objects are frequently referred”. Therefore objects creation
only happens once at scenario start-up and kept in a local cache. Essentially,
this scheme takes full use of local storage to reduce network traffic. The choice of
scenario usually depends on game context. For example, in an RPG (Role Playing
Game), when a game role enters a city, a new scenario should be created and
kept sustained until he leaves. In Anyplay model, we encourage game developer
to adopt this scenario based scheme by providing a set of APIs for scenario
management. Some comparisons on wireless network traffic are given as follow:

�

���

����

����

����

����

����

����

����

�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
	

�

�
�
�
�

�
�
�
	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
	
�
�

�
�
	

�
�
	

�
�
	

�	
��
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

���

����

����

����

����

����

����

����

�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
	

�
�

�
�
�
�

�

�
�
�
	
�

�

�
�
�

�
�
�
�
�
�

�
�
	
�

�
�

�	
��
���

�
�
�
�
�
�
�
	

�
�
�

�
�
�
�

Fig. 3. Network Traffic without (left) and with (right) scenario in a RPG context

4 Example and Packet Size Optimization

Below is an illustrative example of Anyplay enabled multi-player online game in
representative heterogenous platform J2ME, BREW and Desktop PC as well.

Meanwhile, in wireless communication, transfer speed is significant influenced
by packet size [4]. In Anyplay model, we choose optimal packet size based on
experiments on target wireless network. Below is our experimental data on China
Unicom’s wireless network. Accordingly, our packet size for Unicom is 2 kilobytes.

Smart Client Techniques for Online Game on Portable Device 299

��������	��
��
����������

��������	�
 ���������

��������	����������������

��������	�
 �������� �!"

��������	��#�

���
����
���
�� #

Fig. 4. Anyplay Terminal on Different Devices

���
��	����	��	

�

������
������$�$�������#%	���

&'�(%�)���*	���
��
��+�+,-

�������
 �%���� ���*	�� �.���

, �/�('	�0

�
����

����
����

����
����

����
	���

���
����

�����

� ���� ���� ����
��� �����

�
���������������

�
�
�
�
�
�
�
�
�
	

�
�
�

Fig. 5. The Impact of Packet Size on Transfer Speed) in Anyplay

5 Conclusions

In this paper, we present a smart client model for online mobile game - Anyplay.
Anyplay addresses inherent disadvantages of online mobile gaming and is opti-
mized for wireless connection. The authors would like to thank Xi Chen and Yi
Liu for prototypes construction.

References

1. Martin Fowler, UML Distilled 3rd Edition, Addison Wesley, 2003
2. Housel, et al. WebExpress: A system for optimizing Web browsing in a wireless

environment. In Proceedings of the 2nd Annual International Conference on Mobile
Computing and Networking

3. Jing, et al. Client-Server Computing in Mobile Environments, ACM Computing
Surveys, Vol.31, No.2, June (1999)

4. Modiano, An adaptive algorithm for optimizing the packet size used in wireless ARQ
protocols, Wireless Networks 5 (1999) 279-286

5. Satyanrayanan, et al. Coda: A highly available file system for a distributed work-
station environment. IEEE Transaction on Computing. 39, 4 (Apr.1990), 447-459.

6. Truman, et al. The InfoPad Multimedia Terminal, IEEE Transactions On Comput-
ers, Vol. 47, No. 10, October 1998

7. Woodcock, et al. Using Z, Specification, Refinement and Proof, Prentice Hall, 1996

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 300-305, 2005.
 Springer-Verlag Berlin Heidelberg 2005

The Implementation of Mobile IP in Hopen System

Yintang Gu and Xichang Zhong

1HOPEN Software Engineering Co., Ltd, 4# South Fourth Street, Zhong Guan Cun, Beijing
P.O.Box 2717, Beijing 100080 P.R. CHINA

gyt75@163.com, xczhong@sec.ac.cn

Abstract. A future wireless network infrastructure is expected to be an all-IP
based and supporting mobility between the Base Stations belonging to different
types of network as well as belonging to the same network. There’re some
wireless data infrastructures defined to provide some specific Function Units to
manage the IP layer mobility. But most existed infrastructures provide no such
Function Units. Here, we consider from the Mobile Station aspect to support the
Mobile IP in current wireless network infrastructure.

1 Introduction

The Internet Protocol (IP) represents today’s standard in internet networking.
Moreover, the IP technology has recently been improved with the introduction of new
services such as Voice over IP (VoIP) and best effort/QoS enhancements which
represent key features of wireless networks. Thus, the ability to handle data and voice
services in an integrated form as well as the possibility of employing the same
protocol when accessing the system through a wired or a wireless subnetwork, make
extremely attractive solutions based on extensions of the standard IP protocol for
mobility management in third generation cellular systems 1-3.

Mobile IP is the current standard for supporting macro-mobility in IP networks 4.
With Mobile IP, the mobile wireless computers can be attached to the Internet and
remain attached to the Internet even when they move from place to place, establishing
new links and moving away from previously established links.

Such a system must be able to manage the handoff between cells within the same
access network as well as between different access networks. Currently, there are
some wireless data network architectures, such as GPRS and CDMA being defined,
which support mico-mobility with which the WS (Wireless Station) can access the
Internet using one permanent IP address while moving within the same IFU
(Interworking Function Unit, such as SGSN in GPRS5 or IWF in CDMA) area and
without necessity of re-registering to HA. With implementation of VLR, HLR and
adding tunnel function to IFU, these architectures can also provide macro-mobility
management, with which MS can communicate with its peer node without changing
its IP address when moving between different IFUs.

It’s sufficient for MS to only have a sense of micro-mobility provided by every
network being accessed through implemented VLR, HLR and tunnel function.
Unfortunately, most existing wireless network structures haven’t provided these

The Implementation of Mobile IP in Hopen System 301

service units yet. So, we consider the mobility support from the wireless MS aspect in
this article. We discuss the functions needed by a wireless MS for supporting macro-
mobility and micro-mobility, the message sequence and data flow between the MS
and the IFU, MS and HA (Home Agent), and the advantages of our implementation.

2 Wireless Data Network Architectures

Here we will overview some wireless data network architectures currently being
defined.

General Packet Radio Service (GPRS) is being defined by the European
Telecommunications Standards Institute (ETSI) to provide packet data service using
Global System for Mobile Communications (GSM) cellular networks. A high-level
diagram of a GPRS network is shown in Fig. 1. GPRS uses a combination of link-
layer and newly defined higher-layer technique for mobility management.

Fig. 1. GPRS Network Architecture

On the air interface, GPRS supports registration, authentication, paging, and
handoff (called cell reselection), as well as procedures for channel access to transmit
data packets. GPRS allows the mobile host to operate in two distinct states: an active
state where the network knows the location of the mobile host’s current base station,
and a standby state where the network knows only the approximate location of the
user, such as a set of base stations, called the paging area, in which the mobile host
resides. One of the motivations for defining the standby state is to reduce the host’s
battery power consumption by allowing the mobile host to only notify the network
when it moves out of the paging area. If data packets for a mobile host in standby
state arrive at the wireless access network, the serving GPRS service node (SGSN)
pages the mobile host in its paging area to determine the mobile host’s current base
station before delivering the data packets.

In the backbone network, GPRS defines a new tunneling protocol built on top of an
IP network, called the Generic Tunneling Protocol (GTP), to handle device mobility,
and support registration and authentication procedures. Data packets flowing through
the tunnel are encapsulated with an outer GTP/UDP/IP header. This adds 48 bytes of
header overhead to each data packet, which is substantial for voice-over-IP

302 Yintang Gu and Xichang Zhong

applications that transmit data packets with a small payload. GPRS also defines a QoS
profile for each user with attributes for precedence, delay, reliability, as well as peak
and mean throughput classes. However, the drawback of defining GPRS-specific QoS
support mechanisms is that advances in IP QoS support, such as integrated [3] and
differentiated [4] services, may not be directly applicable.

In Fig. 1, the air interface protocols from the mobile device are terminated at the
base terminal station and base station controllers (BTS/BSCs) (shown as a single box
for simplicity). The GTP tunnels extend between the two GPRS gateway routers: the
SGSN terminates one end of the tunnel and directs packets to the proper BTS/BSC
using link layer protocols; the gateway GSN (GGSN) terminates the other end of the
GPRS tunnel and is a gateway to the Internet. As a device moves between SGSNs,
new GTP tunnels are established to manage mobility. As a device moves between
BTSs/BSCs on a single SGSN, handoffs are handled at the link layer.1 GPRS reuses
the same infrastructure deployed for GSM in order to support authentication,
registration, and roaming. In particular, each SGSN is connected to a visitor location
register (VLR), which holds a temporary database of the users currently attached to it.
A permanent database of registered users is kept in the home location register (HLR),
together with a pointer to their current VLRs. Whenever a new user has to be
authenticated, the VLR contacts the user’s HLR. The HLR replies to the VLR with
authentication information, which is composed of a set of random challenges and their
corresponding responses, obtained with the use of a secret key that the HLR shares
with the user. By sending the challenges to the user and comparing its responses with
those obtained from the HLR, the VLR performs user authentication. Similarly, for
ciphering between the SGSN and the user, the HLR can send to the VLR encryption
keys, obtained from the same secret key known only to the user and HLR.

The CDMA network architecture is similar to the GPRS Architecture. One
important difference between GPRS and CDMA networks is that in CDMA networks
a mobile device may communicate with more than one base station during a soft
handoff, thereby transmitting duplicate data frames and increasing the probability of
the correct reception of user data. CDMA networks use HLR/VLR mechanisms
similar to GPRS2 for supporting user authentication, registration, and roaming. In
addition, CDMA networks use authentication procedures defined for Mobile IP. And
data packets between the home agent and the foreign agent are encapsulated using an
IP-in- IP tunnel.

3 Implementation of Mobile IP in Hopen System

All the maro-mobility is managed by VLR, HLR and IFU in GPRS and CDMA
network introduced above. So it’s essential for every access network providing VLR,
HLR and IFU to support mobile IP. If the current access network does not provide
these Function Units, but just provide the service to access Internet, i.e. MS can
obtain an IP address from the current network and communicate with the Internet
using the obtained IP, thus the MS cannot enjoy the mobile service. Then, what can
we do if we want to enjoy the mobile service in an access network without these
Function Units? The solution below may be an answer.

The Implementation of Mobile IP in Hopen System 303

3.1 Assumptions

Before expatiation on the details of the implementation, some assumptions are given
as follows.

 The current access network can access Internet.
 The current access network provides some mechanism for MS to obtain a temp

IP address.
 HA is provided in MS’s home network.
 There’s a mechanism between MS and FA with which the MS can be informed

if FA is provided in current access network.

3.2 Hopen Protocol Stack

Hopen is an embedded real time OS. And it has been used in some mobile devices
such as PDA and mobile phone. Hopen protocol stack support a whole TCP/IP
protocol family. The structure of the Hopen protocol stack is showed in fig 2.

Fig. 2. Hopen Protocol Stack

The physical layer is the MS’s interface to BTS. The link and mac layer are
network-specific parts, which includes MAC, RLC, LLC and SNDCP for GPRS. The
tunnel device is a virtual link layer device supporting mobile IP tunnel. The mobile IP
daemon is responsible for registration process and managing the tunnel devices.

3.3 Message Sequence

The message sequence of the MS is depicted as follows.
MS obtains a permanent IP address from its Home Network as its home address.

While the MS moves from one BTS to another within its home network, the link layer

Link and
MAC layer

TCP UDP

Socket interface

Mobile IP daemon

Other network applications

Tunnel
device

IP layer

Physical layer

304 Yintang Gu and Xichang Zhong

protocol manages the mobility, and the layers above IP has no acknowledgement of
the mobility.

When MS accesses a foreign network supporting mobile IP, the mobile IP service
is obtained at the process of registration to the current BTS as GPRS protocol
described. So layers above IP in MS don’t know this mobility either. In this case, MS
just need to deal with the micro-mobility though the current access network is a
foreign network. The macro-mobility is processed by the SGSN, VLR and HLR in
GPRS infrastructure or by IWF, VLR and HLR in CDMA infrastructure.

When MS accesses a foreign network which doesn’t supply IFU and only supplies
the gateway through which the MS could access the Internet resource, the link layer
notifies the upper layers that there’s no Mobile IP service available in current access
network. At the same time, the temp IP address obtained from the current network is
informed to mobile IP daemon. The mobile IP daemon uses the temp IP address as the
Co-allocated Care-of Address to register to its HA. The IP tunnel is finally created
after MS receives the register reply message from its HA.

3.4 Routing and Data Flow

When the MS accesses the Internet from a foreign network not supporting mobile IP,
the routing and data flow are described as follows: the packets from the MS to its CN
(Correspondent Node) are directly forwarded using the current routing policy. The
packets from the CN is first forwarded to the MS’s home network and captured by
MS’s HA. HA resembles the origin packet into tunnel which targets to the Co-
allocated Care-of Address of the MS. The tunnel packet is untunneled in the MS’s
tunnel device and finally the origin packet is sent to the upper protocol of the MS.

3.5 Advantages of the Implementation

There are two advantages of our implementation comparing to the resolutions just
supporting the micro-mobility.

 The MS can use mobile IP service in the network not providing FA.
 In current resolutions, every MS needs two global routable IP addresses, HA

address and CCA. This makes the lack problem of the number of addresses in
IPv4 more serious. Through adding the UDP tunnel module in the MS and HA,
our solution can support the network environment described in RFC3519 in
which MS’s CCA could be private address. Using private address as CCA could
alleviate the growth of IP address.

4 Conclusion

Considering the handoff efficiency and the scalability, the new infrastructures for
wireless network treat the MS mobility as two parts, micro-mobility and macro-
mobility. The MS only needs to deal with the micro-mobility while all the macro-
mobility management is performed by some specific Function Units. This prohibits

The Implementation of Mobile IP in Hopen System 305

the MS using Mobile IP in the network not providing these Function Units. Our MS
implementation can work in this case without collapsing any performance of these
network infrastructures.

References

1. Girish Patel, Steven Dennett: The 3GPP and 3GPP2 Movements Towards an All IP Mobile
network. IEEE Personal Communications Interactive (August 2000).

2. Motorola: Wireless Internet Network Communications Architecture. The International
Engineering Consortium, http://www.iec.org.

3. Nokia: IP-Radio Access Network . Nokia’s vision for an all IP based architecture for Radio
Access Networks, http://www.nokia.com.

4. C. E. Perkins: IP Mobility Support. RFC 2002 (Oct. 1996).
5. Digital Cellular Telecommunication System, General Packet Radio Service, Service

Description — Stage 2, GSM 03.60 v. 6.0 ETSI (1998).

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 306-311, 2005.
 Springer-Verlag Berlin Heidelberg 2005

A New CGI Queueing Model Designed in
Embedded Web Server

Xi-huang Zhang and Wen-bo Xu

School of Information Engineering, Southern Yangtze University
214122 Wuxi, Jiangsu, P.R.China

{zxhsytu, xwb}@sytu.edu.cn

Abstract. The embedded web servers play very important part in embedded
system. Controlling the timing performance of each individual request, such as
CGI (Common Gateway Interface), between client and server is a challenging
problem. CGI requests/responses not only are the useable access to interaction
with the web server in embedded device, but also are executed in web server in
real-timing performance of a network close to the service level specification.
To ensure the CGI response within a specified time to meet the needs of real-
time demand, the principal of the CGI queueing model in embedded web server
is studied, and the approach to the problem of meeting relative delay guarantees
in web servers is extended. Furthermore, the process of CGI request executed in
server is divided into several subroutines, which is useful to reduce the CGI
request response time. This web server has been successfully implemented in
embedded platform for a real-time controlling system and the tested CGI
response performance shows that the new CGI Queueing Model is efficient.

1 Introduction

In a network based embedded systems, embedded web servers have become an
integral part of our information services infrastructure. End-users can execute web-
enabled applications from any location by browsers, which has been the standard
solution of remote control system. Typically there is a web server in device and a
browser as user interface for a variety of applications.

To reduce the cost of embedded system, we usually build a MCU based web server
in many embedded appliances [1, 3, 4]. Due to the limited processing ability, CGI
(Common Gateway Interface) is used as the basic communication mechanism be-
tween servers and client terminals. Remote devices can be definitely monitored with
embedded web servers supporting CGI functionality [6]. To ensure the CGI response
within a specified time in the need of real-time demand, we should improve the nor-
mal execution of CGI request. The Queueing theory and feedback method are widely
studied to guarantee controllable delay of the CGI response [2].

In this paper, we first study the principal of the CGI queueing model and generalize
the approach to the problem of meeting relative delay guarantees in web servers.
Secondly, we suggest a new subroutine model to improve the real-time performance.
At last, in embedded environments, we offer a novel approach to implement the CGI.

A New CGI Queueing Model Designed in Embedded Web Server 307

2 The Principle of the Queueing Model

Queueing theory provides the predictive framework by which expected delays can be
inferred directly from input load [2, 5]. The queuing theory is also used to compute
the service rate and necessary resources to achieve a specified average delay when the
currently observed average request arrival rate is given. Server resources are then
allocated to achieve the computed service rate. A feedback control loop compares the
actual delay achieved to the desired average, and therefore adjusts the resource
allocation accordingly in an incremental manner to ensure that the desired delay is
maintained and completed before deadline. The feedback and queuing components
operate concurrently in a complementary manner.

Fig. 1. The queueing model structure in embedded web server

Let the CGI request process (shown at the top of Figure 1) have arrival rate i,
which may change abruptly, with a deadline. The queueing model should obtain the
arrival rate and deadline online. If the average delay of a queue is less than user
specification and the CGI request is completed before the deadline, the web server
gets the agreement between the request and the response. If the average delay of a
queue is larger than user specification and the CGI request is completed after the
deadline, the web server should be corrected by the controller via service rate
adjustment and scheduler to get the agreement between the request and the response.
Before completing the above adjustment, the mean delay Dj of the request must be
computed and compared with the expected delay Di-ref. The average arrival rate i and
the server rate μi also need to be calculated. For allocation, let MAXni denote the
maximum number of server processes, that is, the server’s max capacity. And let ni
represent the number of server processes stayed in queue. By the feedback
mechanism, the model described above is shown in Figure 1.

We have added a group of new modules implementing the queueing model
described above. The modules to manage the CGI task queue come from client
devices are Queue Monitor, Predictor, Queue Controller and Scheduler. According to
the resulting real-time, the queue scheduler determines a certain number of CGI
request connections from this client. The queue scheduler runs the highest-priority
CGI request selected from CGI request queue. Every CGI request from client has its
descriptor to point the CGI request priority and deadline, which are used to schedule

308 Xi-huang Zhang and Wen-bo Xu

the queue. Queue Monitor is executed to do basic operations on CGI queue such as
inserting, deleting and sorting. It is an essential part of the model.

A CGI request would be changed into a server process queued in CGI queue
executed in web server. At the mean time, two important modules, Queuing Model
Predictor and the Feedback Controller, are necessarily employed to decide the CGI
request-response time for the client to be controlled.

2.1 Queuing Model Predictor

The web server should deal with the large number of requests from clients and re-
sponse these requests in time, which is dominated by the ability of web server. Before
the control policy and resources allocation are detailed, Queuing Model Predictor
should compute three values.

The first value is the max number of CGI request, which the web server is able to
cope with. To estimate the max number of CGI request, we should know the max
capacity of the web server C. Assume there are N instances of CGI request, (CGIi
i=1,2,3…N). Every CGI request statically needs the recourse ci or ci is allocated to
CGI request. At a moment, there are ni instances in web server. It is obvious that the
max number of instances for a CGI request MAXni is restricted by following formula:

CcMAXn ii
 (1)

Because of the variety of ni, the max number of the CGI request instances is
changeable. By the above formula, the Queuing Model Predictor can compute the
max number of the CGI request instances.

The second value is request delay Di that is used to select an emergent task from
queue to schedule according to the deadline. If the web server system know every
instances executing time for CGIi, it is easy to estimate the request delay Di by the
average or max of all the time of CGIi instants.

Obviously the serve rate μ is the last value to compute. Assume n latest instances of
CGIi are finished from f1 to f2. The serve rate μ is described as following:

12 ff
n (2)

Let c be the total capacity of the server and a resource reserve of size ci C be
dynamically allocated to CGIi request. The corresponding service rate μi will be ci μ,
where μi is the service rate per resource unit. The long-term average queueing time
for the clients CGI request is

)(ii cc
W

 (3)

To meet the relative delay guarantee specified by above equation, suggested by [2],
the value of ci is got to satisfy the desired value for the resource allocation.

A New CGI Queueing Model Designed in Embedded Web Server 309

2.2 Controller and Feedback

The general PID controller known for its robustness and predominant use in industry
can be implemented to control adjustment of server process quota because of its
elimination of residual errors [6]. Although we can use the general PID controller to
adjust the web server resource by some parameters, it should be calculated in web
server that slows down the response. Here we present a simple control algorithm
called ping-pong method. The Controller computes the errors as following:

 eD=Di - Di-ref , Di-ref, means the desired delay,
 eM=MAXni - MAXni-ref , MAXni-ref means the MAXni should be,
 e= -μ
Based on all above errors, the control policies are described in Table 1.

Table 1. The feedback control policy in the queueing model

If Control policy
eD <0 Priority of CGI request decreased 1 by feedback Controller
eD >0 The priority of CGI request increased 1 by feedback Controller
eM <0 The max number of CGI request decrease 1 by feedback

Controller
eM >0 The max number of CGI request increase 1 by feedback Controller
e <0 Adjustment of server process quota by decrease 1
e >0 Adjustment of server process quota by increase 1

3 The Subroutine Model

The queuing model can ensure the CGI request being completed before the deadline
by the currently observed average request arrival rate. But it is possible for controller
to schedule smaller unit in web server because it is well known that a CGI request (a
task) could be divided into some subroutines. The subroutines belong to either one of
the two categories: non real-time and real-time as we have mentioned. That is to say
that a CGI request task could be executed through executing several non real-time
and real-time subroutines. In web queueing model system, the real-time subroutine is
queued and scheduled with preemption algorithms by priority in the embedded
system. We can simply imply that every subroutine could be executed in parallel
method, which considerably reduces the executing time of a task because of the less
waiting time of I/O operation.

To implement the subroutine in queueing model, Communication and
Synchronization are implemented. The communication between subroutine and the
environment requires some amount of buffer. When an input is read at the beginning
of a subroutine, the value is stored in a buffer and then read by other real-time
subroutine or non real-time subroutine. The read operation is non-blocking and non-
consuming, i.e., a value will always be present in the buffer and the same value can
be read for several times. Similarly, another real-time primitive is used to write a new
output value. The value is stored and is written to the output at the end of the relevant

310 Xi-huang Zhang and Wen-bo Xu

subroutine. The write operation is non-blocking and any old value in the buffer will
be overwritten.

Shared variables are used to handle the communications between tasks or subrou-
tines. If an input is associated with a shared variable, the value of the variable is cop-
ied to the input buffer at the front of the relevant segment. Similarly, if an output is
associated with a shared variable, the value in the output buffer is copied to the
shared variable at the end of the relevant segment. The use of buffers and non-
blocking read and write operations is allowed with different periods to communicate.
The periods of two communicating tasks need not be harmonic, even if it makes most
sense in typical applications. If two tasks or subroutines should write to the same
output or shared variable at the same time, the write lock is used via PV operation.

4 Implementations and Experimentations

We have inserted a module, which implements the above model to control the CGI
client request rate and ensure the CGI being completed before the deadline in
embedded web server, as the mechanical center of the embedded web system. This
design allows us to control the request queue without basic web server modifications.
When the web server boots up, the module creates a process to maintain an HTTP
connection request. After a CGI request arrives, the CGI request is put into a queue to
wait for an available process scheduled by system kernel. Some scheduler algorithms
such as persistent connections are implemented. A single queue is used because of
simplification. The simple scheduler as a real-time web server kernel has run
successfully for the web server on many platforms even in MCU.

In order to evaluate the performance of the queueing model based on the principal
discussed above, we compared its performance with that of the G/G/1 queueing
model with PID. And the performance of the subroutine in queueing model is also
evaluated.

Fig. 2. The average response delays

The Web CGI server scheduler listens to all port and accepts every incoming CGI
request. The scheduler maintains an FIFO CGI request queue. In experiments, the
desired connection delay for the system is Dref=4. The average delays measured in
every sampling period are shown in Figure 2.

A New CGI Queueing Model Designed in Embedded Web Server 311

In the first experiment, we explore the effect of normal PID feedback control for
resource allocation. In the second experiment, we explore the benefits of queueing
modal with ping-pong feedback. And the subroutine in queueing model is done in the
third experiment. The evaluation demonstrates that the advantages of the queueing
model with ping-pong method. The combined model is better than the other
algorithms such as PID and ping-pong if a task could be divided into non real-time
and the real-time subroutines. The average delays are 4.52, 3.21 and 3.15,
respectively.

5 Conclusions

It is most significant to design the embedded web servers with low-cost, high-
usability properties, which can meet the real-time demands. Due to limited resources
available in embedded systems, the system might drop packets of client request or
lose control loop and miss the real-time application requirements. These limited
resources are largely committed to critical missions and real-time applications in
many cases.

In this paper, the CGI queueing model designed in embedded web server has been
built to achieve a specified average delay given by the currently observed average
request arrival rate. And then to avoid complex PID feedback control, the reduced
control policies called ping-pong method was addressed thoroughly. The subroutine
model mentioned above can make better performance during feedback control. The
simple scheduler with ping-pong feedback control and subroutine model is the main
feature of the designed queueing model and has implemented in an embedded web
server. This model will speed up the progress to make low-end control devices
become interconnected, which is denoted by the experimental results.

References

1. Terry H.Ess., T.H.E.Solution, LLC,Greer,SC.: Accessing Devices Using a Web Service.
Proceedings IEEE Southeast Con 2002

2. Ying Lu., Tarek Abdelzaher.: Feedback Control with Queueing-Theoretic Prediction for
Relative Delay Guarantees in Web Servers. Proceedings of the 9th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS’2003)

3. Ian Agranat. Embedded Web servers in Network Devices. Communication Systems Design,
March 1998

4. T. F. Abdelzaher, C. Lu.:Modeling and Performance Control of Internet Servers. Invited
Paper, 39th IEEE Conference on Decision and Control, Sydney, Australia, December 2000.

5. Lui Sha, Xue Liu.: Queueing Model Based Network Server Performance Control.
Proceedings of the 23rd IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS’02)(2002)

6. Xihuang Zhang, Zhilei Cai.: Properties and Implementation of the Embedded CGI. Mini-
micro Systems, 2003 Vol.24 No.11 (2046-2048)

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 312-317, 2005.
 Springer-Verlag Berlin Heidelberg 2005

A New Embedded Wireless Microcensor Network Based
on Bluetooth Scatternet and PMCN

Kangqu Zhou1 and Wenge Yu2

1 Department of Industrial Engineering, Chongqing Institute of Technology,
Chongqing 400050, China
zhoukangqu@126.com

 2 Basic of Logistical Engineering University, Chongqing 400016, China
yuwenge@126.com

Abstract. With the rapid development of wireless network technology and
PMCN technology, people are strongly interested in wireless communication
and network communication. A new architecture of EWMN is established
based on Bluetooth, PMCN data communication, and embedded Linux, etc. The
functions and applications of the new EWMN are discussed and studied in
detail. The network structure of the EWMN can be divided into three layers:
Bluetooth scatternet layer, PMCN layer, and Internet layer. The advantages of
EWMN include: long-range application and flexible system configuration,
lower equipment cost and communication expenses, and easy to control and
manage. The basic key elements of EWMN are analyzed in detail.

1 Introduction

Under the background of global informatization, the profound changes are taking
place in the sensor, which exists in the front end of information stream. Being-
wireless, networking, synthesizing, and micromation for sensor technologies have
become inevitably four development trends. The availability of low-power
microsensors, embedded processors, actuators, and radios is enabling the application
of wireless network sensing to a wide range of applications, including environmental
monitoring, imaging processing, etc. In the future, wireless microsensor networks
based on smart environment will play a key role in sensing, collecting, and
disseminating information of environmental phenomena. Consequently, wireless
microsensor networks will undoubtedly provide new monitoring and controlling
capabilities for many applications [1].

With the development of short-range radio frequency network technology and
PMCN (public mobile communication network) technology, people are more and
more interested in wireless networked micro-sensors. EWMN (Embedded wireless
Microsensor Network) can be applied to many domains. Based on Bluetooth
technology, PMCN data communication technology, embedded Linux, etc., a novel
architecture of EWMN is found. Its key technologies are studied in this paper.

Early WSN is mainly applied in mass distribution for sensor nodes in a small area,
low wireless transfer speed in sub-network, and short communication distance of

A New Embedded Wireless Microcensor Network 313

single-jump. The new EWMN is mainly used in sparse configuration for sensor
nodes, with transfer speed up to 723.2 Kb/s in link layer of the sub-network, and
communication distance of single-jump up to 100m.

2 Bluetooth Technologies and the New EWMN Architecture

2.1 Bluetooth Technology and Bluetooth Network

Bluetooth technology is a kind of opening global Radio Frequency (RF) specification
between wireless data with pronunciation, and it will enable users to connect to a
wide range of computing and telecommunication devices without the need for
proprietary cables that often fall short in terms of ease-of-use. The short-range radio
frequency connection is the foundation of the application for Bluetooth technology.
Bluetooth program is embedded in microchip in order to set up Ad-Hoc wireless
connections between the fixed sets and the mobile ones. For example, if Bluetooth
technology is introduced in the mobile telephone and laptop computer, the horrible
connection cable between the cellular telephone with laptop computer can be thrown
away.

Bluetooth piconet and Bluetooth scatternet are both Ad-Hoc radio frequency
networks in essence, called by a joint name as Bluetooth Ad-Hoc network, and its
equipment is joined as shown in Fig.1. In fig.1, Master and Slave represent the main
equipment and subordinative equipment of bluetooth network respectively. The star-
like structure network links of point-to-point or one point to multi-points are only
established to support single-jump communication; the scatternet is composed of a lot
of piconets by interlinking to set up tree-like network structure and other more
complicated network link, supporting flexible multi-jump communication. Bluetooth
scatternet is a kind of cluster layered Ad-Hoc networks in essence.

piconet

scatternet
master

bridge

slave

Fig.1. Bluetooth Ad-Hoc network

314 Kangqu Zhou and Wenge Yu

2.2 The Network Structure of the New EWMN

The network structure of the new EWMN is shown in Fig.1. The structure is divided
into three layers: Bluetooth scatternet layer, PMCN layer and Internet layer. Among
them, GPRS, GSM and CDMA-1X represent PMCN, and Bluetooth scatternet is a
type of layer structure gathered through some interconnected piconets.

Network adaption unit

user Internet

PMCN GPRS GSM CDMA-1X

gateway

 node node node

Bluetooth
Piconet

 node

gateway

 bridge
 node node

 node

gateway

 bridge
 node node

Bluetooth scatternet

Fig . 2. System structure block of the new EIMN

adaption

Information
integration center

Any two layers of the new EWMN can interconnect seamlessly. Bluetooth scatternet
can interconnect seamlessly with PMCN by Bluetooth Gateway; PMCN can
interconnect seamlessly with Internet by Network Adapter Unit [2].

Obviously, the ideal of "unification of three nets with whole wireless" is
implemented in the new EWMN: Bluetooth scatternet, PMCN and Internet can
interconnect to transfer, exchange, store, deal, and to distribute information obtained
by the sensor nodes. Bluetooth short-range communication combines with long-range
communication of PMCN to realize wireless whole communication [3, 4].

The main advantages of the layered network structure of the new EWMN may be
described as following:

(1) Long-range application and flexible system configuration.
According to the distance of wireless communication and the centralized method to

gather the information for sensor node, wireless sensors can be classified into three
types: short-range wireless sensor, long-range wireless sensor, whole wireless sensor
combined with short-range and long-range together.

(2) Lower equipment cost and communication expenses for the internal node of
Bluetooth scatternet to connect Internet.

For a Bluetooth scatternet, only a few sensor nodes are required to have
communication capacity with PMCN, which can be called Bluetooth gateway, or be
called Bluetooth Sink. If other sensors nodes need to insert PMCN even Internet,
Bluetooth gateway can act as agent to realize.

(3) Easy to control and manage in concentrating or dispersing type.
The network is well arranged. Through authorization, authentication and encrypt

can be setup.

A New Embedded Wireless Microcensor Network 315

3 Functions and Application of EWMN

(1) Functions
The basic functions of EWMN are to perceive, gather, deal with, and release the

apperceived information. Theoretically, a great deal of accurate and reliable
information can be obtained at any time, or in any place and under any environmental
condition in EWMN. Multi-jump Ad-Hoc self-organization network can be set up in
the sub-network, namely Bluetooth scatternet, in EWMN. Therefore, the operating
system such as uClinux can be embedded in Bluetooth sensor node. And it has better
retractility in task scheduling and management. Besides the traditional data
information, such as temperature, humidity, pressure etc., the information of the
picture and radio-orientation information, such as GPS information, is stressed in
EWMN. In the aspect of wireless information releasing, the radio is adopted in
Internet connection.

(2) Application
While the sub-network is established by short-range radio technologies of

Bluetooth and IEEE802.11, according to the geography location of sub-network, the
typical application of EWMN can be classified into four types: sub-network node
location is settled and known; sub-network node location is settled but unknown;

 there is no logical location information and the motion ability is limited inside sub-
network; there is no logical location information and the motion ability is better
inside sub-network.

The application characteristics of EWMN can be described in three aspects:
environmental parameter monitoring, safety monitoring, transportation monitoring
and orientation tracking in local area; the sensor nodes are deployed sparsely;
the movement is limited within the sub-network.

4 Main Basic Factors of the New EWMN

(1) Clustering layered structure of Bluetooth scatternet and multi-jump Ad-Hoc self-
organized network

Clustering structure layer and multi-jump Ad-Hoc self-organized network are
essential features for Bluetooth scatternet. Every piconet is composed of several
nearby Bluetooth sensor nodes, and the enabled node of each piconet includes a main
equipment node and seven subordinative equipments at the most. The piconet is the
first arrangement of the scatternet. The main equipment node of each piconet and the
bridge node form the second arrangement of the scatternet.

(2) The senior protocol of Bluetooth scatternet
Though people do their best to study the past protocols of Ad-Hoc wireless

network, but the protocols are not suitable for WSN sub-network up to now. The
Existing senior protocol profile in Bluetooth technology specification may be
reconstructed to apply to Bluetooth scatternet in the new EWMN structure, such as
Service Discovery Application Profile, Generic Object Exchange Profile, Object Push
Profile, File Transfer Profile, and Synchronization Profile, etc.

316 Kangqu Zhou and Wenge Yu

(3) Basic equipment
The biggest hardware disposition of the Bluetooth gateway is shown in Fig. 3.
The hardware configuration of Bluetooth sensor node is tighter than Bluetooth

gateway. Except the Bluetooth module, sensitive device, embedded microprocessor,
memory and power, the other hardware in Fig. 3 can be chosen to use in need.

Data sensing element

Audio codec

A/ D and/or D/A

Video encoder

Video decoder

Analog camera

memory

Image codec

Power supplyDigital
camera

Em
bedded

m
icroprocessorunit(EM

PU
)

Liquid Crystal
Display(LCD)

Radio positioning
module

Shortrange wireless
comm. module

Remote wireless
comm. module

Fig.3. Maximum hardware configuration of Bluetooth Gateway

(4) Embedded Linux operating system for Bluetooth sensor node
The operating system of Bluetooth sensor node (including Bluetooth gateway) is

embedded Linux. Embedded Linux inherits a lot of good characteristics of Linux, for
instance, source code opening, small and citable kernel, powerful network function
and many kinds of processors supporting, etc. At present, relative perfect embedded
Linux includes uClinux, RT-Linux and Embedix, etc. The two embedded
architectures are shown as Fig. 4.

MCM RF-MEMS antenna
Bluetooth module

Components
Sensor analog

Interface circuitry

Energy
source

Components
Sensor analog

Interface circuitry

Energy
source

MCM
SCI
SCP

RF-MEMS antenna
Bluetooth chip

Sensor-orientation

BlueSES

Fig. 4. Two embedded architectures of Bluetooth Sensor Nodes
(a) (b)

(5) The information of the multimedia and radio orient obtaining, processing and
transmitting

A New Embedded Wireless Microcensor Network 317

While local safety monitoring, the multimedia information, especially the function
of picture information are more outstanding, the corresponding data increase notably.
Because the speed of Bluetooth communication and PMCN communication is limited,
the multimedia information must be compressed in order to guarantee transfer in time.
The key to solve these problems is to compress the picture.

(6) Others
SNMP is adopted in controlling and managing the Bluetooth scatternet, and the

information integration center controls and manages the end-users. The existing
security mechanism of Bluetooth technology can be improved, and the security
mechanism of VPN can be used for reference [5].

5 Conclusions

Embedded Wireless Mirosensor Network has extensive application prospect, and its
structure must satisfy specialty of wireless network. The new EWMN proposed in the
paper is notably different from the general typical wireless mirosensor network, its
characteristics can be summarized as: unification of three nets with whole wireless,
Bluetooth scatternet layered, multi-jump Ad-Hoc self-organized, multimedia,
orientation, multi-ply Internet inserting, etc. And its main advantages include: long-
range application and flexible system configuration; lower equipment cost and
communication expenses for the internal node of Bluetooth scatternet to connect
Internet; and easy to control and manage in concentrating or dispersing type.

WRIM-GIRS (embedded Wireless network Remote Image Monitoring and GPS
Information Receiving System) is an application for the new EWMN. We will study
associated hardware fabrication, protocols and algorithm implementations further.

Reference

1. Ravindran V; Varadan V K.: Implementation of local area wireless sensor networks using
Bluetooth. SPIE Proceedings, San Diego, CA, USA (2002) 258-265

2. Tilak S.; Abu-Ghazaleh NB; Heinzelman W.: A taxonomy of wireless microsensor network
models. Mobile Computing and Communications Review, Vol. 1. (2002) 1-8

3. Bordim, Jacir Luiz; Nakano, Koji; Shen, Hong: Sorting on single-channel wireless sensor
netwoeks. International Journal of Foundations of Computer Science, Vol. 14. (2003) 391-
403

4. Akyildiz L.F.; Su W.; Sankarasubramaniam Y.; Cayirci E.: Wireless sensor network: A
survey. Computer Networks, Vol. 38. (2002) 393-422

5. Perrig, Adrian; Stankovic, John; Wagner, David: Security in wireless sensor networks.
Communication of the ACM, Vol. 47. (2004) 41-46

A New Gradient-Based Routing Protocol in

Wireless Sensor Networks

Li Xia, Xi Chen, and Xiaohong Guan

Department of Automation, Tsinghua University, Beijing, 100084, China
xiali98@mails.tsinghua.edu.cn

http://www.sensornetwork.net

Abstract. A new gradient-based routing protocol is proposed in this
paper. It takes into account the minimum hop count and remaining en-
ergy of each node while relaying data from source node to the sink.
The optimal routes can be established autonomously with our protocol.
A simple acknowledgement scheme, which can be implemented without
extra overheads, is proposed. Our protocol also employs data aggrega-
tion to save transmission energy. To handle the frequent change of the
topology of the network, one scheme for topology update is provided. At
last, simulation results illustrate the effect of system parameters on the
protocol performance.

1 Introduction

Wireless sensor network is a new technology and it will have significant impacts
on human’s future life [1∼3]. It consists of a large number of sensor nodes densely
deployed in an area of interest. It has a wide range of applications such as mili-
tary sensing, physical security, environment monitoring, traffic surveillance and
etc. A system of networked sensors can detect and track threats and be used for
weapon targeting and area denial. As sensor nodes are limited in power, com-
putational capacities, and memory, sensor networks in general pose considerable
technical problems in data processing, communication, and sensor management.
One fundamental problem is communication protocol. Routing algorithm is one
important research topic in wireless sensor network. After sensor nodes gath-
ered the data of circumstance, such data need to be transmitted from the from
source nodes to the sink node. Due to limited energy, source node usually can-
not send the data to the sink directly. The data need to be relayed by medium
sensor nodes. There may be many routes from the source to the sink. Routing
is to find the right route. When designing a routing protocol, we need take into
account node’s energy efficiency (or the lifetime of the sensor network), and pos-
sible change of network’s topology due to the failure of nodes or various other
reasons.

There are several routing protocols proposed in sensor networks. However
none of them is always perfect for every situation. For example, LEACH is a
good one in many situations [4]. In LEACH, the cluster head node can aggregate

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 318–325, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A New Gradient-Based Routing Protocol in Wireless Sensor Networks 319

the data of its cluster member nodes so that greatly reduce packet transmission
in sensor network. However, when the sensor nodes measure different physical
phenomenon, this scheme is no longer effective. Moreover, in LEACH algorithm
the cluster head nodes directly communicate with the sink node. The head node
will consume much more energy when it is far away from the sink node. And the
head node may run out of its energy soon.

As we know, the relationship between wireless communication energy con-
sumption E and transmission distance d is: E∝dk, where k is usually 2∼4. Hence
short distance multiple hop communication is preferable to long distance direct
communication in senor network. In this paper, we propose a short distance mul-
tiple hop routing protocol. It is derived from the minimum hop count approach.
In the traditional minimum hop count algorithm, hop count is the only metric,
which measures the quality of route. In our protocol, we not only consider the
hop count but also adopt the remaining energy of each node as the metrics of
the Quality of Service (QoS) of the link. The goal is to prolong the network’s
lifetime by optimizing the energy consumption.

In the route setup stage, when one node receives the setup message, it waits
for a short time Twait for messages with better metric, which may arrive during
this period. When Twait expires, the node rebroadcasts the message with the
best metrics in all messages it has received. By this way, the number of setup
messages in the whole network can decrease greatly.

According to the omni-direction property of radio signal, when one node re-
lays a packet to its neighboring nodes, it can hear this packet if its neighbor node
rebroadcasts this packet. It makes the node be sure that its neighbor node has
received the packet. The rebroadcast packet also serves as an acknowledgement
from the neighbor node. In our protocol, we adopt such simple acknowledgement
scheme.

Relay nodes are augmented with data aggregation function. When relaying
packets, they can aggregate similar packets into one packet. Then send out the
new aggregated packet. This scheme is helpful to save energy for data transmis-
sion.

At last, by simulation, we explore the effect of system parameters on protocol
performance and show that this routing protocol performs well comparing with
some other traditional routing protocols.

2 Description of the New Routing Protocol

In wireless sensor networks, since the energy of each sensor node is limited, energy
conservation is of the most importance to prolong the lifetime of networks.

The routing protocol we propose in this paper can optimize the transmission
energy and equalize the energy consumption of all sensor nodes. It can prolong
the operating lifetime of the network. Moreover, it has many other features to
improve the routing performance. The schemes and algorithm are described one
by one in the following subsections.

320 Li Xia, Xi Chen, and Xiaohong Guan

2.1 Routing Establishment Algorithm

Routing establishment algorithm is the base of our routing protocol. It aims
to establish the cost field and find a minimum cost path from the source node
to the sink. The cost metrics include current transmission energy consumption,
remaining energy and so on. One similar concept can be found in [5].

Initially, each sensor node sets its own cost metric R to ∞ but the sink node’s
cost is 0. The sink broadcasts a message containing its own cost metric Rsink=0.
This message is rebroadcast and updated throughout the network. Suppose node
M rebroadcasts this message containing its own cost RM and node N receives
this message. Node N compares its own cost metric RN with RM + CM,N ,
where CM,N is the transmission metric between node M and N . If RM + CM,N

is smaller, node N sets its cost RN to RM + CM,N and records node M as its
relay node in its relay list. Then node N rebroadcasts this message containing
RN to its neighbor nodes. If RM + CM,N is larger than its own cost metric
RN , node N just discards this message without any updates. This process will
continue until the message propagates throughout the network. At last, the cost
field of the network is established. Each node can find a minimum cost path back
to the sink. This path is also called the gradient of the cost field.

In the minimum hop count routing protocol, the cost metric is the hop count
between two nodes. The communication metric CM,N is set to hop count between
M and N . The source node will find the minimum hop count path to the sink.
In our protocol, we use hop count and remaining energy of each node as the
metrics. The cost CM,N is set to hop-count/EN , where hop-count is the hop
count between node M and N , while EN is the remaining energy of node N .
This metric can balance the energy consumption of the network. It will prolong
the operating lifetime of network. Furthermore, we can use the QoS of the link
as one of the metrics of the network. We will discuss this issue in another paper.

Figure1 illustrates a simple example of the procedure of generating minimum
cost gradient. The source node has three routes to reach the sink, route1: S–>D–
>A, rout2: S–>B and route3: S–>E–>C. At the routing setup stage, the source
node will receive three different setup messages. The cost metric of route1 is:
1/40+1/40=1/20. It is the smallest cost in these three routes. So the source
node will choose route1 as its optimal route. It records node D as its previous
relay node. After a period, the nodes in route1 may have low energy level. In
this situation, route2 may be chosen as the good route.

In order to improve the routes’ fault tolerance ability, we provide several
alternative relay nodes for each node. For example, we provide 3 alternative
relay nodes for each node. During the routing establishment stage, the second
and third best metric nodes are also recorded as members of relay nodes set. In
figure1, the relay nodes table of source node is {D, E, B}. The default relay node
is D. If the default route is down, we can use the alternative route quickly. This
scheme will save a lot of route rebuilding cost. It is also very easy to implement
without extra payments.

A New Gradient-Based Routing Protocol in Wireless Sensor Networks 321

Fig. 1. The procedure of generating minimum cost gradient

2.2 Back-Off Waiting Scheme

When the route setup message propagates through the network, this message
may be replicated and rebroadcast many times. Because of the impact of random
delay of retransmission, one node is likely to receive and rebroadcast the setup
message many times. If so, the node will consume much energy and the explosive
setup messages will aggravate the congestion of the network.

We use a back-off waiting scheme to alleviate this effect. When a node receives
the setup message whose cost metric is smaller than its own metric, we update
it but don’t rebroadcast it instantly. It will start a back-off timer and wait for
a constant time Twait. During this period, if all the received setup messages’
metrics are not better than this one, it rebroadcast the message containing its
own metric. If it receives the message whose metric is better than this one, it
will update its metric and reset the back-off timer.

This scheme can greatly reduce the number of setup messages in the net-
work. If Twait is large enough, we can see that each node will only rebroadcast
the setup message once. It can save a lot of communication energy. The rela-
tionship between the number of messages and the parameter Twait is illustrated
by simulation in section 3.

2.3 Acknowledgement Scheme

It is well known that wireless communication is frequently influenced by various
factors such as multi-path fading, interference and etc. The communication may
fail sometimes. On the other hand, sensor nodes usually turn off to save energy.
It is possible that the relay nodes are power off when the data packets pass
them. So when the packets are relayed from source nodes to the sink, we need
to consider the situation when the relay nodes fail to receive the packets.

We propose a simple acknowledgement scheme to handle this problem. This
scheme is easy to implement in the sensor networks. It uses the omni-directional
radio signal property to acknowledge a received packet. When the relay node

322 Li Xia, Xi Chen, and Xiaohong Guan

receives the packet and relays it, the sending node will also receive this relayed
packet. If the sending node didn’t receive it, it means the packet is possibly lost
because the relay node is power off or the radio channel is degraded. The sending
node will then degrade this relay node’s metric and choose another alternative
relay node to transfer the packet.

This acknowledgement scheme can improve the success rate of packet trans-
mission. It only brings a little extra payment caused by the sending node’s
listening to the relayed packets. We can use this scheme to improve the routes’
QoS a lot with a small extra energy consumption.

2.4 Routing Update Scheme

In the sensor network, some nodes may be mobile and can move around in the
area of interest. Moreover, in order to save energy, sensor nodes may turn off
from time to time. Hence, the topology of the network may change frequently. On
the other hand, the medium relay nodes may consume energy more quickly than
other nodes. Their energy level drops much faster and, after a certain period,
their energy level may become too low to take charge of relaying packets. We
need a timely scheme to update the routes.

If one sensor node gets ready for turning off, it needs to inform its neighbor
nodes. If the neighbor node’s relay list includes this node, this node will be
indicated as an inactive node in the list. When this node turns on, it also needs
to announce this event so that its neighbor nodes can mark it as an active node
in the relay node list.

If a node does not know its relay node has turned off, when it sends packet
to the relay node, it will not receive any acknowledgement. In this situation, it
updates its relay node list and marks this node inactive until receiving the active
announcement from the relay node.

When a node moves to a new area, the node needs to update its relay node
list. It sends out a request message to ask for its neighbor nodes’ cost metric and
chooses the node with the smallest metric as its relay node and then updates its
relay node list.

Because relay nodes consume their energy more rapidly, the entire routes
need to be updated periodically. Such update can be done by following the
same procedure as the routing establishment scheme in section 2.1, i.e. the sink
broadcasts the setup message and rebuilds the whole routes.

2.5 Data Aggregation

In the sensor network, when an event of interest occurs, the nearby sensor nodes
can detect it and send the related information back to the sink. These data may
be similar to each other. If we aggregate these packets, relay nodes can save a lot
of transmission energy. Hence data aggregation is useful for the sensor network.

In our routing protocol, we implement data aggregation function in the
medium relay nodes. When the relay nodes receive data packets, it stores them

A New Gradient-Based Routing Protocol in Wireless Sensor Networks 323

and waits for other new packets’ coming. After a certain waiting time, the relay
node aggregates these packets, which are newly received. Moreover, the medium
nodes can utilize their computation resources to analyze the received packets,
and only transfer useful information to the sink. This scheme can reduce the
amount of data to be relayed in order to improve the energy efficiency and pro-
long the network’s lifetime.

3 Simulation Experiments

In simulation experiments, we consider the area of interest as a square of 100
× 100 m2, where 900 sensor nodes are randomly scattered in the area. The
transmission range of each node is 10 meters. The sink node is at down-left
corner (0, 0). When a node sends a message to its neighbor, there will be a
transmission delay Tdelay, which is caused by radio channel interference or slow
transmission data rate. We suppose the delay Tdelay is uniformly distributed in
[0, 50ms]. The full battery energy of each node is assumed to be 10,000 units
and sending one packet consumes 2 units of energy.

In routing establishment stage, the sink sends out setup message and sensor
nodes involve in relaying it to the network. By simulation, we study the rela-
tionship between the number of relayed setup messages and the back-off waiting
time Twait.

From Figure 2 we can see, when Twait is larger, the total message for setting
up the network’s routes will be smaller. When Twait is larger than 40ms, the
total number of setup message is about 900, i.e., when Twait is large enough,
each node only rebroadcasts the setup message once. So the back-off waiting
scheme is quite effective for saving the energy consumption when establishing
the network’s routes. However, it delays the establishment of routes for a while.
The size of such delay is basically proportional to Twait, as illustrated in Figure3.

Fig. 2. The relationship between the
number of setup messages and Twait

Fig. 3. The relationship between routes
establishment time and Twait

324 Li Xia, Xi Chen, and Xiaohong Guan

In Figure 4, we compare the performance of our new algorithm with the
original gradient-based routing algorithm on node exhausting rate. The initial
battery energy of each node is a uniform random number between 0 and 10,000.
The source packets are produced randomly in the whole network. If the nodes
with little energy are still used as relay nodes, they will be exhausted soon.
Our routing algorithm can prevent this situation from happening. Simulation
results demonstrate that our new algorithm has much better performance than
the original one.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100

120

140

160

 Number of Sent Packets

 N
um

be
r

of
 E

xh
au

st
ed

 S
en

so
r

N
od

es

 original GBR
 new GBR

Fig. 4. Exhausted sensor nodes number of two GBR routing algorithms

4 Conclusions

A new gradient-based routing algorithm is proposed in this paper. It optimizes
the routes taking into account the remaining energy metric and hop count met-
ric. Back-off waiting scheme is implemented to deal with the explosive message
flooding problem in routing establishment stage. A simple and effective acknowl-
edgement scheme is employed, too. Data aggregation in this routing algorithm
helps to save energy and prolong the operating lifetime of the whole sensor net-
work.

With these features, our protocol performs better than the traditional one. It
prevents long distance direct communication, which is quite energy consuming.
When the categories of measured data are different, our protocol is more efficient
than other data aggregation protocols, e.g. LEACH algorithm. Our protocol is
robust and applicable to the network, whose topology may change periodically
or randomly. Also, our protocol is easy for implementation. Our routing protocol
can well cooperate with other applications in sensor network. For example, our
protocol is good for the application of target tracking because of its adaptability
to the changing environments.

At last, simulation results illustrate the efficiency of our routing protocol.

A New Gradient-Based Routing Protocol in Wireless Sensor Networks 325

Acknowledgement

This work is partially supported by National Outstanding Young Investigator
Grant (6970025), regular NSFC grant (60074012, 60243001, 60274011), 863 High
Tech Development Plan (2001AA413910, 2003AA142060) of China, National
Key Project of China, Fundamental Research Funds from Tsinghua University,
Chinese Scholarship Council and Ministry of Education of China.

References

1. I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci: Wireless sensor net-
work: A survey. Computer Networks 38 March(2002) 393-422

2. H. Gharavi, and S.P. Kumar: Special issue on sensor networks and applications.
Proceeding of the IEEE 91 August(2003) 1151-1153

3. C. Chong, and S.P. Kumar: Sensor Networks: Evolution, Opportunities and Chal-
lenges. Proceeding of the IEEE 91 August(2003)

4. W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan: Energy-efficient com-
munication protocol for wireless sensor networks. IEEE Proc. Hawaii Int’1. Conf.
Sys. Sci. January(2000) 1-10

5. F. Ye, A. Chen, S.W. Lu, and L. Zhang: A Scalable Solution to Minimum Cost For-
warding in Large Sensor Networks. Proceedings of Tenth International Conference
on Computer Communications and Networks (2001) 304-309

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 326-332, 2005.
 Springer-Verlag Berlin Heidelberg 2005

A Sensor Media Access Control Protocol Based on
TDMA

Xiaohua Luo, Kougen Zheng, Yunhe Pan, and Zhaohui Wu

 College of Computer Science, Zhejiang University
lxhzju@cs.zju.edu.cn

Abstract. Although numerous wireless network protocols are well-studied
today, few of them are feasible for super-micro wireless networked sensors with
the seriously limited system. In this paper, we present a MAC protocol named
“ST-MAC (Sensor Media Access Control protocol based on TDMA)” for
wireless networked sensors with the seriously limited resource. Performance
analysis in theory and experimental measurements indicate that ST-MAC
achieves efficient transmission control with high packet delivery success rate,
fair bandwidth allocation and acceptable adaptive ability.

1 Background

Since 1991, although ubiquitous computing still falls short of Mark Weiser’s [1]
“walk in the woods,” advances in hardware, software, and networking over the past
dozen years have brought his vision close to technical and economic viability. [2]
Embedded platforms are more and more equipped with computational power that
allows them to be smart devices with the ability to communicate with their
environment. One of the most challenging research fields is wireless sensor networks.

Traditional wireless network protocols are well-studying today. However, in small,
low-power and embedded wireless sensor networks, it is quite a different novel region
to study. To meet this requirement, we present a MAC protocol named “ST-MAC
(Sensor Media Access Control protocol based on TDMA)” for wireless sensors.

2 Related Work

Let’s first look through existing mechanisms and the work that has been done for
wireless sensor networks before presenting our work.

The IEEE 802.11 [3] standard, which has a handshake series of RTS-CTS-DATA-
ACK, does a good job of collision avoidance. But this can be extremely costly. It is
unacceptable for sensor networks to apply handshake protocol.

Alec Woo and David Culler in UC Berkeley proposed an adaptive transmission
control scheme based on CSMA techniques for sensor networks [4]. But for the lack
of detecting on hidden node and time synchronization, the packet delivery success

A Sensor Media Access Control Protocol Based on TDMA 327

rate is seriously low in special network topology (we will detail it later). In networked
sensors, the energy is so precious that we cannot afford lots of transmission failure.

Alec Woo and David Culler did not select TDMA based protocol for the tight
requirement of time synchronization and the static network topology. But TDMA is
just suitable for smart-home applications. The number of motes in networks is less
than 100 generally, and network topology is more static than traditional sensor
networks. Above all, TDMA scheme can avoid the hidden node problem furthest. So
we can achieve a fairly high packet delivery success rate.

3 ST-MAC Design

3.1 Research Platform

We evaluate the research on Mote, developed at UCB [5]. The main microcontroller
is an 8-bit ATMEGA128 running at 16 MHz with 128 Kbytes of flash program
memory and 4 Kbytes of system RAM. The RF module consists of a low power
Chipcon CC1000 transceiver. It can operate at communication rates up to 76.8 kBaud.

The mote runs on a very small operating system called TinyOS [6], which has been
used by over 500 research groups and companies. And based on the platform, we
carry on the research about smart-home which meets the need of context awareness
and context management.

3.2 Application Assumptions

Fig. 1. A sensor network consists of 7 nodes

We assume the application is a data collecting system. As shown in figure 1, several
motes form an ad-hoc network to collect environment data periodically and transmit
data back to base station. The communication component’s default chip rate setting is
38.4 kbps. The data that motes sample periodically, such as temperature or pressure,
is relatively small and numerous with a typical size around tens of bytes. With 30 byte
packets in Manchester Encoding, the channel capacity can deliver at most 80 packet/s..

328 Xiaohua Luo et al.

Contrasted with motes, the base station can be considered as holding infinite
computation power. In general, it can be a smart device equipped with special
hardware and software. For the serious absence of computing ability and power
supply in motes, the base station should perform tasks as much as possible.

3.3 Design Requirement

Combined with smart-home applications, ST-MAC should be designed to meet some
requirements, including efficient transmission control for high packet delivery success
rate, fair bandwidth allocation for all nodes in the network and acceptable adaptive
ability when the sensor network changes.

Since we choose TDMA scheme, the fair bandwidth allocation is easily achieved.
The other points can also be implemented well with special mechanism. ST-MAC
should be a collision-free MAC protocol, which uses TDMA scheme to coordinate
network transmission. It should automatically detect interfering nodes in a network
and, so as to avoid collision.

3.4 Transmission Control

Fig. 2. (A) Configuration with long time slots; (B) Configuration with numerous time slots

As the network topology shown in figure 2, the base station first evaluates the entire
network based on the information provided by the motes spread around the
environment and calculates a suitable configuration. Then, it broadcasts the command
messages to the whole network.

The base station divides one second into 10 time-slices (figure 2(A)), or 20 (figure
2(B)). The last segment of time divisions is conserved for base station to release
command messages. Each mote only can transmit packets within its own time slot. If
sensor network is relatively static, we can extend the packet size easily with long time
slots configuration. If sensor network is changeful, it is advantageous to allocate more
idle time slots for new nodes with the second configuration.

For the short range of communication component in mote, the data sampled by
node 3a, 3b and 3c must be forwarded by node 2a. In ad-hoc network, it is usual to
forward packets when the node lies in the routing path. To save energy, most motes

1a

1b

1c

2a

3a

3b

3c

idle

reserved

1a

1b

1c

2a

3a

3b

3c

idle

reserved

A Sensor Media Access Control Protocol Based on TDMA 329

should power off when time slots are not assigned to them except forwarding nodes.
They must listen to the time slots assigned for their children and forward these
messages. Commonly, motes should also listen to the last time segment periodically
to receive command messages from base station.

3.5 Network Self-Adapting

Fig. 3. Network topology reconstructs after a new mote (2b) was added

Fig. 4. (A) Configuration with long time slots; (B) Configuration with numerous time slots

The established network configuration is shown in figure 2. If a new mote (2b) is put
into the environment, the balance will be disrupted. And the wireless sensor network
should be required to be self-adaptive.

At first, the new mote listens to the channel in network and signals messages to
claim its presence. Then it keeps silence to listen to command messages from base
station. For the disturbing of the new mote, the neighbors beside the new comer will
be aware of it, forwarding the discovery to base station. Then the base station will
adjust the network configuration (figure 4), and finally set up a new topology shown
in figure 3. It is simple to extend the packet length in figure 4(A). Similarly, sensor
network can contain more motes in figure 4(B).

1a

1b

1c

2a

3a

3b

3c

2b

idle

reserved

1a

1b

1c

2a

3a

3b

3c

2b

idle

reserved

330 Xiaohua Luo et al.

If base station has not received messages from one mote for a given time, it will
simply delete the mote from the current network topology no matter whether the mote
may use up its power or be shielded from the network. There is no competition for
channel here. If it is not necessary, base station will not command adjusting channel
for it is likely to consume the precious power in motes.

3.6 Time Synchronization

One of the most difficult problems in TDMA implementation is the acquirement of
precise time synchronization. In the prior description, we have mentioned that in ST-
MAC the base station holds a time slot to release command messages. We can also
use it to broadcast synchronous signal when idle. If a mote loses time synchronization
for electronic failure, disturbing from outside and so on, it can get synchronization
signal as soon as possible. Furthermore, for the constrained number of motes in smart-
home applications, the time-slices can be much longer than requirement in theory. So
ST-MAC could achieve loose time synchronization in applications.

4 Experiments

0.0%
20.0%
40.0%
60.0%
80.0%

100.0%
120.0%

2 4 8

number of nodes

pa
ck

et
 d

el
iv

er
y

su
cc

es
s r

at
e

ST-MAC
CSMA

Fig. 5. The comparison of packet delivery success rate with deviation between ST-MAC and
the improved CSMA used in UCB

We have practiced ST-MAC on the topology shown in figure 3. Node 1a, 1c and 2a
are close to 1b, but can not hear from each other. There is a serious hidden node
problem. The same problem also occurs in some other nodes. To measure ST-MAC
implementation, we organize the sensor network in 2 nodes (1a, 1c), 4 nodes (1a, 1b,
1c, 2a) and all 8 nodes. In long time slots configuration, we adopt 60 byte packet with
30 byte payload 2 times, set the sample rate to 1 packet/s and analyze all packets
centralized in base station during ten minutes. We repeat the experiment ten times.

A Sensor Media Access Control Protocol Based on TDMA 331

Figure 5 shows the comparison of packet delivery success rate with deviation between
ST-MAC and the improved CSMA used in UC Berkeley. The result indicates that
network transmission with CSMA mechanism does not work very well when sensor
network expands to 8 motes with special topology and medium payload. In fact, we
find that most of the packets delivered by 1b, 2a, 3a, 3b and 3c are seriously interfered
or even lost. On the contrary, the performance of ST-MAC is satisfying.

80.00%

85.00%

90.00%

95.00%

100.00%

16 20 24 28 32

number of nodes

pa
ck

et
 d

el
iv

er
y

su
cc

es
s r

at
e

Fig. 6. Simulating result of packet delivery success rate and deviation of ST-MAC

Compared with the improved CSMA scheme applied in UC Berkeley, ST-MAC
achieves a fairly high packet delivery success rate besides fair bandwidth allocation.
To simulate more large-scale sensor networks, we have improved on the simulator
used in UC Berkeley for TDMA scheme and acquired a high success rate stably in
any case of the network topology. Figure 6 shows the result.

Though ST-MAC is simple, it works well in sensor network with severe hardware
restrictions. The throughput of ST-MAC is also extensible when network enlarged. It
is reasonable to consider it a feasible media access control protocol.

5 Conclusion and Future Work

The main purpose of ST-MAC design is to provide reliable packet transmission, and
we have achieved it. Though ST-MAC is not as flexible as CSMA implementation, it
is still likely to satisfy most applications in tiny smart-home. Despite the
shortcomings of the target platform, we are able to demonstrate an available MAC
protocol for the prototype sensor network.

ST-MAC is well suited for smart-home applications. But for the strict division of
master and slaver, the operation and management of sensor network is highly
centralized in base station. It is not very robust. The distributed system is the direction
in future to gain high robustness. And we expect to realize the distributed protocol
under more powerful platform in near future.

332 Xiaohua Luo et al.

The goals of designing a TDMA based MAC include achieving distributed
management and robust operation, providing facilitating flexible energy-saving
protocols, supporting nicer network security protocol and secure routing algorithm,
enabling resource reservation and QoS aware scheduling, and so on. Of course, there
is still a long way to go before these happen.

Acknowledgments

This work is supported by 863 project of China (grant 2003AA1Z2080). We would
like to thank our research team, Yingwu Wang, Jinxing Xu, Longlian Li and for all
the discussions related to this work.

Reference

1. M. Weiser: The Computer for the 21st Century, Sci.Amer., Sept., 1991.
2. D. Saha, A. Mukherjee, Pervasive Computing: A Paradigm for the 21st Century, IEEE

Computer, IEEE Computer Society Press, pp. 25-31, March 2003
3. ANSI/IEEE Std 802.11 1999 Edition.
4. Alec Woo, David Culler: A Transmission Control Scheme for Media Access in Sensor

Networks, Mobicom 2001, July 2001, Rome.
5. smartdust. http://www.cs.berkeley.edu/˜awoo/smartdust/.
6. TinyOS. http://webs.cs.berkeley.edu/tos/.

Clusters Partition and Sensors Configuration for

Target Tracking in Wireless Sensor Networks

Yongcai Wang, Dianfei Han, Qianchuan Zhao, Xiaohong Guan, and
Dazhong Zheng

Tsinghua University, Beijing, 100084, P.R.China
wangyongcai@mails.tsinghua.edu.cn

http://cfins.au.tsinghua.edu.cn/personalhg/wangyongcai/

Abstract. Decisions on the number of clusters and the sensing radius
will effectively affect the quality and energy metrics of WSN (wireless
sensor networks) tracking systems. By presenting the mean number of the
detectable sensors as a trajectory independent quality metric, an energy-
quality optimization model is derived and Pareto based optimization
strategy is proposed. The obtained non-bad solutions (Pareto Fronts)
can be used to direct the clusters partition and sensors configuration.
Comparing with simulation, more than 80% of these Pareto Fronts are
coincident with those in experiment results.

1 Introduction

Mobile target tracking, as one of the most important applications of wireless
sensor networks (WSN) [1], is widely deployed in military and social applications
[3][4][5]. To develop WSN tracking system, high tracking quality is the basic re-
quirement from the application level. As in the intrusion detection, demanding
for the tracking accuracy is critical. On the other hand, energy efficiency is
the inherent requirement of the sensors, since these tiny sensors are commonly
battery powered, which is difficult to recharge. To satisfy these requirements,
cluster-based tracking protocols [4][5][7] are proposed, which give attention to
both tracking quality and energy efficiency and are recognized as the most ef-
fective solutions for WSN tracking systems. In cluster-based tracking, clusters
are formed adaptively, and are scheduled to track the target by predicted ac-
tivation, which effectively reduce energy cost. Inner cluster data fusion can be
implemented by the elected cluster head (CH) to provide more accurate estima-
tion of the target’s position. Figure.1 demonstrates a cluster-based tracking sce-
nario. Simulation based investigations has been presented by [3][6]. But because
the evaluation of tracking quality depends on the target trajectories, theoretical
analysis is difficult for the unpredictable target randomness.

In this paper, we define the quality metric as the mean number of the de-
tectable sensors, which is trajectory independent metric, and we have proved its
generality for different detection schemes. With the proposed quality metric, we
use convolution to calculate the expression of the overlapping area, and calculate

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 333–338, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

334 Yongcai Wang et al.

the expectation to derive the theoretical model of the energy and quality met-
rics in cluster based tracking. The tradeoff of energy and quality is formulated
as a two-objective optimization problem and Pareto based solution technique is
applied to optimize the two objectives by combined consideration of the number
of clusters and sensing radius. Pareto fronts can provide off-line guidance for
clusters partition and sensors configuration, which are validated by extensive
simulation.

2 Network Model Description

We consider a sensor network consisting of N homogeneous nodes randomly
deployed in a L (m) ×L (m) square area. So the sensors destiny denoted by ρ
can be calculated as ρ = N/L2. Nodes are assumed to know their own locations
by self-localization at initializing phase. The sensing radius of each sensor is s
whose value can only be selected in the range [s small, s large]. This means that
the sensing area of a sensor is a circle. We suppose each sensor has two configured
transmission radius: c is used to transmit data within the neighborhood and C
is used to communicate with the base station when this sensor works as cluster
head, where C > c. The configuring sensing and transmission radius are closely
based on current sensor devices as Mica, Mica2, etc. During target tracking,
sensors switch between two configured states: active for tracking target, with
CPU, sensors and radio on, and sleep for energy conserving with sensors and
radio off. For clustering scheme, cluster heads are selected by VGP algorithm [8]
and clusters are partitioned using overlapping cluster activation method [2]. So
every cluster is a circle, as demonstrated in Figure 1. If the radius of cluster is R,
then an active cluster on average contains nc = πR2ρ sensors. Among them, only
those within the detectable circle can detect the target. This circle is centered at
the target and its radius is s. We denote the number of the active and detectable
sensors ns. Since the overlapping area of active cluster and detectable circle is
not a circle, suppose its area is Sd, then ns = ρ · Sd. We assume the cluster
members only need one hop to transmit data to the cluster head. According to
the energy consumption model [3][7], for one target report, the energy consumed
can be formulated as:

E = ncEsensors
2 + ns(2 ·Eeleck + Eampkc2 + Fcpuk) + (Eeleck + EampkC2) (1)

The energy consumption contains nc times of sensing: ncEsensors
2; ns times of

transmission, receiving and data processing: ns(2Eeleck+Eampkc2+Fcpuk); and
one time long range communication: (Eeleck + EampkC2).

3 Quality Metric

In evaluation of cluster based tracking, average tracking deviation is commonly
used as quality metric [3][4], which measures how estimated trajectory differs

Clusters Partition and Sensors Configuration for Target Tracking 335

Fig. 1. Cluster based
tracking scenario

2 2R 2 2()s x

x

Fig. 2. Convolution of
active cluster and de-
tectable region

Fig. 3. Approximation
error

from the real target one. Average derivation directly describes the tracking per-
formance, but the real target (time, position) pair should be involved in the
expression, which makes it depends on the target’s trajectory. It is more suit-
able for the simulation based performance evaluation. For theoretical analysis,
the target pattern should be general, and the quality metric should be common
for various target patterns. In order to give a proper metric, we perform a close
examination of the tracking protocols. According to the functions of the sensors,
we discover that although detection methods differ greatly in implementation,
they are common in the principle: the more the better. The more sensors
are involved in tracking target, the more accurate the tracking is. Inspired by
this observation, we propose our quality metric as ns : the mean number of
active and detectable sensors, which is a quality metric independent to the
target’s trajectories. The universality of the quality metric can be formulated as
theorem 1.

Theorem 1. If the observation of the sensors are independent and the mea-
surement error is irrelevant with distance, then the variance of estimation error
converges at O(1/

√
n), where n is the number of active sensors that can detect

the target.

Proof of theorem 1 can be referred to [2].

4 Optimization Model

4.1 Derivation of Optimization Model

After introducing the network model and the quality metrics, we derive the
optimization model in this section. Since ns is a linear function of Sd, where Sd

is the overlapping area of the active cluster and target detectable area. It is the
bridge connecting the parameter R, s and the quality metrics. If we denote x the
distance between the cluster head and the target real position, the overlapping
area Sd is a function of x. For given R and s, we apply convolution method
to calculate the expression of Sd(x). The principle is illustrated in figure 2.

336 Yongcai Wang et al.

Convolution is used to calculate how the overlapping area varies with x, and the
result expression of Sd(x) is:⎧⎪⎨
⎪⎩

πs2 if R − s > x > 0,

−f1

(
R2−s2+x2

2x

)
+ f1 (s) + f2 (R) − f2

(
−R2+s2+x2

2x

)
if R + s > x > R − s,

0 if otherwise.
(2)

in which, we write f1(•) = (•2
√

s2 − •2 + s2

2 arcsin •
s), f2(•) = (•2

√
R2 − •2 +

R2

2 arcsin •
R) to simplify expression. But the result function is too complex for

integration. To simplify Sd(x), we use a piece-wise linear function S̃d(x) to ap-
proximate Sd(x), where:⎧⎨

⎩
S̃d(x) = πs2 if R − s > x > 0,

S̃d(x) = − 1
2πs(x − R − s) if R + s > x > R − s,

S̃d(x) = 0 if otherwise.

(3)

To check the approximating accuracy, we set s to 1 and vary R and x to calculate
the bound of the approximation error over x. More specifically, we define

deltax(R) = max
x

(Sx(R) − S̃x(R)) − min
x

(Sx(R) − S̃x(R)) (4)

as approximation error interval. Approximation error interval deltax(R) and
error bounds are shown in figure 3. The interval between the approximation
upper bound and lower bound is constant. So we are confident to use S̃d(x) to
substitute Sd(x) in our following analysis. In S̃d(x), the pdf of x is unknown. We
assume that x is uniformly distributed on the close set [0, R+ s]. By integration
the product of the pdf of x and S̃d(x), the quality metric can be calculated as:

ns = ρπRs2/(R + s) (5)

So the energy-quality optimization model is derived as:{
minimize{ - ρπRs2/(R + s)}
minimize{ncEsensors

β + (2ns + 1)Eeleck+ns(Eampkcα+ Fcpuk) + EampkCα}
(6)

In (6), minimize{ - ρπRs2/(R+s)} is converted from maximize{ρπRs2/(R+s)}
to maximize quality metric, and the second item is to minimize energy metric.

4.2 Pareto Based Solution

Since the number of clusters N and sensing radius s can only be selected on dis-
crete points. The model (6) is a two-variable two-objective optimization problem
with discrete solution space. We can apply Pareto based optimization method
to solve this kind of problem. Figure 6 illustrates the solution method. Every
point in the figure stands for a (N, s) pair, which are decision variables. Their x
and y coordinates are quality metric and energy consumption respectively, cor-
responding to equation (6). To maximize tracking quality and minimize energy

Clusters Partition and Sensors Configuration for Target Tracking 337

consumption, the non-bad solutions should locate on the left down border. They
are indicated by circles and called Pareto Fronts, which greatly reduce the solu-
tion space. Given application preferences about the energy or quality demands,
the constrained optimal (N, s) pair can be searched within the Pareto Fronts.
Figure 6 gives an example. The result can be used to guide the clusters partition
and sensors configuration.

5 Experimental Evaluation

Extensive simulation is used to validate the optimization model. We simulate the
overlapping cluster tracking protocol using local prediction as discussed in
[4]. Figure 4 and Figure 5 compare the performance metrics of the simulation re-
sult with the optimization model. The comparison shows that the derived energy
and quality metrics effectively describe the behavior of the tracking system. To
further verify the analytical results, we check the Pareto Fronts. Figure 7 shows
how the Pareto Fronts obtained from optimization model performs in simula-
tion. More than 90% of the analytical Pareto Fronts are still non-bad solutions
in simulation. More experimental results can be referred to [2], which show that
for different scale network and different parameter settings, more than 80% of
the analytical Pareto Fronts are still not bad solutions in simulation.

6 Conclusions

This paper focuses on theoretical investigation for cluster based target tracking
in wireless sensor networks. The mean number of active and detectable sensors
is proposed as trajectory independent quality metric, and its generality for dif-
ferent target tracking methods has been proved. A two-objective two-variable
optimization model is set up and Pareto-based solution mechanism is applied
to direct clusters partition and sensors configuration. The Pareto Fronts will ef-
fectively improve the tracking system’s performance. For further study, we may
apply the analytical results to design tracking systems for smart traffic applica-
tion, and the experiments will be implemented using MICA2 system.

50

100

Sensing Radius

Number of Clusters

Q
ua

lit
y

M
et

ric

Fig. 4. Comparison of quality metric

50

100

Sensing Radius
Number of Clusters

En
er

gy
 C

on
su

m
pt

io
n

Fig. 5. Comparison of energy metric

338 Yongcai Wang et al.

−30 −25 −20 −15 −10 −5 0
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−6 Pareto frontier

E
ne

rg
y

m
et

ric
:

E

−Quality metric: −ns

Pareto Fronts

A
pp

lic
at

io
n

P
re

fe
re

nc
e

Constrained Optimal

Fig. 6. Pareto optimization with
application preference

Fig. 7. How analytical Pareto
Fronts perform in simulation

Acknowledgement

This work is partially supported by National Outstanding Young Investigator
Grant (6970025), regular NSFC grant (60074012, 60243001, 60274011), 863 High
Tech Development Plan (2001AA413910, 2003AA142060) of China, National
Key Project of China, Fundamental Research Funds from Tsinghua University,
Chinese Scholarship Council and Ministry of Education of China.

References

1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks:
a survey. Computer Networks, 38 (2002) 393-422

2. Wang, Y., Han, D., Zhao, Q., Guan, X., Zheng, D.: Energy-quality opti-
mization model for target tracking in wireless sensor networks. Technical re-
port, http://cfins.au.tsinghua.edu.cn/personalhg/wangyongcai/EQmodel.pdf, Au-
tomation Dept., Tsinghua Univ, (2004)

3. Pattem, S., Poduri, S., Krishnamachari, B.: Energy-quality tradeoffs for target
tracking in wireless sensor networks. Lecture Notes In Computer Science 2634
(2003) 32-46

4. Yang, H., Sikdar, B.: A Protocol for tracking mobile targets using sensor networks.
Proceedings of IEEE Workshop on Sensor Network Protocols and Applications,
Anchogare, AK, May (2003).

5. Xu, Y., Lee, W.: On localized prediction for power dfficient object tracking in sensor
networks. 23rd International Conference on Distributed Computing Systems Work-
shops (ICDCSW’03) (2003) 19-22, Providence, Rhode Island, USA

6. Chen, W., Hou, J., Sha, L.: Dynamic clustering for acoustic target tracking in wire-
less sensor networks. 11th IEEE International Conference on Network Protocols
(ICNP’03), Atlanta, Georgia, USA. November 4-7, 2003.

7. Wang, Y., Zhao, Q., Zheng, D.: Energy-driven adaptive clustering data collection
protocol in wireless sensor networks. Proceedings of (ICIMA), UESTC, Chengdu,
China, Aug. 26-31, (2004)

8. Wang, Y., Zhao,Q., Zheng,D.: ”Virtual Grid Point” aided cluster heads election
algorithm, submitted to Electronics Letters. (2004)

9. Kaisa, M.:Nonlinear multiobjective optimization, Boston : Kluwer Academic Pub-
lishers, (1999)

Enhanced WFQ Algorithm with (m,k)-Firm
Guarantee

Hongxia Yin, Zhi Wang, and Youxian Sun

National Laboratory of Industrial Control Technology, Zhejiang University, China
hxyin@iipc.zju.edu.cn

Abstract. Weighted Fair Queuing (WFQ) is a good approximation of
Generalized Processor Sharing (GPS) service principle, and can provide
the delay guarantee when the bandwidth and the burst size are assured.
Thus, WFQ can not satisfy the stringent delay requirement of some real-
time networked applications with large burst size, such as video trans-
mission. In order to better serve these applications, (m,k)-firm guarantee
is integrated in QoS architecture. A fluid scheduling algorithm, (m,k)-
GPS, and its packet approximating scheduling algorithm, (m,k)-WF2Q
,are proposed. Dropping some optional packets, they guarantee low de-
lay to flows with large burst size. Moreover, the fairness and computing
complexity of (m,k)-WF2Q are the same as WF2Q.

1 Introduction

In Internet architectures, scheduling is a main block for providing network-level
QoS. To allow a fair share bandwidth among all sessions, Generalized Processor
Sharing (GPS) is an ideal scheduling policy in that it provides an exact max-
min fair share allocation. GPS is fair in the sense that it allocates the whole
outgoing capacity to all backlogged sessions in proportion to their minimum
rate requirements. Basically, the algorithm is based on an idealized fluid-flow
model. Weighted Fair Queuing (WFQ) is a simple packet-by-packet transmission
scheme that is an excellent approximation to GPS even when the packets are
of variable length. [1]. However, if the source has a message that is longer than
the maximum packet size, it breaks the message up into packets and sends these
packets, one at a time, to the network, which leads to burst. For example, when I
frame of MPEG video stream is transmitted, large burst comes into being. In the
applications mentioned above, the ratio of peak rate to average rate is very large.
If guaranteed throughput is close to peak rate, network resource is reduced; if
guaranteed throughput is close to average rate, the packet delay becomes very
large. Moreover, in overloaded network, WFQ can not guarantee definite delay
to flows.

To provide less delay for delay-sensitive applications in ATM, Burst-based
Weighted Fair Queuing (BWFQ) is proposed in [2]. However, the delay up-
per bound under BWFQ is larger than the one under WFQ, meanwhile, the
fairness under BWFQ becomes worse. To provide short delay guarantees for

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 339–346, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

340 Hongxia Yin, Zhi Wang, and Youxian Sun

real time flows with large burst sizes, (m,k)-WFQ is proposed in [3]. The loss
tolerance property of some real time applications such as multimedia streams
and networked control systems is utilized in (m,k)-WFQ. However, it is not a
guaranteed-rate scheduling algorithm, where the deadline of sessions is taken into
account. The assignment of deadline among multi switch nodes is very complex.
Furthermore, when some unfriendly applications enter the network, the fairness
of (m,k)-WFQ is much worse. In this paper, we also use (m,k)-firm guaran-
tee and propose (m,k)-GPS and (m,k)-WF2Q scheduling algorithm. Dropping
some optional packets, they guarantee low delay to flows with large burst size.
Moreover, fairness and computing complexity of (m,k)-WF2Q are the same as
Worst-case WFQ (WF2Q).

The remainder of this paper is organized as follows. Section 2 provides back-
ground of this paper. Section 3 proposes (m,k)-GPS scheduling algorithm, which
is used in the fluid systems. Section 4 proposes (m,k)-WF2Q scheduling algo-
rithm, which is used in the packet-by-packet networks. Section 5 shows the sim-
ulation results.

2 Background

The classes of GPS, WFQ and WF2Q schedulers are the most general scheduling
algorithms and are introduced in detail in [1,4]. Therefore, we omit the intro-
duction about them. In this section, we overview the (m,k)-firm guarantee and
define the notations throughout the paper.

2.1 Notations

We will use following notations in explaining all scheduling algorithms mentioned
in this paper.

P j
i : The jth packet to arrival at queue i.

Lj
i : The packet size of P j

i .
aj

i : The arrival time of P j
i .

dj
i,S : The finish time of P j

i under S scheduler.
Dj

i,S : The delay bound of session i S scheduler.
ρ: The average rate of session i.
σ: The burst size of session i.
C: The service rate of the server.
gi: The service rate of session i guaranteed by the server.
Ri(t): The arrival curve of session i.
Ri,M (t): The arrival curve of mandatory packets in session i.

2.2 (m,k)-Firm Guarantee and (m,k)-Pattern

To better realize optional misses, the (m,k)-firm guarantee model has been pro-
posed [5]. In the (m,k)-firm guarantee model, a session is said to have a (m,k)-
firm guarantee requirement if it is adequate to meet the deadlines of m out of

Enhanced WFQ Algorithm with (m,k)-Firm Guarantee 341

any k consecutive packets of a session where m and k are two positive integers
with m ≤ k. If m = k, the system becomes a non-loss service. On the other
hand, under the rate-based scheduling algorithms, the deadline of session i is
correlative with the end-to-end delay guarantees, i.e., if the end-to-end delay of
a packet is not more than the difference between the deadline and the arrival
time, this packet is transmitted successfully. Furthermore, [5] gives the definition
of (m,k)-pattern as follows:

The (mi, ki)-pattern of session i, denoted by Πi, is a binary string Πi =
{πi1, πi2, . . . , πin} which satisfies the following:

(1) πij is a mandatory packet if πij = 1 or optional if πij = 0;
(2)

∑ki

i=1 = mi.
In order to guarantee the QoS requirement of every session, the scheduler

must transmit all mandatory packets before their deadlines. However, the sched-
uler can drop several optional packets with some policy. Furthermore, the packet
loss ratio of QoS parameters is very critical for setting mi and ki. In [6], the
(m,k)-pattern choose methods are described in detail.

3 Generalized Processor Sharing Based (m,k)-Firm
((m,k)-GPS)

In this section, the generalized processor sharing based on (m,k)-firm guarantee
((m,k)-GPS) scheduling algorithm is proposed, which is based on fluid model. A
packet dropper and a scheduler constitute (m,k)-GPS server, where the schedul-
ing algorithm is GPS. The notations and terminologies of (m,k)-GPS are the
same as those of GPS. Furthermore, the fairness and complexity of (m,k)-GPS
are the same as GPS.

The policy of packet dropper is described as follows: suppose that the last
bit of P i

j is transmitted at time t. If there is a mandatory packet named as P k
i in

queue i, i.e., all optional packets among P k
i and P i

j are dropped in case ak
i < dj

i .
We suppose that the arrival curve of session i accords with leaky bucket, i.e.

Ri(t) ≤ ρit + σi. Under (m,k)-GPS, the proving process is described in detail in
[7]. The maximal backlog of queue i (Bi,max) and the delay bound of session i
(Di,(m,k)−GPS)with leaky bucket are following:

Bi,max = max
(

Bi,M
1 ,

⌊
σi

ki · L
⌋
· miL + σ′

i

)
(1)

where Bi,M
1 = max

(⌊
σi

ki·L
⌋
· miL + σ′

i+miL − miL
gi

ρi, 0
)
.

Di,(m,k)−GPS =
⌊

σi

ki · L
⌋
· miL

gi
+

σ′
i

gi
+
(

miL ·
(

1
gi

− 1
ρi

)
∨ 0

)
+

Lmax

gi
(2)

where σ′
i =

{(
σi

ki·L −
⌊

σi

ki·L
⌋)

· kiL if
(

σi

ki·L −
⌊

σi

ki·L
⌋)

· ki ≤ mi

miL otherwise

342 Hongxia Yin, Zhi Wang, and Youxian Sun

The properties and merits of (m,k)-GPS are described as follows:

– (m,k)-GPS is a work-conserving scheduling algorithm. It means that the
server must be busy if there are packets waiting in the system.

– (m,k)-GPS is an adaptive scheduling algorithm and does its best to trans-
mit optional packets. According to the network resource, it can choose the
amount of dropping packets automatically. If the shared service rate of ses-
sion i gets larger, fewer optional packets are dropped.

Proof. Let [s, t] be in a busy time period. Because (m,k)-GPS is a work-
conserving scheduler, the cumulative output amount of optional packets of
session i in the interval [s, t] is gi(t-s) − Ri,M (s, t) at least. Obviously, gi is
larger, so more optional packets are transmitted. When gi ≥ ρi and t → ∞
(m,k)-GPS is the same as GPS.

– Whenmi

ki
ρi ≤ ρi < gi, the delay bound under (m,k)-GPS is definite. However,

the delay bound under GPS is infinite.
– To those network applications with large burst size (σi), it is obvious that

the delay under (m,k)-GPS is smaller than the one under GPS. The reason
is that (m,k)-GPS drops some optional packets of burst.

4 Weighted Fair Queuing Based (m,k)-Firm
((m,k)-WF2Q)

In this section, a simple packet-by-packet transmission scheme named (m,k)-
WF2Q is proposed with respect to its corresponding (m,k)-GPS scheme. Like
(m,k)-GPS, the (m,k)-WF2Q scheduler also has two functions: policing and
scheduling. The scheduler drops some optional packets with the dropping policy,
and transmits all eligible packets with the scheduling algorithm.

4.1 The Updates of Two Virtual Finish Times

In order to implement packet-by-packet (m,k)-GPS, virtual time V (t) that tracks
the progress of (m,k)-GPS is used, and the definition of V (t) is described in
[1]. Then denote the virtual times at which this packet completes service as the
virtual finish time. Furthermore, denote the virtual finish time of the head packet
of the queue i as Fi and the virtual finish time of the last transmitted packet of
session i as F̂i. Table 1 shows the updates of Fi and F̂i.

4.2 Policy of Dropping Packets

The dropper under (m,k)-WF2Q is more complicated than under (m,k)-GPS.
Because packets can depart much earlier in the (m,k)-WF2Q system than in the
(m,k)-GPS system. It is possible that the next packet to be transmitted does
not arrival when a packet departs under (m,k)-WF2Q. Therefore, if one of the
two following conditions is satisfied, some optional packets are dropped.

Enhanced WFQ Algorithm with (m,k)-Firm Guarantee 343

Table 1. The updates of Fi and F̂i

The updates of Fi and F̂i Conditions

Fi = max
(
V (aa

i) , F̂i

)
+ La

i /gi P a
i arrives and queue i is empty

Fi = F̂i + Ln
i /gi P l

i leaves and queue i is not empty

F̂i = F̂i + Ll
i

/
gi P l

i leaves

Note: Suppose that P n
i is the head packet of queue i after P l

i leaves.

Define Fi (0) = F̂i (0) = 0 for all i.

– Suppose that Pm
i arrives at the queue of session i. If Pm

i is a mandatory
packet and the head packet of queue i is an optional packet and V (am

i) ≤ F̂i

, the scheduler drops optional packets until the head packet of queue i is a
mandatory packet.

– Suppose that a packet departs from the queue i. If there are some mandatory
packets in that queue, let the closest packet to the head of the queue be Pn

i .
Furthermore, if V (am

i) ≤ F̂i all optional packets before Pn
i are dropped.

4.3 Policy of Transmitting Packets

In order to accurately track the progress of (m,k)-GPS and avoid transmitting
some optional packets dropped in the (m,k)-GPS system, (m,k)-WF2Q adopts
SEFF (smallest eligible virtual finish time first) policy to service packets [5].
When the server chooses the next packet for transmission at time t, it selects
among the set of packets that have started (and possibly finished) receiving
service in the corresponding (m,k)-GPS system at time t. And the head packet
of session with the smallest virtual finish time is adopted by WF2Q.

4.4 Consistency of (m,k)-GPS and (m,k)-WF2Q

In order to correctly track the progress of (m,k)-GPS, the optional packets trans-
mitted under (m,k)-WF2Q must be the same as under (m,k)-GPS. The following
theorem proves the consistency of (m,k)-GPS and (m,k)-WF2Q.

Theorem 1. For optional packets, (m,k)-WF2Q only transmits those packets
that are transmitted under (m,k)-GPS, i.e., optional packets transmitted under
(m,k)-WF2Q coincide with ones under (m,k)-GPS.

Proof. For this theorem, the prove needs two cases.

– (m,k)-WF2Q transmits all optional packets transmitted by (m,k)-GPS.
Under (m,k)-GPS, we suppose that Pk

i is an optional packet and is trans-
mitted. Furthermore, we have the following definitions under (m,k)-GPS:
• Let Ph

i be the last transmitted mandatory packet before Pk
i is transmit-

ted;

344 Hongxia Yin, Zhi Wang, and Youxian Sun

• Let Pj
i be the last transmitted packet before Pk

i is transmitted (If Pj
i is

a mandatory packet, Pj
i and Ph

i are the same packet).
• Let Pl

i be the first transmitted mandatory packet after Pk
i is trans-

mitted. Considering the above-mentioned assumptions and the defini-
tion of (m,k)-GPS scheduling algorithm, we have al

i > dj
i ≥ dh

i Be-
cause V (t) is an increasing function in a busy period, we also have
V
(
al

i

)
> V

(
dj

i

)
≥ V

(
dh

i

)
.From the policy of dropping packet, we

have V
(
al

i

)
> V

(
dh

i

)
.Thus, Pl

i can not be dropped by (m,k)-WF2Q

scheduler. Similarly, V
(
al

i

)
> V

(
dj

i

)
.Thus, Pk

i can not be dropped by

(m,k)-WF2Q scheduler.
– (m,k)-WF2Q does not transmit the optional packets dropped by (m,k)-GPS

scheduler.
We suppose that Pk

i is an optional packet and is transmitted. Furthermore,
we have the same definitions under (m,k)-GPS. Under (m,k)-WF2Q, one of
the following conditions must be satisfied in order to transmit P k

i

• Pl
i does not arrive until the server has finished transmitting Pl

i.
• Pl

i has arrived when the server finishes transmitting Pl
i. However,

V
(
al

i

)
> V

(
dj

i

)
= F̂i.

If the condition is satisfied, we have V
(
al

i

)
> V

(
dj

i

)
≥ Vi

(
dh

i

)
.Then,

al
i > dj

i ≥ dh
i . Thus, all optional packets among Ph

i and Pl
i are transmit-

ted by (m,k)-GPS.

4.5 Properties of (m,k)-WF2Q

From the above analysis, we know that (m,k)-GPS ((m,k)-WF2Q) is equivalent
to the scheduling structure consisting of two components, a packet dropper and
a GPS (WF2Q). Furthermore, from Theorem 1, we know that the dropping
policy of (m,k)-WF2Q coincide with that of (m,k)-GPS. Therefore, we can have
the same fairness of (m,k)-WF2Q as WF2Q, i.e.,

Ci,(m,k)−WF 2Q =
Li,max

gi
− Li,max

C
+

Lmax

C
(3)

where Ci,(m,k)−WF 2Q is the Worst-case Fair Index for session i at server (m,k)-
WF2Q, and Li,max is the maximal packet size of session i.

In the same way, we know the computing complexity of (m,k)-WF2Q is
O (log (N)). For the delay bound of (m,k)-WF2Q, we have

Di,(m,k)−WF 2Q < Di,(m,k)−GPS +
Lmax

C
(4)

Enhanced WFQ Algorithm with (m,k)-Firm Guarantee 345

5 Performance Study

In this simulation, there are three streams sharing a 10Mbps link, and all packets
have the same size of 1024 Bytes. The packet inter-arrival time is uniformly dis-
tributed in the range [0.5 ∗ interval, 1.5 ∗ interval], where interval is the average
inter-arrival time. Table 2 shows the simulation parameters. Fig.1 and 2 show

Table 2. Simulation Parameters in this simulation

Stream Interval (m,k)-pattern Weights

Stream1 0.125 M 0.0064
Stream2 0.004 MOMOM 0.0064
Stream3 0.001 M 0.7936

that the delays of streams using (m,k)-WF2Q are smaller than ones using WFQ.
The reason is that some optional packets are dropped. Thus, A conclusion can
be made that the delays of burst sessions can be reduced using (m,k)-WF2Q.

0

10

20

30

40

50

60

70

0 4000 8000 12000 16000

Time(ms)

D
el

ay
(m

s)

stream0

stream1

stream2

Fig. 1. Delays of streams under (m,k)-WF2Q

6 Conclusions

In this paper, (m,k)-firm guarantee is integrated in QoS architecture, and each
packet of sessions is mandatorily or optionally marked at first. Furthermore,
(m,k)-WF2Q server is proposed, and it consists of a packet dropper and a sched-
uler. In the (m,k)-WF2Q system, the delay bound of the session with larger burst
size or larger transmission rate is smaller than in the WFQ system. Moreover, be-
cause of adopting SEFF policy, (m,k)-WF2Q is more fair than WFQ. Simulation
results show that (m,k)-WF2Q is a fair queuing scheduling and (m,k)-WF2Q has

346 Hongxia Yin, Zhi Wang, and Youxian Sun

0

50

100

150

200

0 4000 8000 12000 16000

Time(ms)

D
el

ay
(m

s)

stream0

stream1

stream2

Fig. 2. Delays of streams under WFQ

the same feasibility as WFQ. Therefore, (m,k)-WF2Q is a flexible scheduling for
real-time applications.

References

1. Parekh, A. and Gallager, R.: A generalized processor sharing approach to flow
control-The single node case. ACM/IEEE Transactions on Networking. 6 (1993)
344-357

2. Chronopoulos, A.T., Yaprak, C.Tang, E.: An Efficient ATM Network Switch
Scheduling. IEEE Transactions on Broadcasting, 9 (2003) 110-117

3. Koubaa, A. and Song, Y.Q.: Loss-Tolerant QoS using Firm Constraints in Guaran-
teed Rate Networks. IEEE RTAS’04, (2004) 526-535

4. Bennett, J.C.R. and Zhang, H.: WF2Q: Worst-case fair weighted fair queuing. IEEE
INFOCOM’96. (1996) 120-128

5. Hamdaoui, M. and Ramanathan, P.: A Dynamic Priority Assignment Technique for
Streams with (m,k)-Firm Deadlines. IEEE Transactions on Computers. 12 (1995)
1443-1451

6. Lindsay, W. and Ramanathan, P.: DBP-M: A technique for meeting the end-to-
end (m,k)-firm guarantee requirements in point-to-point networks. Proceedings of
Conference on Local Computer Networks. (1997) 294-303

7. Yin, H.X., Wang, Z., Sun, Y.X.: A weighted Fair Queuing Scheduling Algorithm
with (m,k)-Firm Guarantee. IEEE IECON’04. (2004)

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 347-354, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Fuzzy and Real-Time Queue Management in
Differentiated Services Networks

Mahdi Jalili-Kharaajoo1, Mohammad Reza Sadri2 ,
and Farzad Habibipour Roudsari2

1 Young Researchers Club, Islamic Azad University, Tehran, IRAN
mahdijalili@ece.ut.ac.ir

2 Iran Telecommunication Research Centre, Tehran, IRAN

Abstract. In this paper, a robust active queue management system to secure
high utilization as well as bounded delay and loss is designed. Using this
system, the network complies with the demands each traffic class set. We use
Fuzzy Proportional-Integral-Derivative (PID) controller in which the
parameters of PID controllers are tuned based on fuzzy logic. The proposed
controller is simple to implement as well as robust due to the nature of fuzzy
controller. Simulation results of the proposed control action demonstrate the
effectiveness of the controller in providing robust queue management system.

1 Introduction

The rapid growth of the Internet and increasing demand to use the Internet for time-
sensitive voice and video applications necessitate the design and utilization of new
Internet architectures to include more effective congestion control algorithms in
addition to the TCP based congestion control. As a result, the Differentiated Services
(Diff-Serv) architecture was proposed [1] to deliver (aggregated) Quality of Service
(QoS) in IP networks. Most proposed schemes are developed using intuition and
simple nonlinear control designs. These have been demonstrated to be robust in a
variety of simulated scenarios [2,3].

In [4,5] a very useful model is developed to tackle the flow control problem in
differentiated services architecture, which divides traffic into three basic types of
service (in the same spirit as those adopted for the Internet by the IETF Diff-Serv
working group, i.e. Premium, Ordinary, and Best Effort). We will apply fuzzy PID
controller [6,7] to such a system.

2 Diff-Serv: New Internet Architecture

In [4], a nonlinear dynamic model for TCP flow control is proposed. Since Int-Serv
failed to be adopted for widespread use, the Internet Engineering Task Force (IETF)
proposes a more evolutionary approach that does not require significant changes to
the Internet infrastructure and provids Differentiation of Services (Diff-Serv) [1]. To

348 Mahdi Jalili-Kharaajoo, Mohammad Reza Sadri, and Farzad Habibipour Roudsari

accomplish this, Diff-Serv uses the type of service (ToS) field bits in the IP header,
which are now renamed as ‘‘DS (Differentiated Services) field’’. The functions
associated with these bits have also been redefined. The main issue of the Diff-Serv
approach is how to standardize a simple set of mechanisms for handling packets with
different priorities denoted by the DS field in the IP header. Note that, in Diff-Serv
approach, packet classification is performed only at the edges of the network, which
reduces the operational complexity in the network core, and makes it more scalable.

On the other hand, no specific measures are taken to assure that the priorities
would actually relate to the desired QoS when a packet leaves the edge router.
Therefore, the standard Diff-Serv architecture provides only rudimentary QoS,
without any quantified guarantees (unlike the ATM case for example). Because of the
availability of limited number of bits in the DS field, the Diff-Serv Working Group
has defined a small set of building blocks, called per-hop behaviors (PHBs), which
are used by the routers to deliver a variation of services. They are encoded in the DS
field and they specify the forward behavior each packet expects to receive by the
individual routers. The two PHBs being standardized are the Expedited Forwarding
(EF), and the Assured Forwarding (AF). The EF PHB specifies a forwarding behavior
with a low loss, low latency, low jitter, and assurs bandwidth end-to-end service, and
thus indirectly provides some QoS. In order to ensure that every packet marked with
EF receives this service, EF requires from every router to allocate an adequate level of
forwarding resources so that the rate of incoming EF packets is always less than or
equal to the rate at which the router can forward them. This is done through a Service
Level Agreement (SLA) during the connection setup. In order to preserve this
property on an end-to-end basis, EF requires traffic shaping and reshaping in the
network. Although there is no specific method set for this, it will most probably be a
leaky-bucket buffering algorithm. The AF PHB group specifies a forwarding behavior
in which packets see a very small amount of loss. The AF PHB group provides
delivery of IP packets in four independent forwarding classes. Within each AF class,
two or three drop preference levels are used to differentiate flows. The idea behind
AF is to preferentially drop best-effort packets and packets non-conforming to
contract when there is congestion. By limiting the amount of AF traffic in the network
and by managing the best-effort traffic appropriately, routers can then ensure low loss
behavior to packets marked with the EF PHB.

3 Dynamic Network Model

3.1 Fluid Flow Model

The full description of Fluid model has been presented in [4,5,.8]. Let x(t) be a state
variable denoting the ensemble average number in the system in an arbitrary queuing
model at time t. Furthermore, let fin(t) and fout(t) be ensemble averages of the flow
entering and exiting the system, respectively. dttdxtx)()(can be written as:

)()()(toutftinftx (1)

Fuzzy and Real-Time Queue Management in Differentiated Services Networks 349

The above equation has been used in the literature, and is commonly referred to as
fluid flow equation [8]. To use this equation in a queuing system, C and have been
defined as the queue server capacity and average arrival rate respectively. Assuming
that the queue capacity is unlimited, fin(t) is just the arrival rate . The flow going out
of the system, fout(t), can be related to the ensemble average utilization of the queue,
(t), by fout(t)= (t)C. It is assumed that the utilization of the link, , can be

approximated by the function G(x(t)), which represents the ensemble average
utilization of the link at time t as a function of the state variable. Hence, queue model
can be represented by the following nonlinear differential equation:

))(()(txCGtx (2)

Utilization function, G(x(t)), depends on the queuing in the under study system. If
statistical data is available, this function can be empirically formulated. This,
however, is not the general case and G(x(t)) is normally determined by matching the
results of steady state queuing theory with (2). M/M/1 has been adopted in many
communication network traffics. In this model, input and service rates both have
Poisson distribution function. For M/M/1 the state space equation is:

)(1

)(
)(

tx

tx
Ctx (3)

The validity of this model has been verified by a number of researchers. It is
noticeable that (3) fits the real model, however there exists some mismatch. In order
to concern the uncertainties, (3) can be modified as:

)()
)(1

)(()(tC
tx

txCtx (4)

where denotes model uncertainties and

max
2 (5)

3.2 System Structure

Consider a router of K input and L output ports handling three differentiated traffic
classes mentioned above. At each output port, a controller is employed to handle
different classes of traffic flows entering to that port. An example case of the
controller is illustrated in Fig. 2. The incoming traffic to the input node includes
different classes of traffic. The input node separates each class according to their class
identifier tags and forwards the packets to the proper queue. The output port can
transmit packets at a maximum rate of Cserver to destination where

brpserver CCCC (6)

350 Mahdi Jalili-Kharaajoo, Mohammad Reza Sadri, and Farzad Habibipour Roudsari

3.3 Premium Control Strategy

Premium traffic flow needs strict guarantees of delivery. Delay, jitter and packet
drops should be kept as small as possible. The queue dynamic model can be as
follows:

(t)
(t)x1

(t)x
(t)C(t)x

p
p

p

pp (7)

Here, the control goal is to determine Cp(t) at any time and for any arrival rate,
p(t), in which the queue length, xp(t), is kept close to a reference value,)(txref

p
,

which is determined by the operator or designer. So in (7), xp(t) is the state to be
tracked, Cp(t) is the control signal determined by the congestion controller and p(t) is
the disturbance.

The objective is to allocate minimum possible capacity for the premium traffic to
save extra capacity for other classes of traffic as well as provide a good QoS for
premium flows. Note that we confine control signals as

serverp CtC)(0 (8)

In other words, the assigned premium capacity must always be less than the
maximum server capacity Cserver. This constraint can make the controller design more
difficult.

3.4 Ordinary Control Strategy

In the case of ordinary traffic flow, there is no limitation on delay and we assume that
the sources sending ordinary packets over the network are capable to adjust their rates
to the value specified by the bottleneck controller. The queue dynamic model is as
follows:

)()()
)(1

)(
)(()(tt

trx

trx
tCtx

brrr r (9)

The control goal here is to determine r(t) at any time and for any allocated
capacity Cr(t) so that xr(t) can be close to a reference value xr

ref(t) given by the
operator or designer. Some points here must be taken into consideration:
a) Total arrival rate is

(t)= r(t-)+ b(t) (10)

where r(t-) is the rate specified by the controller and sent from sources to the
bottleneck router, denotes the round-trip delay from bottleneck router to ordinary
sources and back to the router and b(t) is the arrival rate of the background traffic,
which is any extra traffic passing the ordinary queue and should be considered as a
disturbance in the controller design. We assume that

b(t) << r(t-) (11)

Fuzzy and Real-Time Queue Management in Differentiated Services Networks 351

b) as like in the premium case, denotes modeling uncertainty in which max
2 .

c) Cr(t) is the remaining capacity, Cr(t)=Cserver-Cp(t) and should be considered as
disturbance, which could be measured from the premium queue. In our controller
scheme we will try to decouple the affect of Cr(t) on the state variable xr(t).

d) Another constraint that makes controller design more challenging is that r is
limited to a maximum value, max, and no-negative r is allowed, i.e.,

0 <= r(t) <= max<= Cmax (12)

3.5 Best-Effort Traffic

As mentioned in the previous section, best effort traffic has the lowest priority and
therefore can only use the left capacity unused by Premium and Ordinary traffic
flows. So, this class of service is no-controlled.

4 Fuzzy PID Congestion Controller Design

In this section, the fuzzy PID controller is designed as described above. We have
made the following assumptions for controller design throughout this paper:

C max=300000 Packets Per Second
 max =280000 Packets Per Second

Table 1. Rule base of the premium fuzzy PID controller

R1 If (Xref is VS) and (is VS) then (Kp is B) and (Ki is M) and (Kd is S)
R2 If (Xref is S) and (is VS) then (Kp is M) and (Ki is M) and (Kd is S)
R3 If (Xref is M) and (is VS) then (Kp is M) and (Ki is M) and (Kd is S)
R4 If (Xref is B) and (is VS) then (Kp is M) and (Ki is S) and (Kd is S)
R5 If (Xref is VS) and (is S) then (Kp is M) and (Ki is B) and (Kd is S)
R6 If (Xref is S) and (is S) then (Kp is M) and (Ki is B) and (Kd is S)
R7 If (Xref is M) and (is S) then (Kp is M) and (Ki is B) and (Kd is VS)
R8 If (Xref is B) and (is S) then (Kp is M) and (Ki is B) and (Kd is VS)
R9 If (Xref is VS) and (is M) then (Kp is M) and (Ki is S) and (Kd is S)

R10 If (Xref is S) and (is M) then (Kp is B) and (Ki is M) and (Kd is VS)
R11 If (Xref is M) and (is M) then (Kp is M) and (Ki is B) and (Kd is VS)
R12 If (Xref is B) and (is M) then (Kp is M) and (Ki is B) and (Kd is VS)
R13 If (Xref is S) and (is B) then (Kp is B) and (Ki is M) and (Kd is VS)
R14 If (Xref is B) and (is B) then (Kp is M) and (Ki is S) and (Kd is VS)

The proper rules are chosen for both of systems regarding to variation of the xref(t)
and disturbance. To obtain the best fuzzy rule base, using the triangle membership
functions, the control rules are established by trial and error approach for the premium
and ordinary fuzzy PID controllers as Tables 1 and 2. Kp, Ki and Kd are proportional,
integral and derivative gains for PID controller, respectively. The variations of these
parameters are according to Tables 1 and 2. In Table 3 the range of the parameters is
defined. The simulation results are depicted in Figs. 1, 2, and 3 for Premium traffic,

352 Mahdi Jalili-Kharaajoo, Mohammad Reza Sadri, and Farzad Habibipour Roudsari

and in Figs. 4, 5 and 6 for Ordinary traffic. x(t) and xref(t) for Premium and Ordinary
traffics are shown in Fig. 1 and Fig. 4, respectively. As it can be seen, the signal can
follow its set-point well and good behavior for rising and settling of x(t) is clear in
both of them. The input and output rate of Premium buffer are shown in Figs. 2 and 3,
respectively. Figs. 5 and 6 show the output and input rate for the ordinary buffer as
well.

Table 2. Rule base of the ordinary fuzzy PID controller

R1 If (Xref is VS) and (C-Cp is VS) then (Kp is M) and (Ki is M)
R2 If (Xref is VS) and (C-Cp is S) then (Kp is M) and (Ki is M)
R3 If (Xref is VS) and (C-Cp is M) then (Kp is B) and (Ki is B)
R4 If (Xref is VS) and (C-Cp is B) then (Kp is B) and (Ki is B)
R5 If (Xref is S) and (C-Cp is VS) then (Kp is S) and (Ki is M)
R6 If (Xref is S) and (C-Cp is S) then (Kp is VS) and (Ki is VS)
R7 If (Xref is S) and (C-Cp is M) then (Kp is S) and (Ki is M)
R8 If (Xref is S) and (C-Cp is B) then (Kp is S) and (Ki is M)
R9 If (Xref is M) and (C-Cp is VS) then (Kp is S) and (Ki is M)
R10 If (Xref is M) and (C-Cp is S) then (Kp is VS) and (Ki is VS)
R11 If (Xref is M) and (C-Cp is M) then (Kp is M) and (Ki is M)
R12 If (Xref is M) and (C-Cp is B) then (Kp is M) and (Ki is M)
R13 If (Xref is B) and (C-Cp is VS) then (Kp is S) and (Ki is M)
R14 If (Xref is B) and (C-Cp is S) then (Kp is S) and (Ki is M)
R15 If (Xref is B) and (C-Cp is M) then (Kp is M) and (Ki is M)
R16 If (Xref is B) and (C-Cp is B) then (Kp is M) and (Ki is M)

Table 3. Parameters range of fuzzy rules

VS
(Very Small)

S
(Small)

M
(Medium)

B
(Big)

Xref [0 50] [25 100] [50 250] [200 1500]
 & C-Cp [0 50000] [40000 110000] [100000 220000] [200000 300000]

Kp
[1500
5000] [6000 10000] [12000 20000] [60000 100000]

Ki [3000 6000] [12000 20000] [25000 40000] [60000 100000]
Kd [0 0.1] [0.07 0.3] ------ ------

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

1200

Time(Sec.)

X
re

f &
 X

 (P
ac

ke
t)

Fig. 1. xpref(t) and xp(t)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3
x 105

Time(Sec.)

D
is

tu
rb

an
ce

(P
ac

ke
t/S

ec
.)

Fig. 2. Input rate of premium buffer (p(t))

Fuzzy and Real-Time Queue Management in Differentiated Services Networks 353

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4
x 105

Time(Sec.)

C
on

tro
l S

ig
na

l(P
ac

ke
t/S

ec
.)

Fig. 3. Output rate of premium
buffer(Cp(t))

0 0.5 1 1.5 2 2.5 3
0

100

200

300

400

500

600

700

Time(Sec.)

X
re

f &
 X

 (P
ac

ke
t)

Fig. 4. xo
ref(t) and xo(t)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4
x 105

Time(Sec.)

D
is
tu

rb
an

ce
(P

ac
ke

t/S
ec

.)

Fig. 5. Output rate of ordinary buffer (Co(t))

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4
x 105

Time(Sec.)

C
on

tro
l S

ig
na

l(P
ac

ke
t/S

ec
.)

Fig. 6. Input rate of premium buffer (o(t))

5 Conclusion

This paper proposes a robust scheme for congestion control based on fuzzy PID
control theory, which uses an integrated dynamic congestion control approach in Diff-
Ser networks. We divide traffic into three basic types of service (in the same spirit as
those adopted for the Internet by the IETF Diff-Serv working group, i.e. Premium,
Ordinary, and Best Effort). The controller works in an integrated way with different
services and has simple implementation and low computational overhead, as well as
featuring a very small set of design constants that can be easily set (tuned) from
simple understanding of the system behavior.

References

1. Blake, S., et al., An architecture for Differentiated Services. RFC 2475, 1998.
2. Jain, R., S. Kalyanaraman, R. Goyal, S. Fahmy, R. Viswanathan, ERICA switch algorithm: a

complete description, ATM FORUM, AF/96-1172, 1996.
3. Rohrs, C.E., R.A. Berry, S.J. O'Halek, A Control Engineer's Look at ATM Congestion

Avoidance, in Proc. IEEE GLOBECOM'95, Singapore, 1995.
4. Pitsillides, P., L. Ioannou, B. Rossides, Congestion Control for Differentiated-Services using

Non-Linear Control Theory, in Proc. Sixth IEEE ISCC, Tunisia, pp. 726-733, 2001.
5. Jalili-Kharaajoo, M., B.H. Khazerouni, Robust nonlinear control algorithm applied to

congestion control in differentiated services networks, in Proc. IEEE INDIN, Canada, 2003.

354 Mahdi Jalili-Kharaajoo, Mohammad Reza Sadri, and Farzad Habibipour Roudsari

6. Chen, Conventional and fuzzy PID controllers: An overview, Int. J. Intelligent Control
Systems, 1, pp. 235–246, 1996.

7. Misir, D., H. A. Malki, G. Chen, Design and analysis of a fuzzy proportional-integral-
derivative controller, Fuzzy Sets Systems, 79, pp. 297–314, 1996.

8. Jalili-Kharaajoo, M., B.N. Araabi, Application of predictive control algorithm to congestion
control in differentiated services networks, LNCS, 3124, 2004.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 355-361, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Issues of Wireless Sensor Network Management1

Zhigang Li, Xingshe Zhou, Shining Li, Gang Liu, Kejun Du

School of Computer, Northwestern Polytechnicial University, Xi’an, China, 710072
cnypg@sina.com, zhouxs@nwpu.edu.cn, dtlsn@yahoo.com.cn,

lgslr@163.com, kejundu@hotmail.com

Abstract. In future application environments, wireless sensor networks may
comprise tens of thousands of nodes and multiple applications will be executed
concurrently. Until now, WSNs and their applications have been developed
without considering a management scheme. In this article we discuss the
management technologies for WSNs. We identify what is SNM and its
necessities. Based on multi-sensor management technologies in data fusion, we
propose a feedback management framework for WSNs. Finally, a macro-micro
management architecture for hierarchical WSN is also proposed.

1 Introduction

The rapid advances in MEMS and wireless communication technologies have enabled
the integration of sensing, actuation, processing and wireless communication
capabilities into tiny sensor devices. These sensors can then be deployed in large
numbers to self-organize into networks that serve a wide range purposes, including
environmental monitoring, infrastructure management, industrial sensing, medical,
and military [1].

During the past few years, a lot of research efforts have focused on technologies of
networking these tiny sensor devices. Energy efficient MAC, topology control
protocols and routing schemes are implemented and evaluated. In addition, methods
on how to leverage the distributed computing environment provided by these devices
for extracting reliable and timely information from sensing data are also studied [2].
Some prototype applications have been developed and experimented to identify
research challenges.

Until now, techniques for WSNs focus on simple data-gathering-style applications,
and in most cases they support one application per network, and the network size is
small. So WSNs and their applications have been developed without considering a
management solution. But in the future, a WSN may comprise tens of thousands of
sensor nodes, and multiple applications will be required to be concurrently executed
over a single network. For instance, a battlefield surveillance system may have tens of
thousands of nodes to simultaneously monitor physical environment, detect biological
and chemical attack, track hostile tanks, assess battle damage, and communicate with

1 This work is partially supported by National Science foundation of China under Grant

No.60273086.

356 Zhigang Li et al.

soldiers and other systems. In such dynamic complex systems, WSNs will need to
reconfigure and adapt themselves to changes of environment and mission
requirements.

In this paper, we focus our attention on the problem of managing WSNs. Recently,
several management solutions for WSNs, whose main motivations are to adopt ad hoc
network management techniques to WSNs, such as MANNA [3], have been
proposed. WSNs are distributed multi-sensor systems connected by wireless ad hoc
network. So management of WSNs should combine multi-sensor management
techniques for information fusion with network management techniques for wireless
ad hoc network. In this article, we implement it in the middleware environment.

The rest of this paper is organized as follows. Section 2 presents our assumptions
of WSN. Section 3 discusses the roles and objectives of WSNs management (SNM),
and perspective of SNM with the other parts of WSNs systems. Section 4 describes
the management architecture of WSNs and we conclude in Section 5.

2 Preliminaries

A. Hierarchical Sensor Network

In recent years, hierarchical structure is widely accepted in designing sensor network
because clustering can optimize network performance [4]. In this paper, we consider a
heterogeneous multi-hop network which consists of two types of nodes: cluster head
and sensor node, as depicted in Fig. 1. Cluster head has two wireless transceivers --
one for inter-cluster communication, and another for intra-cluster communication. It
has sufficient energy and can know its location through GPS. While simple sensor
node has limited energy and various sensors, it only knows its relative location to
cluster head.

B. Deployment and Cluster Forming

The deployment of sensor nodes is random and nodes distribution is the law of a two-
dimensional homogeneous Poisson point processes. Heinzelman found the optimal
number of clusters scales as n in designing Leach protocol [4]; Mhatre got similar
result in studying minimum cost multi-hop heterogeneous WSN [6]. After random
deployment, cluster forming is the construction of Voronoi diagram.

C. Communication in Two Tiers

There is high bandwidth among clusters, so communication among clusters can adopt
traditional ad hoc routing protocols. The main objective of collaboration among
clusters is providing application QoS. While within a cluster the communication
bandwidth is low and routing protocols specially designed for WSN are adopted. The
main objective of collaboration in a cluster is energy-efficiency.

Issues of Wireless Sensor Network Management 357

Fig. 1 Hierarchical sensor network

3 Management of Wireless Sensor Network

3.1 What Is SNM (Sensor Network Management)

Referring the definition of SM [4], we describe SNM as a system or process that
seeks to manage and coordinate the sensor nodes in a dynamic and uncertain
environment, to accomplish specific mission objectives and improve the performance
of perception, by using least amount of energy. The word ‘manage’ gives a sense of
control over the sensor nodes; ‘coordinate’ brings out the efficient use of the
resources of sensor network.

Due to application-specific characteristic of WSNs, an important goal of SNM is to
optimize the performance of application system. Clearly, there are a wide range of
applications for sensor networks with different requirements. Based on the
characteristics of these applications, we can classify them as follows:

 Querying parameters of physical environment. For example, a user wants to
know the temperature and humidity of room 806, or he wants to query the
temperature of which room is above 30

 Detecting some events and assessing influence of events. For example, a user
may care about whether area A has poisonous gas and what is the concentration
if found.

 Classification or identification. Such as identifying whether the object entering
area A is an animal or a tank.

 Tracking moving objects.
These four kinds of applications have different performance metrics, such as

detecting probability, identification accuracy, and probability of loss-of-track.
Basically, we desire the application performance metric established for optimization
to transcend the diversity of sensors and to be analytically/computationally tractable.
Further, some system/network performance metrics, such as lifetime and latency,
should be taken into account. Energy is a critical resource in WSNs, all operations
performed in the network should be energy-efficient. In some applications, the data
collected by network may be of no value unless the observer receives it in time. So

Cluster head

Clusters

Sink Node Tier 1

Tier 2

358 Zhigang Li et al.

the primary objective of the sensor network management is to balance among these
performance metrics to get maximized overall performance. In details, SNM seeks to
answer the following questions:

 Which tasks are to be performed?
 Which set of sensor nodes is to be allocated to which task?
 How to self-configure the ad hoc network?
 How to coordinate among relevant sensor nodes?
In a nutshell, each sensor in WSNs is fault-prone and detects only limited amount

of information, but the sensor network manger can direct sensor nodes in an
integrated mode to supply information to the fusion/aggregation process. By doing so,
it provides greater content with lower uncertainty than information from a single
sensor.

3.2 SNM System in Perspective

The roles and functions of SNM can be understood if we can identify them into
different levels based on their functionality. Here, we identify three levels, namely:

 Node layer: this is the lowest level of work in SNM involving individual control
of each sensor node such as switching among different modes (sleep/active/idle)
of components, and controlling sensors. In wireless sensor networks, due to
energy constraint, sensor nodes are always equipped with passive sensors. For
passive sensor, the management issues could be unique to each sensor, such as
controlling the scan rate and detection threshold.

 Network layer: this is the medium-level SNM. At this level, the SNM focuses
more on the management of wireless ad hoc network, including network
operation parameters configuration, network connectivity maintenance, topology
finding and controlling, moving nodes management, etc.

 Task layer: this can be seen as higher-level SNM. It involves assignment and
coordination of sensing tasks, task scheduling, etc.

Fig. 2. SNM framework

From multi-sensor management perspective, we can present the relationship of
SNM with other parts of sensor network as in Fig. 2. We see that in this framework,
when collected sensing data are sent from the sensor nodes to sink node, the data are
processed by data fusion system. In this case, low-level fusion is typically performed
on data from neighboring sensors before being sent to a next hop node. At the cluster

Sensor nodes

Sensor network
management

Tasking Request

Update

DataInformation
Query Data fusion /

aggregation

Issues of Wireless Sensor Network Management 359

head (with higher processing capability) or sink node, high level fusion can be
performed to extract useful information.

The inputs to the SNM may come from user’s requests of specific mission
objective through querying. Also, the data fusion system will update the SNM, e.g.,
update on existing tracks from result information. The states of network and sensor
nodes are the third input to SNM. With these inputs, the SNM’s role is to optimally
manage the sensor nodes. In this framework, sensor network management provides
information feedback from data fusion results to sensor node’s operations. The
feedback is intended to improve the qualities of data collection process.

Fig. 3. System architecture including SNM

Recently, much work has targeted the development of middleware specifically
designed to meet the challenges of wireless sensor networks [5]. In order to
implement SNM, we consider putting it in WSNs middleware environment. Fig. 3
presents the overall system architecture. The right part of middleware is SNM, which
comprises management interface, management subsystem and management protocol.
In this implementation, security management is moved form SNM and made as a
service. The reason is WSNs are employed for diverse set of applications ranging
from military battlefield surveillance to home applications and these different
applications have different security requirements.

4 WSN Management Architecture

Reference [8] discusses that in dynamic and resource-constrained environments like
MANETs, the conventional manager/agent management paradigm will not be
efficient. But for a less dynamic and heterogeneous WSN described in section 2, we
can still use manager/agent approach.

In WSNs, the architecture of SNM system is related to data collection and
communication strategy and the form of data fusion system. Typically there are three
types of network management architecture: centralized, distributed, and hierarchical.
Hierarchical management architecture can be regarded as a mixture of centralized and
distributed architectures. It uses intermediate managers to distribute the manager

Routing

MAC

Physical

Application

Management subsystem
(QoS, decision, assignment,

schedule, configuration)

Management protocol

Middleware Data aggregation
(fusion)

Query processing

Application

Protocol

Services
(Time sync.,
Localization,

security)

Management interface

360 Zhigang Li et al.

tasks. Each intermediate manager has its own subnetwork; it collects and processes
information of its subnetwork and passes the information to the upper level manager.
According to hierarchical architecture, we proposed a macro-micro architecture for
SNM that fits nicely into our WSN model, as depicted in Fig. 4. Macro-manager is in
charge of high level strategic decisions about how to best utilize the available sensing
resources to achieve the mission objectives and distributes management policies to
micro-managers. According to application requirements and information in MIB,
macro-manager chooses a set of clusters to participate in data acquisition and
allocates tasks to these clusters. It is located at sink node (the network has only one
powerful sink node). Micro-manager maintains network topology in a cluster and
schedules sensor nodes to best carry out the requests from the macro-manger. Micro-
manager is located at cluster head. In conventional hierarchical management
architecture, there is no direct communication between intermediate managers. But in
our macro-micro architecture, micro-managers collaboratively carry out management
operations.

Fig. 4. Macro-micro management architecture

WSN agents are the entities that interface to the actual sensor node being managed.
Micro-managers interact with WSN agents to perform management tasks through
management protocol. Management information collected from network is
represented in a structured manner in MIB. Each element in the network maintains an
MIB that has information about its current configuration, operation statistics, and
parameters to control operations. Due to the energy constraint, in WSNs it can
introduce methods of measurement plus probabilistic forecast to update MIB.

5 Conclusion

Due to the continuing advances in network and application design in WSNs, the
development of a sensor network management system is becoming necessary and
possible. Because the significant differences between traditional networks and WSNs,
a different management solution is required. In this article, based on the techniques of
multi-sensor management, we propose a closed-loop feedback management
framework and macro-micro management architecture for WSNs. However, to

Macro manager

Micro manager

Cluster head Agents

Clusters

Issues of Wireless Sensor Network Management 361

implement successful network management system for WSNs still needs significant
work to resolve many technical issues.

References

1. I. F. Akyildiz, W. Su, Y. Sankarsubramaniam and E. Cayirci, Wireless Sensor Networks: a
survey, Computer Networks, Vol. 38, pp. 393-422, Mar. 2002.

2. Sri Kumar, Feng Zhao and David Shepherd, Collaborative Signal and Information
Processing in Microsensor Networks, IEEE Signal Processing, Vol. 19, Issue 2, Mar. 2002.

3. Ruiz, L.B., Nogueira J.M., Loureiro A.A.F., MANNA: A Management Architecture for
Wireless Sensor Networks, IEEE Communications, Vol. 41, Issue 2, pp. 116-125, Feb.
2003.

4. W. Heinzelman, A. Chandrakasan and H. Balakrishnan. An Application-Specific Protocol
Architecture for Wireless Microsensor Networks, IEEE Transactions on Wireless
Communications, Vol. 1, No. 4, October 2002.

5. V. Mhatre, C. Rosenberg, D. Kofman, R. Mazumdar and N. Shroff, A Minimum Cost
Heterogeneous Sensor Network with a lifetime Constraint, IEEE Transactions on Mobile
Computing, Vol.4, No.1, January 2005

6. G.W. Ng and K.H. Ng, Sensor management – what, why and how, Information Fusion, Vol.
1, Issue 2, pp. 67-75, December 2000.

7. Yang Yu, B. Krishnamachari and V. K. Prasanna, Issues in Designing Middleware for
Wireless Sensor Networks, IEEE Network, Vol. 18, Issue 1, Jan/Feb 2004.

8. Chien-Chung Shen, Srisathapornphat, C., Jaikaeo, C., An adaptive management architecture
for ad hoc networks, IEEE Communications Magazine, Vol. 41, Issue 2, Feb. 2003.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 362-367, 2005.
 Springer-Verlag Berlin Heidelberg 2005

OPC-based Architecture of Embedded Web Server

Zhiping Jia1, and Xin Li2

1 School of Computer Science and Technology, Shandong University,
250061 Shandong, China
zhipingj@sdu.edu.cn

2 Intelligence Engineering Lab, Institute of Software, Chinese Academy of Sciences,
100080 Beijing, China

lixin@mail.sdu.edu.cn

Abstract. This paper combines OPC (OLE for Process Control) standard to
EWS (Embedded Web Server) in order to distribute an integrated service for
accessing real-time and history data from control networks. A layer of OPC
XML-DA (Data Access) service is added between web services interfaces and
embedded operation system in OPC-EWS. Architecture of DCS (Distributed
Control System) with OPC-EWS is described too. This OPC-EWS applies
such technologies as OPC, Java and XML and links to Internet through TCP/IP.
Therefore, accesses to all kinds of embedded devices and data share in the
heterogeneous Internet/Intranet environment are implemented. At last real-time
performance and security of OPC-EWS are analyzed. The experiments and
application have demonstrated that the architecture has good performance and
is feasible for real-time operation in DCS.

1 Introduction

As the technology of electronic measure and network communication has made great
progress, DCS based on embedded-Multiprocessor has been used widely in industrial
control. Whereas, embedded equipments for acquisition and control have wide variety
of kinds, while interface protocols used in equipments become more sophisticated.
Therefore it is highly necessary that a uniform interface be provided between every
automation system vendors. OPC (OLE for Process Control) is a standard mechanism
set down by OPC Foundation, making the connection of control networks with data
networks in a seamless and standard mode. OPC specifications are a series of
software interface protocols based upon Microsoft’s COM/DCOM technology [1].
Because of OPC’s advantages in the field of language independence, code reuse and
easy integration, OPC has been used more and more frequently.

The thesis subscribes an OPC-EWS and DCS with this new EWS, making the
connection of control networks with data networks in a seamless and standard mode.
The OPC-EWS can issue static and dynamic web pages as well as provide interfaces
for clients to monitor and provide devices used in control field.

The entire system has pliable and heterogeneous constitutes and flexible
composite-composed configuration. It can provide real-time monitoring through
Internet/Intranet for clients to access data from devices/controllers. Therefore

OPC-based Architecture of Embedded Web Server 363

seamless integration of heterogeneous system and data share are enforced in this way.
The virtues of this architecture are listed below.

1) It can simplify the hierarchy of hardware and software in the entire plant, and
reduce intermediate lays and lower the cost.

2) In comparison with Ethernet and field bus, it has broader net bands to improve
the performance of communication.

3) Because it is based on TCP/IP, this architecture is very flexible, open and easy
to connect to WAN.

This Architecture increases communicative speeds of front-device, changes the
structure of traditional integrated real-time control system, extends the scope of
control system, and enlarges the contents of available information, thus pursues the
tide of Internet [2].

Fig. 1. Architecture of DCS based on OPC-EWS

2 Design of OPC-EWS Architecture

2.1 Structure of OPC-EWS

An average web server runs in multi-tasks (multi-process or/and multi-threads)
preemptive system and it gives a firm support for every HTTP version. However,
there are finite resources and it has only on web process under the Embedded OS. For
this reason, Web process runs on the lowest priority level to yield to other tasks’
execution [3]. Therefore, there are many differences between EWS software system
and a common server.

Located between clients and EOS, EWS should provide some mechanism to
monitor and control field devices, sending web pages to clients and dealing with
clients’ submission. It also should provide security interface for remote clients (Fig.2
shows its inter structure). The lays and modules shown in the figure tell us how the

364 Zhiping Jia and Xin Li

embedded server is designed clearly. Simultaneity, the independence and
transplantation of all parts can be enforced largely.

Fig. 2. Structure of OPC-EWS

A module in OPC-EWS is set to respond clients’ SOAP requests. This module
parses the SOAP package received, handles the contained request, accesses the
corresponding real-time or historical data and formats them as an XML document.
Finally, it sends them back to the client as a response. In terms of the SOAP
specification, method calls and input parameters need to be XML-encoded and
packed in a SOAP envelope. The manipulation of the XML documents, such as
reading, formatting, parsing, construction operations, is performed using the
appropriate objects’ methods.

2.2 OPC XML-DA Module

OPC XML-DA module in OPC-EWS faces to field hardware in device layer and is in
charge of communication to different field bus(e.g. FF, HART, Profibus) and
encapsulation of manipulation for different devices and provides a standard interface
for clients to access devices transparently. There are three parts in this module(Fig.3),
server management, address space management and data management, which
accesses device data through an inner scheduler queue. The data management part
manages a data buffer. Through data-acquiring I/O composites, it refreshes value and
timestamp of items and checks availability of data. Different I/O composites have the
uniform interface, so when facing with different communicate protocols, e.g. Modbus
and Profibus, we need only replace it with a corresponding I/O composite and other
parts needn’t be changed.

First of all, this module initials field bus information, gets all parameter and listens
to request. When a request comes, it creates an OPC server and responses to all kinds
of requests such as browser address space, add/delete group, add/delete item,

OPC-based Architecture of Embedded Web Server 365

read/write, data subscription, data fresh, and so on. Polled-pull model is adopted
between client and server [4]. Client sends a subscription to a certain items. When
sever receives a request, it doesn’t response immediately. After receiving client’s
Subscription- Polled-Refresh, sever gives those changed items to client.

Fig. 3. Configuration of OPC XML-DA module

2.3 EWS-HTTP Protocol

HTTP is based on Client/Server and request/response model. Handling HTTP
protocols is another task in OPC-EWS, which receives clients’ HTTP requests, deals
with them and then returns result to clients. As one running process, Web server must
adopt Non-blocking I/O access model to serve for several clients. If web server took
nonstop polling to requests, it would occupy most of processor’s resources. It is
fortunate for us that we can call ‘select’ method in Linux to solve this problem. The
‘select’ method is used to monitor client’s connect requests and may ensure other
clients’ read/write when one client is blocked for read/write. To ensure server can
deal with several clients’ requests at the same time, structure variable is used in order
to save all information of one connection, such as IP, browser type, protocol version,
URL, head info, timeout and so on. At the same time, every connection corresponds
to a life span.

OPC-EWS listens to new connections, holds old connections and handles their
requests. First of all, it initials system configuration and registers, then runs as a
process and listens to new connections. When a new connection request comes and
the count of current connections is less than the max allowed number, it will be
accepted, otherwise, refused.

OPC-EWS parses new requests: it checks request line and then saves URL and
head info to the related structure. With the relation to URL, it finds request resources
and checks if protection and authentication are needed. If requests come from form
submission, OPC-EWS calls related CGI function; if they request web pages or other
files, it reads them into buffer and checks SSI (Server Side Include), return results to
clients’ browser. At last, it decides whether to close connection or not in agreement
with protocols and client’s state.

366 Zhiping Jia and Xin Li

2.4 Publishing of Real-Time Data

Today, the key problem of DCS on web is how to implement visual show of
measured object (e.g. real-time curves) and refreshing real-time data. We put forward
a feasible and high efficient solution — real-time monitoring combined XML with
Java.

A web browser to access OPC-EWS is used by thin-client in this system. The
thin–clients get all monitoring views, curves and reports in industrial field. In order to
separate views from real-time data, the user should save the monitoring view in XML
file. Static objects (e.g. text, label, picture…) are transmitted only once and dynamic
object (e.g. LED, switch, liquid level…) are shown for client as Java applet. Java
applet refreshes when receiving respondent soap message. So every client authorized
can monitor all filed conditions through a web browser.

3 Discussion

3.1 Real-Time Performance of OPC-EWS

It is a vital specialty for real-time performance in embedded control system. It is also
very difficult for real-time performance to be used in control system on web. To our
disappointment, there is not a mature and perfect solution until the present time. In
order to improve real-time performance in the whole system, three steps are
implemented.

First, in the design of software, optimum program and arithmetic are used, such as
real-time task scheduling queue in data-acquiring I/O composites and reducing time
delay in software system.

Secondly, “subscription-refresh” model is adopted in client. Server need only send
changed data. It decreases net flow enormously and enhances communication
performance on network.

Thirdly, in network architecture, 100M-Ethernet and Gigabit-Ethernet become
gradually common in the LAN and WAN. Net band resources are increasing fast
because of the development of switch technology. These lay the foundation for the
solution in hardware.

Furthermore, some attributions (e.g. RequestSamplingRate, EnableBuffering,
DeadBand) in client’s request could be set to optimize performance of server to meet
the expectations of real-time for data transmission, refreshing views and sending
command.

3.2 Security of OPC-EWS

Security is very important in control system connected to Internet. Two common
authentication algorithms, BAA (Basic Access Authentication) and DAA (Digest
Access Authentication), are ready for EWS. In DAA, Password is encrypted by MD5

OPC-based Architecture of Embedded Web Server 367

message-digest algorithm. So, DAA is safer than BAA [5]. There are code sources in
RFC1321. MD5 Message-Digest Algorithm is granted by RSA Data Security, Inc.

There are two files used to save user name, password and visit rights in a protected
directory. When a browser visiting web page, sever checks if the wanted page file is
protected. If the page file needs DAA, server returns state code 401 and head of
www-Authenticate, including encrypted data, realm and nonce. After Browser
receives response, the client inputs user name and password. Next, browser sends
them to the server to be checked. Server compares them with those from the two files.
If they are the same, server returns head info of www-Authenticate (including new
nonce for user to visit other protected web pages) and requested web pages.

Some APIs (e.g. add/delete user’s right and add/delete files) are supplied for user
management in EWS.

4 Conclusion

This paper has proposed the OPC-EWS architecture applied such technologies as
OPC, Java and XML and links to Internet through TCP/IP. The DCS with OPC-EWS
has pliable and heterogeneous constitutes and flexible composite-composed
configuration. It can be connected to all kinds of embedded devices and supplies
real-time remote monitoring on Internet/Intranet. Then seamless integration of
heterogeneous system and data share are implemented. As OPC-EWS has its
characteristics of seamless and standard way, it will be used widely in the future.

References

1. OPC Common Definitions and Interface Version 1.0. OPC Foundation (1998)
2. McCombie: Embedded Web server now and in the future. RealTime Magazine, No.1,

March,(1998) 82-83
3. Mi-Joung Choi.an: Efficient Embedded Web Server for Web-based Network Element

Management. IEEE Internet Computer (2000)
4. OPC XML-DA Specification 1.0 OPC Foundation (2003)
5. HTTP Authentication: Basic and Digest Access Authentication. http://www.ietf.org/rfc/

rfc2617.txt (1999)

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 368-373, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Synchronized Data Gathering in Real-Time Embedded
Fiber Sensor Network

Yanfei Qiu, Fangmin Li, and Ligong Xue

School of Information and Engineering
Wuhan University of Technology, Wuhan, China

yanfeiqiu@tom.com, lfm68@sina.com, lgxue@yahoo.com

Abstract. An Embedded Fiber Sensor Network (EFSN) is a health monitoring
network for large structure consisted of several sensor nodes, each equipped
with fiber-optic sensor, embedded processor, and data transceiver. The
collective sensing data of such a system of networked sensors can be utilized to
evaluate structural health conditions of bridges, elevators, composites, mines,
and even reactors. Key concerns for designing such networks are real-time
detection, data synchronization and reliable information submission. This paper
addresses these issues and presents an Independent Circular Cache Queue
(ICCQ) to reduce the amount of traffic in the network. In the ICCQ mechanism,
a self-managed scheme is implemented in the network to maintain stability
under varying environmental disturbance and sensor sensitivities.

1 Introduction

Advances in fiber-optic sensors have enabled the measurement of deformation and
temperature inside or at the surface of structures of engineering facilities, such as
bridges, buildings, airplane wings, frames, vehicles and so on [1]. To monitor the
whole health condition of a structure, we deploy a proper number of fiber-bragg-
grating sensors to constitute a sensor network. Each sensor will automatically record
the data about the degradation and aging of the structure at programmed interval,
reduce and store the obtained values, and submit processed data to the upper-layer
managing system, usually a mobile computer [2]. Expert diagnosis will be
extrapolated through analysis of the gathered data.

Since structure diagnosis is involved with overview of the structure and only
activated when queried, applications implemented in such a sensor network encounter
some rigorous restrains. First, the detection of each sensor node must be real-time, or
the conclusion based on its data can not instantly trace the variation of the structure.
Second, each sensor should operate synchronously, that is the engaged sensor nodes
detect, process and submit information within tolerable latency. Third, a stable
intercommunication between sensor nodes and managing system is indispensable to
access the network. We introduce an ICCQ mechanism to meet both real-time quality
and synchronization. In addition, to implement TCP/IP stack in the sensor node, we
utilize an embedded processor based on ARM architecture and a micro operation
system called UCOS-II. Thereby, sensor data is sent using the best-effort transport

Synchronized Data Gathering in Real-Time Embedded Fiber Sensor Network 369

protocol UDP, and administrative instructions are conducted through the reliable
byte-stream transport protocol TCP.

The paper is organized as follows. In Section 2, we describe the system
architecture of our Real-time Embedded Fiber Sensor Network (REFSN). Section 3
details the ICCQ mechanism. Section 4 discusses synchronization under ICCQ and
intercommunication for data gathering. Section 5 demonstrates the conclusion and
outlook of the REFSN system.

2 The REFSN System Architecture

A fiber-bragg-grating (FBG) sensor is a fiber photo-imprinted with Bragg Grating,
which is a very selective spatial reflector. When a FBG sensor attached to a structure,
the deformation or temperature of the structure will cause a proportional shift in the
reflected and transmitted spectrum. By analysing the varying spectrum, the data
values corresponding to the physical factors can be extracted [3] [4]. Such values will
be sampled and processed in an embedded processor periodically. The sample interval

,...,n),(,iTi 21 should be as small as possible in order to figure out the varying curve
of deformation or temperature. Considering that data process will take up some time

processT and data sending spends some time sendt , the embedded processor
equipped in a sensor node should respond and compute fast enough. We choose a 32-
bit ARM-based processor S3C44B0x to charge this procedure, which is embedded
with a Fast Interrupt Query [5] (Fig. 1).

Sensor Node Hub

UCOS-II ICCQ

LWIP
APPLICATION

Fig. 1. The left is the EFSN System and the right is the Sensor Node Software System

Software running on REFSN involves UCOS-II [6], LWIP [7] stack and
application tasks. The layer structure is shown in Fig.1. UCOS-II is an embedded
operation system providing preemptive task schedule based on its priority, and LWIP
is a light TCP/IP stack allowing embedded system to communicate with intranet. The
main objectives of ICCQ are to: (1) sample and record the data of the FBG sensor; (2)
submit data to applications for future transferring; (3) execute the practical operation
while synchronizing with other counterparts.

370 Yanfei Qiu, Fangmin Li, and Ligong Xue

3 The ICCQ Mechanism

Many real-time operation systems, including UCOS-II, have critical kernel section,
e.g. task schedule and stack adjustment, which can not be interrupted. Such a situation
also exits in LIWP stack, and will bring about random latency to reduce accuracy in
real-time applications. Therefore, applications designed with embedded operation
system need to consider an alternative management mechanism for real-time data
gathering. In REFSN system, we utilize ICCQ mechanism to cooperate with UCOS-II
and LWIP. It is consisted of three basic parts as following (Fig.2):

pBoundary

pCurrent

...

pInsert max transfer unit

Fig. 2. Cache Queue

3.1 Circular Cache Queue

Circular Cache Queue is a combination of sequential linked lists and circular linked
lists. To relieve the traffic burden in REFSN, the size of each sequential list is
assigned as maximum transfer unit mtuS to avoid packet fragment, and data
submission occurs every 0T time. We let itemsS denote the maximum number of items
in the cache queue. Considering memory limitation in embedded system, itemsS
should be as small as possible. Let recordS denotes the size of a single record, when

),...,2,1(0 niS
T

ttT
S record

i

sendprocess
mtu (1)

itemsS can be evaluated as an arbitrary integral number.

Synchronized Data Gathering in Real-Time Embedded Fiber Sensor Network 371

3.2 Self-Managed Scheme

The FISR is an independent fast interrupt service route, not managed by UCOS-II
(Fig.1). When FBG sensor completes a conversion, it sends an interrupt request signal
to inform the embedded processor (Fig.3).

FISR

initialization

sequential
list full?

adjust circular list

select new
sequential list

record data

exit

DataSendTask

initialization

circular list
is empty?

send recorded
data

adjust circular list

Y

N

Fig. 3. Fast Interrupt Service Route and Data Send Task

3.3 Data Send Task

Data Send Task is responsible for transferring the structure information to
applications and ultimately to managing system (Fig.3). This task is application task
in UCOS-II operation system, and managed by the latter. Task schedule only affects

processt and sendt , without reducing the accuracy of sampled data.

4 Synchronization and Intercommunication

The managing system broadcasts data gathering command amongst REFSN to query
structure information. Each sensor node receiving the command sends a confirm

372 Yanfei Qiu, Fangmin Li, and Ligong Xue

signal back to the managing system, and then begins to submit valid processed data.
Due to LWIP, an embedded TCP/IP stack, this handshake takes a few microseconds
to establish a synchronized connection. As the hardware and software in each sensor
node are not exactly the same, discordance will aggregated to cause asynchronous.
Thus, the handshake should be activated at a proper interval, denoted by syncT .
Specify }...,max{ 21max nTTTT , }...,min{ 21min nTTTT , then

minmax

minmax

TT
TTTsync . (2)

To be self-managed, environment disturbance should be taken. Since some sensor
nodes may disconnect and retreat from the established network, and occasionally, a
new sensor node may join into the network, thus it is time to handshake again to form
a new synchronized sensor network (Fig.4).

synchronize
d sensor
network

asynchroni
zed sensor
network

broadcast
command for

sychronization

a node enter or exit

too long time

no response
from one or more
registered nodes

handshakes status report

Fig. 4. Synchronization of sensor nodes

5 Conclusions

The managing system and REFSN are connected as a bus topology, illustrated in Fig.
1. Typical values of parameters are illustrated in Fig.5, as well as the human-machine
interface. Press “Connect” button to send a query command, and start to gather data
from sensor network. A red curve indicates the variation of the temperature at that
time. Each sensor node is identified by an IP address. To display another curve
amongst the sensor network, it is only needed to change the Node ID. Gauge step and
scale can be adjusted in the pop-up dialog when “configure” is pressed.

Our experiment results show that the data precision is ensured and improved. In
addition, the variation of the temperature of different points on a structured surface

Synchronized Data Gathering in Real-Time Embedded Fiber Sensor Network 373

can be reflected by the red curve, and the connected sensor network can work
synchronously and stably.

Connect Disconnect Configure Exit

Current Connected Sensor Nodes: 4

Curent Displayed Node ID: 192.168.0.1

27.0

+1.0

-1.0

unit: oC

26.53

Current
Value

parameters typical value unit

Ti 20 ms

T0 1 s

tprocess 0.1 ms

tsend 0.1 ms

Srecord 20 byte

Smtu 1024 byte

Tmax 20.3779 ms
Tmin 20.3763 ms

Tsync 250 s

Fig. 5. Experiment Parameters and Manage Interface

In future work, the ICCQ mechanism will be implemented by Service On Chip
method. It is expected to result a faster and more stable system.

Acknowledgements

This work is partially supported by the Key National Science Foundation of China
(No. 50335020) and the Doctoral Science Foundation of China (No. 20020497006).

References

1. Daniele Inaudi: Long-Gage Fiber-Optic Sensors for Structural Monitoring, Photomechanics,
Pramod K. Rastogi, vol. 77/ 2000, p. 273, June 2003

2. Adam Dunkels, Juan Alonso, Thiemo Voigt, Hartmut Ritter, Jochen Schiller: Connecting
Wireless Sensornets with TCP/IP Networks, Wired/Wireless Internet Communications, Peter
Langendoerfer, Mingyan Liu, lbrahim Matta, et al., vol. 2957 / 2004, pp. 143 – 152, January
2004

3. http://www.aip.org/tip/INPHFA/vol-9/iss-3/p24.html
4. http://www.crc.ca/en/html/crc/home/tech_transfer/bragg
5. http://www.samsung.com
6. http://www.ucos-ii.com
7. http://www.sics.se/~adam/lwip

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 374-380, 2005.
 Springer-Verlag Berlin Heidelberg 2005

The Energy Cost Model of
Clustering Wireless Sensor Network Architecture

Yanjun Zhang1, Xiaoyun Teng2, Hongyi Yu3, and Hanying Hu4

Dept. of Communication Engineering Zhengzhou Information Science
and Engineering Institute, (450002) Zhengzhou, P.R. China

1meiliguodu@126.com 2tengxiaoyun@sohu.com
 3maxyucn@sohu.com 4huhanying@vip.sina.com

Abstract. The advent of technology has facilitated the development of small,
low power devices that combine programmable general purpose computing
with multiple sensing and wireless communication capability. This article dis-
cusses the characteristics of sensor network and compares its communication
mode with MANET, and then it introduces the clustering sensor network archi-
tecture. The nodes in this architecture can be classified as the following four
types: cluster head nodes, active nodes inside cluster, the dormancy nodes and
free nodes. An energy cost model in the sensor network is given in the article.
The energy cost simulation is done and the influence of clustering on the en-
ergy cost is analyzed.

1 Introduction

Recent developments in integrated circuit (IC) technology has allowed the construc-
tion of low-cost small sensor nodes with multiple sensing and wireless communica-
tion capabilities that can form distributed wireless sensor network systems. These
systems can be used to perform detection, localization, tracking, and identification of
objects in diverse military, industrial, scientific, office, and home applications. A
large amount of low-cost intelligent microsensors can be rapidly deployed in an
environment of interest. These sensors can individually sense the environment. They
can also collaborate with each other and achieve complex information gathering and
dissemination tasks.

Generally speaking, in communication mode senor network is quite similar to the
MANET. They are both adoption infrastructure, multi-hop wireless communication
manner, and each node of the two networks has the ability to forward the packet. But
in detail there are many differences between them [1], mainly including the points as
the following.

Sensor network is built to obtain the information availably, and communication in
sensor network is just an assistant means for that purpose. But the MANET is a sheer
communication network. In sensor network, the data sent from the detect node to the

 This work is supported by the National Natural Science Foundation of China (Approved No.60472064).

The Energy Cost Model of Clustering Wireless Sensor Network Architecture 375

sink node may be aggregated to reduce the data to deliver. But the data in MANET
can’t be modified when transmitted from the source node to the destination node. The
scale of sensor network is larger than that of MANET. The number of the nodes in
sensor network is always many decuple with in MANET. In sensor network, the
density of nodes is very high, and sometimes it can amount to 20 in a stere[2]. The
nodes in sensor network often expire for the using up of the battery or other reasons.
The change of network structure in sensor network is often due to the node break-
down but in MANET it is often due to the change of the node position. The adoption
of the communication mode in the network is mainly broadcast or multicast, but that
in MANET is often P2P.

On the other hand, senor network has some characteristics is different with other
types network. There are large numbers of nodes in sensor network, thus the man-
agement of network is difficult. The battery of the node is limited and unchangeable;
therefore, the network designers must take the energy control into account in the first
place. The cost of the node is cheap but the stability of the node is poor. The fault
tolerant mechanism is important in sensor network design. Sensor network synthe-
sizes sensor technique, embedded computing technique, distributed information proc-
essing technology and wireless communication technique. Sensor network can be
applied in many domains, such as national defense military, national security, envi-
ronment monitor, transportation management, medical treatment hygiene, manufac-
turing industry, anti-disaster, etc. We can say that the appearance of sensor network is
a revolution in the realm of information collection.

Owing to the above reason, the network structure and management protocol of
MANET can't be applied to sensor network.

2 The Architecture Model of Sensor Network

To facilitate scalable operations within sensor networks, sensor nodes should be ag-
gregated to form clusters based on their power levels and proximity.

cluster

logistic
architecture
of network

cluster

cluster

Header of cluster
Fig. 1. Logistic architecture of sensor network

376 Yanjun Zhang et al.

The aggregation process could also be recursively applied to form a hierarchy of

clusters. Within a cluster, a cluster head will be elected to perform information
filtering, fusion, and aggregation, such as periodic calculation of the average
temperature of the cluster coverage area. In addition, the clustering process should be
reinitiated in case the cluster head fails or runs low in battery power. In situations
where a hierarchy of clusters is not applicable, the system of sensor nodes is
perceived by applications as a one-level clustering structure, where each node is a
cluster head by itself. Head node manages other nodes in cluster and charges the data
fusion. It can reduce the pressure of network management when the network scale
increases. If using the hierarchical clustering, sensor network can be regarded as a
network constituted of many sensor clusters [3].

Sensor network is limited in the node ability. If the network designer adopts hier-
archical clustering, the head cluster node at higher layer can not be competent. In
application, it shouldn’t be bigger than two classes. To save the energy of the sensor
nodes, we must think over the problem of energy cost. Saving energy may be consid-
ered from the application layer, the network layer and MAC layer. In this article, we
mainly consider the influence of the network architecture.

2.1 The Node Status and Function

There are four types of nodes in clustering sensor network, namely, cluster head node,
active node inside cluster, the dormancy node and free node. The type of each node is
decided by its place in the network. Then the function of each type is introduced in a
specific way.

Dormancy
Node

Free
Node

Weakup condition
be trigger

Receive dormancy
Instruction from the

cluster head node

Active
Node

Head
Node

Join a cluster
success

Selcect
a new
cluster
head

Creat a
new

cluster
failure
or can

not join
a

cluster

Be
weaken
up but
can not
find the
cluster

Be
selcected

Creat a new
header

Fig. 2. Nodes types’ conversion

The nodes with more surplus energy would be selected to be cluster head nodes
according to the principle of the opposite position stability. Cluster head node is re-
sponsible for sending the data to carry on the fusion and the consociation processing

The Energy Cost Model of Clustering Wireless Sensor Network Architecture 377

to the node inside the cluster, according to the fact whether data suit requests the
claim valuation current or not. It maintains the local routing information in the cluster
and the routing information with its neighbor clusters. When the topology changes, it
will renew the local routing information. According to the correlation of the node
inside the cluster, cluster head node decides dormancy node and notifies it to turn into
the dormancy. According to the request of the system, cluster head node judges
whether the data in the current node memory satisfy the request or not. When the
cluster head node is aware of the fact that it is no longer competent for the work, it
will start an election, and deliver the native information of maintenance to new head
node, and establish itself as an active node inside cluster. The new head renews the
native information toward the member inside the cluster after receiving the informa-
tion. If a head node is suddenly expired, its neighbor's nodes will start an election.

The mission of data collection is completed by the active node inside cluster. The
active node periodically or aperiodically renews the information toward the head
node. The active node reports the new position information to the head node when the
position information has changed; it carries on the backup information of the head
node, and monitors the suddenly expiring of head nodes. If the expiring occurs, it will
broadcast the expiring message toward the nodes inside the cluster, then start an elec-
tion, and deliver the backup information to new head node.

When active node inside cluster receives dormancy instruction from the cluster
head node, it will become the dormancy node. The node will set the trigger conditions
to wakeup itself before entering the dormancy. Once wakeup condition is triggered,
the node will be awaken.

The node which doesn’t exist in any cluster is called free node. When a node be-
comes a free node, it will start a new cluster or join a cluster to get away from the free
status. If free node fails to start a cluster or can't join a cluster, it will turn into dor-
mancy node.

2.2 The Energy Cost Model of Clustering Sensor Network

According to the analysis of the energy cost, we built up the following model. The
energy cost includes two parts, communication cost and MCU processing cost. The
management cost is also an important issue in clustering sensor network. Manage-
ment cost is composed of the computing of data fusion cost and management com-
munication cost. We set the following assumptions before the simulation of the sen-
sor network energy cost.

The total node number in the network is N, and the number of sampling nodes is n.
Sampling frequency is f. The length of data packet is m1, and the length does not
change after the data fusion. The energy cost of sampling in unit time is c1; data
processing is c2.The length of management packet is m2 and the frequency is fm in
the cluster. The communication mode is P2P when the active nodes in the cluster
send packet to head node, otherwise the mode is multicast.

We can get the following expressions. If using the flat Architecture, the energy
cost in unit time is sW .

s=n c1+f H x m1 Tx+Rx +N c2W (1)

378 Yanjun Zhang et al.

The x is a random disturbing. The cost of sending a bit data is Tx, and that of re-

ceiving is Rx.

c
1

m

81 (2 1 1 1 1W

 +N 2+W

h i

i

ip p Rx Tx c i f m f H i x m
s

c
(2)

cW is the energy cost in unit time in cluster Architecture.
mW is the cost of management communication.

h h2
mm

i=1 i=1

1+2ip1 8 1 4 1 Rx Tx 8h RxW f 3
i (3)

The total number of clusters in the network is P1, and the average number of the
sampling nodes in a cluster is p2.

3 Simulation and Analysis

Our simulated network consists of 99255 stationary sensor nodes distributed in a grid
pattern. m1 is set to 64*8bit,and m2 is equal to m1. c1 is set to 3*0.002J and c2 is
3*0.0104J. To analyze the energy cost of the sensor network, we get simulation result
figures shown below.

(A) (B)

Fig. 3. Simulation results(1)

We can see from Figure 3-A that the network life will extend with the increase of
the nodes number in a cluster. It means that the energy cost can be reduced by adopt-
ing cluster in sensor network. In Figure 3-B, when the network life reaches its peak
value, network life will decrease along with the growth of the nodes number in a
cluster.

The Energy Cost Model of Clustering Wireless Sensor Network Architecture 379

(A) (B)
Fig. 4. Simulation results(2)

Figure 4-A indicates the peak value of the network life appears at the same cluster
scale when we change the length of data packet. It means that the length of data
packet has no influence on the relationship between the nodes number and the net-
work life. It only reduces the energy cost of the data transmission. When the number
of hop is increased, we can see it clearer from Figure 4-B.

We get the conclusion from Figure 5-A that if the ratio of the sampling nodes
number to all nodes number in the network is less than 10 percent, the adaptation of
the miniature cluster can not reduce the energy cost, on the contrary, the cost will
increase because of the cost of management in the cluster. Figure 5-B is same to Fig-
ure 5-A except that the maximum of hop number is one hundred. From Figure 5-B we
can see that when the hop number is bigger than twenty, the system life is decrease
with the hop number increasing.

(A) (B)

Fig. 5. Simulation results(3)

From above analysis we can draw the following conclusion the energy cost has
certain relationship with management cost and the scale of the cluster in the network,
the number of sampling nodes. Clustering perhaps increases the energy cost for the
management cost when the operation data flow is fairly small.

380 Yanjun Zhang et al.

4 Summary and Future Works

In this article, clustering sensor network architecture has been introduced, and a sen-
sor network energy cost model is given. The simulation of energy cost has been done
and we have analyzed the factors related to the energy cost.

In order to optimize the clustering sensor network architecture and reduce more
energy cost, the influence of dormancy mechanism on sensor network life needs fur-
ther investigation. The investigation of the energy cost model which we have con-
structed will be further continued.

References

1. Perkins, C., Ad Hoc Networks, Addison-Wesley , Reading, MA, 2000.
2. Shih, Cho, S., Ickes, N., Min, R., Sinha, A., Wang, A., Chandrakasan, A., Physical layer

driven protocol and algorithm design for energy-efficient wireless sensor networks, Pro-
ceedings of ACM MobiCom 01, Rome, Italy, pp. 272-286, July 2001.

3. Heinzelman, W., Application-Specific Protocol Architectures for Wireless Networks,
Ph.D. thesis, Massachusetts Institute of Technology, 2000.

4. Tian D. and Georganas, N. D., A coverage-preserving node scheduling scheme for large
wireless sensor networks, in Proceedings of the first ACM international workshop on
Wireless sensor networks and applications, pp. 32-41, 2002.

5. Heinzelman W.R., Kulik J., Balakrishnan H., Adaptive protocols for information dissemina-
tion in wireless sensor networks. In: Proceedings of the ACM MobiCom’99. Seattle: ACM
Press, 1999. 174~185.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 381-387, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Traffic Control Scheme of VCNs' Gigabit Ethernet
Using BP

Dae-Young Lee and Sang-Hyun Bae

Dept. of Computer Science & Statistics, Chosun University, Korea
375 Seosuk-Dong, Dong-Gu, Kwang-ju, Korea 501-759

Tel : +82-062-230-7962 Fax : +82-062-234-4326
cssna01@chosun.ac.kr

Abstract. VCNs (Virtual-Connection Networks) of gigabit-ethernet can be ef-
ficiently used to transport packet data services. The switching system will sup-
port voice and packet data services simultaneously from end to end applications.
To guarantee quality of service (QoS) of the offered services, source rate to
send packet data is needed to control the network overload condition. Most ex-
isting control algorithms are shown to provide the threshold-based feedback
control technique. However, real-time voice calls can be dynamically con-
nected and released during data services in the network. If the feedback control
information delays, quality of the serviced voice can be degraded due to a time
delay between source and destination in the high speed link. An adaptive algo-
rithm based on the optimal least mean square error technique is presented for
the predictive feedback control technique. The algorithm attempts to predict a
future buffer size from weight factor (slope) adaptation of unknown functions,
which are used for feedback control. Simulation results are presented, which
show the effectiveness of the algorithm.

1 Introduction

Currently GEA(Gigabit Ethernet Alliance) composed of a few companies supporting
Ethernet, based on the speed that could create 10 Gbps is getting ready to make
Ethernet as the all-weather network technology such as introducing technology to
make SONET and WDM compatible[1]. Furthermore, the best QoS can not be pro-
vided when multimedia services sensitive to delay such as voice and images are to be
sent since most of the broadband wired-wireless communications network to be ad-
vanced in the future is based on IP, although IP is feasible when using the network
transmitting only data traffic. In order to overcome this problem, various queuing
technologies are being used at the protocol level such as RSVP(Resource reSerVation
Protocol), which provides the standard method to obtain the guaranteed bandwidth in
the IP network infra environment[2]-[3]. However, most studies examine only some
areas of the ever-increasing existing network and broadband wired-wireless commu-
nications network that need to transmit new multimedia data. Since the network man-
agement technologies that realize performance improvement through this approach

382 Dae-Young Lee and Sang-Hyun Bae

are limited in the range of application, modeling and controlling technologies are
needed in new paradigm[4]-[5].

In order to resolve this problem, improved feedback control information and algo-
rithm are proposed in the present study as one of the solutions for effective control
within the timeout period after the dynamic connection has been set to monitor past
system records such as input ratio and buffer size and to predict the future system
status by investigating the network status. For these purposes, the standard least mean
squared error, NLMS, algorithm is introduced to analyze and control the upper level
of the communication network[6] to provide the best QoS(Quality of Service) to the
users and to set the optimal model for the analysis and design of network software
and hardware factors by increasing the channel utilization usage ratio. These results
could be used to maximize the effective bandwidth use of large-scale communication
network, to verify protocol, and to develop conversion technology. The improved
feedback control information, model, and algorithm are discussed in the second sec-
tion and the results of simulation done using both the ER feedback method and pro-
posed NLMS feedback method are shown in the third section.

2 A Predictive Feedback Control Model

2.1 A Proposed Predictive Feedback Control Model

. . .

ERNLMS

d1

d2

dN Q(n)
TLTH

Fig.1. Feedback Control Model

A proposed predictive feedback control model is presented in Fig. 1 above. N sources
transmit packet data cells in a single switch, a cell transmission rate is constant, and a
queue state is monitored regularly. It is assumed that a transmission delay time of
packet data between a source and a switch is di, and that sources is added or deleted
randomly for ABR service. A network state is specified in time n by Q(n) of a queue
length at a switch node. For a given ABR traffic processing buffer, TH and TL show
high and low thresholds respectively. A predictive control function computes a future
queue length in response to time-series by a queue length. When a future predictive
queue size exceeds the high threshold TH, the switch is considered to be in a conges-
tion and the switch computes the explicit rate(ER) at which sources have to send a
backward RM cell to the switch in order to avoid a congestion. If it is less than the
high threshold TH, however, a source changes its transmission rate in its computation
of ACR (Available Cell Rate) by being informed of non-congestion situation instead
of ER.

Traffic Control Scheme of VCNs' Gigabit Ethernet Using BP 383

2.2 A Predictive Control Function Using NLMS

NLMS control estimates buffer size in the next k steps using a linear function with a
current value of the buffer size and weighting factor(slope) at time n.
Let Q(n) denote the buffer size at time n. The k-step predictor is formulated such that
the buffer size at k steps in the future is estimated from the Q(n), as given by

)()()(nQnaknQ k (1)
Here, a(n) is the weighted factor estimated at the time n, and k=1, 2, …,t is the

maximum predictive range. The predictive error at the time, n is)()()(
^

nQnQne

)1()1()(
^

nQnanQ (2)
The prediction scheme uses the error to modify the weighting factor whenever the

error is available at each time step. Furthermore, the weighting factor a(n) is affected
in time as sources are added or removed and as the activity levels of source changes.
We thus put the problem into the one of estimating the weighting factor and use the
normalized least mean square error (NLMS) linear prediction algorithm. Given an
initial value for a(n)=0, the weighting factors are updated by

2|1(|
)1()()1()(

nQ
nQnenana (3)

Here, is a constant. When Q(n) is the apex, a(n) is converged at mean square as
the optimal solution. The normalized least mean squared error, NLMS, is not affected
significantly by the factor, . At each time step, the weighted factor , a(n), indicates
the direction of function changes on whether the buffer size increases or decreases
according to the residual e(n), which is the difference between the actual buffer size,
Q(n), and the estimated buffer size,

^
Q .

Fig. 2. The Prediction Scheme

Therefore Fig.2. is the predictive plan suggested in the present study. When a >>1,
the predicted buffer size increases according to the equation, Q (n + k) = a k (n)
Q(n). The time, k, agreeing at TH, could be predicted beforehand using Q(n) and a(n)
shown at the time n.

384 Dae-Young Lee and Sang-Hyun Bae

2.3 A Predictive Control Function of Neural Network Using BP

A non-linear predictive function using neural network adjusts to predict a optimized
value using BP algorithm[2]. It computes optimized variables of a non-linear equation
(sigmoid) included in neural network nodes, and adjusts to get minimal errors to be
occurred in a predictive value. BP is a kind of delta learning method to adjust adap-
tively the degree of a connection in order to minimize the differential error between
required output and predictive output. Input layer xi gets continuously changing
queue length Q(n), Q(n-1),…,Q(n-m-1) in time units, and output layer gets a predic-
tive value of queue length Q(n+k) after n+k . A case using neural network as in using
NLMS also predicts a future queue length through monitoring queue length at a
switch. However, the case is more complicated than the case of NLMS, because a
weighted value for each connection link should be computed in advanced for optimal
adaption. The detailed computation processing of BP algorithm is consulted in Refer-
ence [2].

3 Simulation

3.1 Simulation Environment

As in Fig. 3, the simulation model of a control algorithm presented in this paper is
that the link speed of the switch is set to 150 Mbps, and the link speed for each source
to the switch is set to 150 Mbps/N for N sources. The control algorithm is experi-
mented in Visual C++ for a single bottleneck switch with a buffer of high and low
thresholds of 5000 and 1000 cells respectively.

Fig.3. Simulation Model

Following parameters are used for the simulation: peak cell rate(PCR) is set to 150
Mbps, additive increase rate(AIR) is set to 0.1 Mbps, and explicit reduction fac-
tor(ERF) is defined to 4/5. Ten active sources with various packet data cell generation
times are used for simulation. In order to examine the transitional behaviors, an
abrupt change of active sources is made. Initially, sources with cell generation times
at {2, 4, 6, 9, 11, 13, 16, 20, 21, 23} are active, in which the numbers represent the
time-delay di from current time-unit n at the switch to the sources. At time-unit 1000,
sources with time-delay di{14, 16, 17, 19, 20, 22, 23, 26, 28, 30} are active, in which
it includes the active sources with long delays. Two cases are compared in terms of a

Traffic Control Scheme of VCNs' Gigabit Ethernet Using BP 385

stabilization and a congestion of queue length at the switch through the change of
transmission delay. The first case uses only feedback control method, and the second
one does feedback predictive control method.

3.2 Simulation Results

Fig. 4 presents the change of queue length size at each switch, one of which uses a
feedback predictive control algorithm using NLMS proposed in this paper, and the
other of which uses only a feedback control one. A predictive interval(k) for NLMS
was 10. Fig 4 presents that a feedback control algorithm only always brings about a
congestion, and that a variation of queue length is considerably severe. It also shows
that a variation of the length size Q(n) is severe after time 1000, which means that the
sources with much longer delay time than other ones are incoming at the same time.

0

2000

4000

6000

8000

10000

1 300 599 898 1197 1496 1795n

ER NLMS
based
ER only

Fig. 4. Comparison of ER only and ER with NLMS

Control algorithm presents no variation of queue length before time unit 1000,
close to high and low threshold, compared with a feedback control one only. After
time unit 1000, however, as the sources with much longer delay time than other ones
are incoming at the same time, the variation occurs more severely than before 1000
even with the predictive control method, and cases exceeding over high and low
threshold also occur. The reason is that feedback delay of transmission sources is
longer from time unit 1000, and that as a worst condition any traffic does not occur
during time delay 1 through 13. That is, a predictive control function responds inap-
propriately to constant long-term interval, or sudden and random change. However, it
is concluded that a predictive control algorithm causes a stability of the change and
not severe congestion during simulation, compared with a feedback control one only.
The use of neural network structure brings out similar results. It also responds inap-
propriately after n=1000.
In the switch buffer size change for the ER method and ER algorithm using NLMS,
the buffer size before the time unit is significantly more effective compared with
when using only ER algorithm. However, according to the influx of other sources
having more time delay at the worst situation after time change as in the simulation in
Fig.4., NLMS algorithm is modulated by applying BP algorithm in order to stabilize
the unstable buffer size and severe changes by applying BP algorithm.

386 Dae-Young Lee and Sang-Hyun Bae

Fig. 5. The learning result on the prediction of buffer size using BP

Fig. 5. shows the results of executing the BP program to modulate the buffer size
change after the time conversion point using BP algorithm, showing that the error rate
graph value at the middle section of the lower section of the figure drastically de-
creases.

4 Conclusions

The present study is conducted to control traffic by predicting congestion before the
development of congestion at the switch in gigabit Ethernet VCNs and the buffer size.
The results on predicted buffer size are actively used as feedback control information
so that expedite and accurate congestion status could be reported. The prediction
algorithm based on the NLMS predictive plan is applied in the control algorithm
based on ER algorithm using the normalized least mean squared error method, NLMS,
by predicting the buffer size after the k step.

Currently, despite the continuously golden age of xDSL (x Digital Subscriber Line)
technology in the high-speed Internet access market in Domestic, Internet users think
that it takes too long time for website searching and content download to the point
that they still call WWW (World Wide Web) as WWW (World Wait Web), showing
that the network congestion control technology has solved the problem only partially.
In other words, the factors such as slow access speed due to explosive traffic increase,
unpredictability of sudden disconnection, and the limitation of usable bandwidth can
not be analyzed clearly only with the existing modeling analysis.

The proposed least mean squared error method, the prediction algorithm using
NLMS, could provide the earnest analytical method to resolve this problem with con-
gestion.
The expansion of the technologies obtained based on the results of the present study
in the future TCP/ IP based multimedia communications and wireless network areas
could lead to the development of generalized communication network analytical
method on all modes of communications. Furthermore, more effective application of
the system analysis such as IVHS (Intelligent Vehicles Highway Systems) and con-
trol technology would be the steppingstone for researches for the development of
application technology for the actual application on systems.

Traffic Control Scheme of VCNs' Gigabit Ethernet Using BP 387

References

1. H. T. Kung, "Gigabit Local Area Networks: A Systems", IEEE Communications Magazine,
Vol. 30, Issue 4, pp. 79-89, April 1992.

2. Jean Walrand and Pravin Varaiya, High-Perf ormance Communication Networks , The
Morgan Kaufmann, 2000

3. William Stallings, "High-Speed Networks; TCP/IP and ATM Design Principles", Prentice
Hall, 1998.

4. K.-H. Cho and J.-T. Lim, "Supervisory Rate-Based Flow Control of ATM Networks for
ABR Services", IEICE Trans. on Communications, vol. E81-B, no. 6, pp. 1269-1271, 1998.

5. Seung-Hyub Lee and Kwang-Hyun Cho, "End-to-End Congestion Control of High-Speed
Gigabit-Ethernet Networks based on Smiths Principle", Proc. of the ITC-CSCC 2000,
pp.101-104, Pusan, Korea, July 2000.

6. S.P.Bhattacharyya, H.Chapellat, L.H.Keel, "Robust Control", Prentice Hall, 1995

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 388-394, 2005.
 Springer-Verlag Berlin Heidelberg 2005

A Jitter-Free Kernel for Hard Real-Time Systems

Christo Angelov and Jesper Berthing

Mads Clausen Institute for Product Innovation, University of Southern Denmark
Grundtvigs Alle 150, 6400 Soenderborg, Denmark
{angelov, berthing}@mci.sdu.dk

Abstract. The paper presents advanced task management techniques featuring
Boolean vectors and bitwise vector operations on kernel data structures in the
context of the HARTEXTM hard real-time kernel. These techniques have been
consistently applied to all aspects of task management and interaction. Hence,
the execution time of system functions no longer depends on the number of
tasks involved, resulting in predictable, jitter-free kernel operation. This
approach has been further extended to time management resulting in a new type
of kernel component, which can be used to implement timed multitasking - a
novel technique providing for jitter-free execution of hard real-time tasks.

1 Introduction

Modern embedded systems have to satisfy stringent requirements with respect to
system safety and predictability. Currently, there are two approaches for engineering
predictable embedded systems: static scheduling vs. predictable dynamic scheduling.
The former approach is widely used with safety-critical systems. However, static
scheduling has a major disadvantage: its use results in closed, non-reusable systems
that are difficult to reconfigure and maintain. This is in contradiction to the
requirement for an open system architecture that has to provide support for software
reuse as well as in-site and on-line reconfiguration.

The latter approach is more promising but it requires the development of a new
generation of safe real-time kernels, which provide a secure and predictable
environment for application tasks through predictable task scheduling and interaction,
extensive timing and monitoring facilities, and last but not least - predictable
behaviour of the kernel itself. Such functionality cannot be efficiently accomplished
using conventional kernel algorithms and data structures, i.e. linked lists used to
implement system queues. Extensive linked list processing introduces substantial and
largely varying overhead known as kernel jitter [4].

This paper presents a novel kernel design using Boolean vectors (bit-strings) in
order to implement system queues. Consequently, queues can be processed through
bitwise Boolean operations resulting in jitter-free operation and substantial reduction
of kernel overhead. That approach has been consistently applied to all aspects of task
management and interaction: task scheduling, task execution request generation, task
synchronization and communication [2, 3]. It has been further extended to time
management resulting in a new type of kernel component - the Static Time Manager,

A Jitter-Free Kernel for Hard Real-Time Systems 389

which can be used to implement Timed Multitasking - a novel computational model
providing for jitter-free execution of hard real-time tasks [5].

The paper focuses on advanced task and time management based on Boolean
vector processing as implemented in HARTEXTM - a timed-multitasking version of the
HARTEX kernel [2]. The paper is organized as follows: Section 2 gives an overview
of the kernel architecture and functionality. Section 3 presents task management using
Boolean vectors. Section 4 presents advanced time management and the so-called
Static Time Manager in the context of timed multitasking. The last section contains
concluding remarks highlighting the implications of the developed kernel
architecture.

2 HARTEX Architecture

HARTEX (HArd Real-Time Executive for Control Systems) is a safe real-time kernel,
which has been conceived as an operational environment for component-based
applications conforming to the COMDES model of distributed computation [1, 2].
Subsequently, a number of versions have been developed, i.e. HARTEXAVR [3],
HARTEX and HARTEXTM - a timed multitasking version, which is presented in this
paper.

The HARTEX architecture exhibits a number of novel features, which are briefly
summarized below:
- Component-based architecture supporting kernel reconfiguration and scalability
- Integrated task and resource scheduling via the System Ceiling Priority Protocol – a

non-blocking synchronization protocol providing for predictable and efficient
management of shared resources

- Boolean vector processing of kernel data structures, resulting in very low overhead
and constant execution time of system functions, hence jitter-free operation of
kernel subsystems

- Predictable jitter-free execution of real-time tasks in a distributed timed multitasking
environment, using an advanced clock synchronization mechanism and a new type
of time manager - the Static Time Manager

- Event notification via Boolean vector semaphores, providing for the instantaneous
broadcast/multicast of events to multiple receiver tasks

- Integrated communication protocol supporting transparent content-oriented message
addressing within local and/or remote interactions, including both state message and
event message communication

However, the main innovation of the kernel is the use of Boolean vector
processing, whereby linked-list queues have been substituted by Boolean vectors,
resulting in efficient and highly deterministic (jitter-free) behaviour characterised by
very low overhead and constant execution time of kernel operations, independent of
the number of tasks involved.

The following discussion presents Boolean vector processing techniques for task
and time management used in the recently developed timed-multitasking version of
the HARTEX kernel.

390 Christo Angelov and Jesper Berthing

3 Jitter-Free Task Management

Task management is carried out in accordance with the state transition diagram shown
in Fig. 1-a. It consists of the active task superstate, as well as three other states -
suspended, inactive and disabled task. The active superstate encapsulates three other
states - ready, running and preempted task. It is only active tasks that are recognized
by the scheduler, which is the main component of the task manager.

Fig. 1. HARTEX state transition diagram and Boolean vector bit patterns

An extended task may be temporarily suspended while waiting for some kind of
event to take place, whereas basic tasks may never be suspended. A basic task will
switch to an inactive state upon exiting the system, and it will be eventually released
again. Finally, basic tasks may be temporarily or permanently disabled. However, this
action has a run-to-completion semantics: the task is actually disabled after it has
become inactive, i.e. after it has released its resources and left data structures in a
consistent state. Subsequently, such a task can be released again only after it has been
re-enabled.

Task management can be substantially speeded up by abandoning the traditional
linked-list implementation of the dispatch queue. Instead, it can be emulated using
two Boolean vectors - the Active Tasks Vector (ATV) and the Preempted Tasks Vector
(PTV) that have as many bits as there are tasks in the system. Vector bit position
represents task priority as well as task number, which is used as an index to a Task

A Jitter-Free Kernel for Hard Real-Time Systems 391

Control Block (TCB) within the TCB table. Another vector of the same dimension is
used in order to define the tasks that are enabled in the system, i.e. the Enabled Tasks
Vector (ETV).

The state encoding logic for various task states is shown in Fig. 1-b. It has been
specifically designed to reduce the execution time of task state transition operations
and corresponding task management primitives, which are effectively reduced to bit
manipulation. Moreover, the use of the above encoding technique makes it possible to
simultaneously execute multiple identical operations involving different tasks through
bitwise operations on Boolean vectors. This is done in constant time, no matter how
many tasks are involved in the operation, as illustrated by the primitive release(tasks).
The latter generates multiple execution requests for a subset of tasks specified by the
tasks argument vector:
release(tasks)
{
 ATV = ATV OR (tasks AND ETV);
}

The execution time of the above function is in the (sub)microsecond range
depending on the platform used, e.g. 4 s in an 8-bit ATmega 103 microcontroller
running at 4 MHz and operating on 16-bit vectors. With linked-list queues, the same
operation might take from tens to hundreds of microseconds depending on the number
of tasks involved, even in relatively high-end processors, such as the 32-bit Motorola
68020 [4].

Likewise, task scheduling is facilitated by the Boolean vector data structure. The
task manager determines the highest priority active task to be executed by finding the
highest-priority non-zero bit in the ATV. This is done via a bit search procedure,
which takes constant time to execute, and in some processors this can be
accomplished with a single instruction (e.g. the Intel BSF instruction). In fact, the
scheduling algorithm is somewhat more involved because it implements integrated
task and resource scheduling using the System Ceiling Priority Protocol (for more
information see [3]).

4 Time Management for Jitter-Free Execution of Real-Time
Tasks

This section presents static time management, which can be used to implement
precisely timed transactions in the context of Timed Multitasking – a novel
computational model combining the predictability of statically scheduled systems
with the flexibility of dynamically scheduled systems [5]. This model has been
recently extended for distributed embedded systems involving communication I/O
drivers, as defined in the COMDES framework [1].

Timed system transactions are conducted by means of the so-called Static Time
Manager (STM). This is a dedicated kernel component that executes a cyclic static
schedule with respect to timed input/output and task release actions. However,
released tasks are executed in a preemptive priority-based environment provided by

392 Christo Angelov and Jesper Berthing

the HARTEXTM Task Manager. The above schedule may be implemented as a table
consisting of records corresponding to specific instants of the system (super)period.

Table records have the following format:

{ offset, tasks_with_deadline, output_drivers, tasks_to_release,
input_drivers } ,

where each instant is specified with an offset from the beginning of the superperiod.
Accordingly, tasks_with_deadline is a Boolean vector specifying the tasks whose
deadline expires at the time instant given by offset; output_drivers specifies the output
drivers to be executed at that instant if the corresponding task deadlines have not been
violated; tasks_to_release is another Boolean vector specifying tasks that have to be
released, and input_drivers specifies the input drivers to be executed at that same
instant.

The Static Time Manager processes the scheduling table in a cyclical tick-driven
manner that can be described with the following pseudocode:

with every clock tick do {

update current time;

if (current_time < schedule[I].offset) return;
else {

generate a deadline violation vector if some
tasks_with_deadline have not yet finished
execution, and disable those tasks;

execute the output_drivers of tasks that have
finished execution;

release tasks specified by the tasks_to_release
vector (if not disabled);

execute the input_drivers of released tasks;

I = I + 1 (mod (schedule length));

invoke the Task Manager;

}
}

The above algorithm is executed using Boolean vector processing techniques, as
follows:
- The deadline violation vector is generated by ANDing the ATV and

tasks_with_deadline vectors. That vector is sent to the Deadline Exception Handler
(if non-zero), in case some of the tasks specified by the tasks_with_deadline vector
have not finished execution, and these are disabled by resetting their ETV bits.

- The output drivers specified by the corresponding vector are executed, i.e. the output
drivers of tasks that have a deadline at that instant. However, a driver is executed
only if the task has finished before its deadline. This can be accomplished by
disabling certain drivers as indicated by the task deadline violation vector.

- Tasks specified by the task_to_release vector are released, i.e. registered in the ATV
if enabled (see algorithm given in section 3).

A Jitter-Free Kernel for Hard Real-Time Systems 393

- Input drivers specified by the corresponding vector are executed, and in particular -
the input drivers of those tasks that have been actually released at that time instant.

- Finally, the task manager is invoked in order to re-schedule the processor, since
some of the newly released tasks may have higher priority than the currently
running task.

It is obvious from the above discussion that the presented timing mechanism
implements a static schedule with respect to timed input/output and task release
actions, whose operation is largely similar to that of a rotating drum sequencer used in
some mechanical devices. Therefore, it has been denoted as the Static Time Manager
(and alternatively – the Drum Sequencer).

With this algorithm task I/O drivers are atomically executed at precisely specified
time instants, whereas tasks are executed in a preemptive priority-driven environment
and may have termination jitter. However, jitter is effectively eliminated, as long as
tasks finish execution before their deadlines.

5 Conclusion

The paper has presented advanced task and time management featuring Boolean
vectors and parallel (bitwise) vector operations on kernel data structures, in the
context of the timed-multitasking version of the HARTEX real-time kernel. The use of
Boolean vectors has resulted in the elimination of linked lists, hence low overhead
and jitter-free execution of kernel operations whose duration depends no longer on the
number of tasks involved.

This is an outstanding feature with important implications. On the one hand, low
kernel overhead results in faster task response and increased processor schedulability.
On the other hand, constant duration of kernel operations makes it possible to
precisely estimate task response times taking into account kernel execution effects,
which will contribute to higher systems safety and predictability. Ultimately, this
technique has made it possible to efficiently implement the timed multitasking
paradigm, resulting in jitter-free execution of hard real-time tasks in single-computer
and distributed environments.

The presented techniques have been validated in a series of distributed motion
control experiments, and jitter-free behaviour has been demonstrated while executing
transactions with one-period delay from sampling to actuation, transactions with
offsets, as well as distributed transactions with fully decoupled (pipelined) tasks.

References

1. Angelov, C., Sierszecki, K.: Component-Based Design of Software for Distributed
Embedded Systems. Proc. The 10th IEEE International Conference on Methods and Models
in Automation and Robotics, Medzyzdroje, Poland (2004)

2. Angelov, C.K., Ivanov, I.E., Burns A.: HARTEX - a Safe Real-Time Kernel for Distributed
Computer Control Systems. Software: Practice and Experience, vol. 32, No 3, March (2002)
209-232

394 Christo Angelov and Jesper Berthing

3. Berthing, J. and Angelov, C.: High-Performance Task Management and Interaction for Safe
Real-Time Kernels. CSI Seminar on Safety-Critical Software, Soenderborg (2003)

4. Burns, A., Tindell, K., Wellings, A.: Effective Analysis for Engineering Real-Time Fixed-
Priority Schedulers. IEEE Trans. on Soft. Eng., vol. 21 (1995) 475-480

5. Liu, J. and Lee, E.A.: Timed Multitasking for Real-Time Embedded Software: IEEE Control
Systems Magazine "Advances in Software Enabled Control", February (2003) 65-75

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 395-399, 2005.
 Springer-Verlag Berlin Heidelberg 2005

A New Approach to Deadlock Avoidance in Embedded
System

Gang Wu, Zhiqiang Tang, and Shiliang Tu

Computer Science and Engineering Department, Fudan University
220#, Handan Road, Shanghai, PRC 200433

wugamp@yahoo.com.cn
{zqtang, sltu}@fudan.edu.cn

Abstract. Deadlock avoidance algorithms help to improve fault tolerance feature
of computer system. Unfortunately, few current algorithms are useful to
embedded system either because they only work with single-unit resources, or
because the time cost is too high. This paper improves the reduction algorithm
with tree structure. According to the new algorithm, only multi-unit resources and
the root process in each tree are considered when reducing, while single-unit
resources and other processes are ignored because they are combined with tree
structure. Thus the new algorithm works with all kinds of resources and its time
cost is lower. The new algorithm is useful to embedded system.

1 Introduction

It is almost impossible to build bug-free application software, so fault tolerance
feature is important to operating system (OS). Deadlock avoidance algorithms help to
improve fault tolerance feature of OS.

As a classical problem, deadlock means that some processes can be blocked
forever, waiting for resource impossible to acquire. Those processes will neither
respond to anything nor release resources acquired by them. Application software
with bug may result in deadlock and the whole system will collapse. If the OS is
equipped with some deadlock avoidance algorithm, it will stop improper operation by
application software to avoid deadlock, and the whole system will be safe.

Unfortunately, there is no satisfactory deadlock avoidance algorithm for real-time
embedded system, yet. The two difficulties to design an ideal deadlock avoidance
algorithm are: how to deal with multi-unit resources, and how to decrease the time
cost.

Resources can be characterized as containing exactly one unit (single-unit
resources) or as containing multiple units (multi-unit resources). Examples of single-
unit resources include ports and flag bits. Examples of multi-unit resources include
RAM, DMA channels and mailboxes. Some current algorithms [1][2][3] are artful.
It’s a pity that those algorithms only work with systems without multi-unit resources,
while usually an actual system contains multi-unit resources. Those algorithms will
make wrong conclusion because of multi-unit resources.

396 Gang Wu, Zhiqiang Tang, and Shiliang Tu

The only known algorithm that works with multi-unit resources is the reduction
algorithm [4] based on wait-for graph (WFG). WFG is defined as a pair <N, E> where
N is a set of nodes and E is a set of edges. Each node denotes either a process or a
resource. Each edge denotes either an assignment relationship or a request
relationship between a process and a resource. Each edge ei E is directed between a
process node and a resource node. If ei is directed to a process node then it is an
assignment edge, otherwise a request edge. [4]

The reduction algorithm reduces WFG step by step. The unblocked processes are
reduced at first, i.e., the process nodes without request edge in WFG are removed.
The resources assigned to the processes which have been reduced are released. Since
there are more resources available, some originally blocked processes become
unblocked and should be reduced consequently. Repeat the routine above until there
is no unblocked process left. There is a deadlock if and only if there is one or more
than one blocked process left.

The reduction algorithm is not ideal because of its time cost of O(mn) complexity.
Here m is the number of resource nodes, n is the number of process nodes, which
means that the reduction algorithm is not suitable for real-time system.

The literature [5] also enumerates some other deadlock avoidance strategies, such
as heuristics, requiring follow a linear order of resources. These strategies are not
ideal because they result in low resource utility-factor and/or unreliability.

In this paper we suggest improving the reduction algorithm with marked tree in
order to decrease the time cost and make it more suitable for real-time embedded
system.

2 Marked Tree

We use marked tree to combine processes and single-unit resources into a single
“virtual process”. Each node in a marked tree is a process in fact. We denote two
processes with c and p respectively. C is one son of p if and only if c is waiting for a
single-unit resource acquired by p. Thus, whether c can be unblocked or not is totally
decided by p. It is also obvious that all processes but the root process are blocked, and
whether these processes can be unblocked or not is totally decided by the root
process. So a marked tree can be treated as a single process although there may be
more than one process contained.

A marked tree is flexible. Each process is a single node marked tree just after it is
created. When it requests a single-unit resource acquired by another process, it will
become a son of that process.

Each process is marked with a vector. Each scalar in p’s vector denotes the amount
of a multi-unit resource acquired by all processes in the sub-tree rooted by p.

A New Approach to Deadlock Avoidance in Embedded System 397

Fig. 1. A marked tree with four processes and two types of multi-unit resources

An example is depicted in figure 1. There are 2 types of multi-unit resources and
four processes in this tree. The vector (0,2) appended to process 2 means that:

1) there is no multi-unit resource of the first type acquired by process 2;
2) and there are two units of multi-unit resource of the second type acquired by

process 2;
The meaning of the vector (1,2) appended to process 4 is similar.
Process 3 has a son, so its vector shows the total amount of multi-unit resources

acquired by both process 3 and 4. For example, process 3 has acquired 5 units of
multi-unit resource of the second type, so the second scalar in the vector is 7 (7=5+2).

Similarly, the vector (3,9) appended to the root process indicates the total amount
of multi-unit resources acquired by all four processes in the whole tree.

The root process is the only possibly unblocked process in a marked tree. When the
root process releases some single-unit resource which is being waited by the sons, one
of the sons (this son process is denoted with s1) will acquire the resource and become
unblocked. The sub-tree rooted by s1 will break away from the original tree to
become a new tree. All other processes waiting for this single-unit resource will
become sons of s1, thus their sub-tree will shift from the original tree to the new tree.

Fig. 2. A marked tree T breaks into two

An example is depicted in figure 2. In this figure, the processes s1 and s2 are
waiting for a same single-unit resource acquired by the root process. After the root
process releases the resource and s1 acquires it, T breaks into two.

398 Gang Wu, Zhiqiang Tang, and Shiliang Tu

Combine marked tree and the traditional reduction algorithm together and we get
the new algorithm, which works in this way:

1. When a process A requests a single-unit resource which has been acquired by
another process B, the OS will check if B is one descendant of A or not. If yes,
the request by A must be cancelled to avoid deadlock;

2. When process A requests some multi-unit resource more than available, the
OS will try to reduce as follows (The “list” is initialized to contain all root
processes including A. The “available vector” indicates the available amount
of each type of multi-unit resource in the system, just like vectors in marked
tree):
(1) Find a reducible process B on list to reduce. That is, B is either

unblocked or blocked but its request can be granted by available vector;
(2) Remove B from list, and add its vector to available vector. That is,

since all nodes in the marked tree rooted by B are reduced, their
resources are released and become available to other processes;

(3) Repeat (1) and (2) until either list is empty or there is no reducible
process on list. If list is empty, there won’t be deadlock even if A is
blocked. Otherwise, the request by A must be cancelled to avoid
deadlock.

The run-time complexity of the first case above is O(h) where h is the distance
from B to its root.

The run-time complexity of the second case above is O(m’ n’). Here m’ is the
number of multi-unit resources and n’ is the number of marked trees. Since m’ < m
and n’ <= n, the new algorithm is faster than the traditional reduction algorithm. Even
in the worst case (each process-tree contains only one process, n’ = n), it is faster
because it only takes multi-unit resources into consideration.

3 Implementation

uC/OS is an open source OS mainly for low end real-time embedded system [6].
There is only one type of multi-unit resource in uC/OS: mailboxes. There are also
types of single-unit resources in uC/OS, such as ports and flag bits. In order to make
uC/OS deadlock-free, the new algorithm based on marked tree is adopted.

A pointer and a vector v_fgb are inserted into the process control block (PCB)
structure. The pointer points to the father process in marked tree. The vector v_fgb
contains only one scalar, which indicates the amount of mailboxes acquired by all
processes in the sub-tree rooted by the process.

A reduction module is inserted into the OS kernel. The kernel calls this module
when a process requests resource but the kernel fails to meet the request. If the
reduction module concludes that there will be a deadlock, the kernel will force the
process to cancel the request.

Experiments show that no matter how an application programmer tries to make a
deadlock in the improved uC/OS, he fails. No obvious influence on CPU time is
observed since the system is not too large.

A New Approach to Deadlock Avoidance in Embedded System 399

4 Conclusion

The new algorithm is an improvement on the reduction algorithm. It is more efficient
and the time cost won’t be more than that of the reduction algorithm in worst case.
Usually the new algorithm works out sooner. Just like the reduction algorithm, the
new algorithm works with multi-unit resources.

The new algorithm helps to improve fault tolerance feature of embedded system, as
the system won’t collapse just because of bugs in application software.

Acknowledgement

Appreciation to Rod Turner, Victoria University, Australia for his assistance with this
paper.

References

1. Ferenc Belik: An Efficient Deadlock Avoidance Technique. IEEE Transaction on
Computers, Vol. 39, No. 7, July 1990

2. I. Cahit: Deadlock Detection using (0,1)-labeling of Resource Allocation Graphs. IEE Proc.-
Comput. Digit. Tech., Vol. 145, No. 1, January 1998

3. J. Kim and K. Koh: An O(1) time deadlock detection scheme in a single unit and single
request multiprocessor system. IEEE TENCON’91, Aug.1991, 219~223

4. Holt R. C.: Some Deadlock Properties of Computer Systems. Computing Surveys, 1972,
4(3), 176~196

5. Gertrude Neuman Levine: Defining Deadlock with Multi-unit resources. Operating Systems
Review, ACM Press, 37(3), July 2003, 5~11

6. Jean J. Labrosse : MicroC/OS-II, The Real-Time Kernel. R&D Books, 2002

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 400-405, 2005.
 Springer-Verlag Berlin Heidelberg 2005

A Novel Task Scheduling for Heterogeneous Systems

XuePing Ren1, Jian Wan1, GuangHuan Hu2

1 Software School, Hangzhou Dianzi University,
Hanghzhou, CHINA, 310018
lilyrxp@hotmail.com

2 College of Computer Science, Zhejiang University,
Hanghzhou, CHINA

huguanghuan@hotmail.com

Abstract. Heterogeneous computing environments have been widely used in
real-time embedded systems. Efficient task scheduling is essential for achieving
reliability in embedded systems. In this paper, an algorithm called the Real and
Reliable Scheduling (RRTS) has been proposed to improve the system
reliability. The RRTS algorithm is achieved by applying a reliability model to a
List Scheduling algorithm. The algorithm firstly calculates Earliest-Finish-
Times (EFTs) and reliability costs of a task in every processor. Then the
minimum EFT is selected. Finally, the task is scheduled to a processor
according to the EFT and reliability costs. The experimental results and
examples show that the algorithm can improve system reliability significantly
while maintaining high performance.

1 Introduction

Heterogeneous distributed systems have been increasingly used for scientific,
commercial and military applications. To develop these heterogeneous embedded
systems in critical or military applications, an efficient scheduling approach is needed
to satisfy the requirements of both performance and reliability.

 Topcuoglu et al. propose two algorithms to schedule tasks in a heterogeneous
environment in [1] and [2]. Both of them use the critical path to prioritize tasks first,
and then schedule them. In [3], a scheduling algorithm based on dynamic critical
paths is discussed. In general problems of task scheduling, the scheduling of a DAG
determines that the start time of each node must satisfy the dependency relations in
the DAG [4]. In [5], a task-scheduling algorithm (DBLF) for real-time heterogeneous
embedded systems is introduced. The DBLF algorithm selects the ready task with
maximum blength (n i) at each step and assigns the selected task to a suitable
processor. The processor satisfies the precedence sequence and has minimum earliest-
finish-time (EFT) of the task. This algorithm focuses on scheduling length. However,
in the above algorithms, little attention has been paid to the reliability issue.

Recently, some research work has begun to address the scheduling problems with
reliability optimization. In [6], a reliability model for general heterogeneous computer
systems is established and several algorithms to solve the scheduling problem using
this model are investigated. In [7], two algorithms focus on task scheduling and

A Novel Task Scheduling for Heterogeneous Systems 401

resource allocation with reliability maximization in heterogeneous systems. But both
of them are based on ALAP, and an important parameter, which stands for the
criticality of node in reliability model, is almost ignored. Those have a great influence
on the availability of algorithm. In this paper, a reliability model is applied to a List
Scheduling algorithm, and a new algorithm is proposed. The system reliability can be
maximized and high performance can be achieved in our algorithm.

2 System Characteristics

A Directed Acycline Graph (DAG) is used to model an application. A DAG G={U, E,
C, sourcenode, sinknode} is a node-weighted and edge-weighted directed graph;
where U={u 1 , u 2 …u n } is the set of tasks, UUE * is the weighted edge set
that defines the precedence relations among tasks in U; the weight on each edge,

ije
represents the time of inter_processor communication between two tasks; C={c 1 ,
c 2 …c n } is the set of criticality of the corresponding task nodes. Criticality is the
parameter to represent how critical a node is. The higher its criticality is, the more
critical a task is. Sourcenode is the only entry task and sinknode is the only exit task
for one graph.

 A heterogeneous system consists of a certain number of heterogeneous processor
elements (PEs). Assume we use a set P={P 1 , P 2 … P m } to denote all its PEs. A
matrix D is used to represent the communication delay among all processors, where
d kb represents the delay involved in sending a message of unit length from P k to P b .
And t)(ij denotes the computation time of u i on P j
Definition 1. Schedule length is finish time of sinknode, after all tasks are scheduled
in the graph.
Definition 2. The initial execution time of task is the average execution time in all
processors. If u i is assigned to P j ,)(itR ji

)}({)(itaverageRIni q
Pq

i
 (1)

Definition 3. Blength (u i) is the longest path length from iu to sinknode (include iu
execution time).)(iusucc is the direct subsequence set.

knodeRknodeblength sin)(sin

})({(
)(

max) ijijusuccui wublengthublength R
ij

 (2)

Definition 4. Criticality: c i =blength (u i)/
Un j

max (blength (u j)) (3)

In this paper, reliability is defined as the probability that the system will not fail
during the time that it is executing tasks. The probability of the system not to fail is:

kbijjbikjij dWXX
M

k

M

b

N

i

N

j
kb

M

j

N

i

itX
j gfpr)1()1(

1 1 1 11 1

)((4)

We suppose that f j is the failure rate of PE P j , g kb is the failure rate of the
communication link from P k to P b , W ij is the volume of data that task u i needs to
send to task u j and s be communication speed, so W ij = e ij *s.

402 XuePing Ren, Jian Wan, and GuangHuan Hu

To calculate the impact of each task to the system reliability cost when it is
scheduled on a PE, Rc ij is used to denote the reliability cost for u i to be scheduled
on P j . Rc ij can be expressed as follows (more detail can be found in [7]):

)(Pr 1
)(

iedp

M

k
kjpipkkjjijij dWXgitcfRc (5)

where pred (i) is the set, which includes all u i ’s predecessors. Therefore:

 N

i

M

j
ijij RcXRC

1 1

 (6)

In order to maximize system reliability, we need to minimize the Reliability Cost.
We will use the ”Reliability Cost” as the indicator of how reliable a given system is
when a group of tasks are assigned to it. The lower the reliability cost is, the higher
the reliability is.

3 Scheduling Algorithm

In this section, we apply the reliability model to a List Scheduling algorithm, an
algorithm: the Real and Reliable Task Scheduling (RRTS) is developed. We define
the problem of heterogeneous reliability scheduling as: given a heterogeneous system
with m PEs, a DAG G and a time constraint L, finds a task schedule for G such that
the Reliability Cost is minimized and high performance is achieved within L. The
RRTS algorithm is proposed to solve the problem. We formalize following rules for
task scheduling.
Rule 1. A node u i can be inserted into a processor jP .

Avail (u i , p j)=max {schedule (u k , p j)+ R k } (7)

where schedule (u 0 , p j) = 0, and schedule (u 1m , p j)= , if there exists some k
such that)},(),(),({min 10 jlljljlml

puwRpuschedulepuschedulek

Rule 2. CFT(c pi) represents communication-finish-time between n i and its
precedence u p . Insert (u i , p j) represents the start time of iu inserted to P j .
EFT (u p) represents the earliest finish time of u p . If P

pu =P
iu , r 1 =0,else r 1 =1.

Insert (u i , p j)=max {
)(

max
ip upredu

{EFT (u p),r 1 *CFT(c pi)+ c pi },Avail (u i , p j)} (8)

 CFT(c pi)=max {EFT (u p), avail(c pi , F (P
pu , P

iu))} (9)

Rule 3. Look-ahead strategy. Let u c be the direct subsequence of u i in the critical
path.

EFT (u i , p j)=Insert (u i , p j)+w (u i , p j)+ insert (u c , p j)+w (u c , p j) (10)
By using this looking-ahead strategy to examine the start time of critical

children, the proposed algorithm can avoid scheduling a node to an inappropriate
processor. As a result, it avoids the danger of increasing the schedule length in
subsequent steps.

A Novel Task Scheduling for Heterogeneous Systems 403

Rule 4. EFT (u i , p x)=
PpJ

min {EFT (u i , p j)} (11)

If difference between EFT (u i , p x) and one EFT (u i , p j) is less than minf
Then task u i is scheduled to a processor according to corresponding reliability

costs and minR.
Else task u i is scheduled to processor p x .
Where j<>i, minf and minR are determined beforehand according to actual

requirement of system. Using Rule 4, we ensure that system can effectively reduce
reliability cost. As a result, system can achieve the higher performance and the less
reliability cost. The asymptotic complexity of our algorithm is O (3n), which is equal
to that of DBLF. DBLF has good performance without discussing the reliability issue.

Algorithm: RRTS

Compute the blength of all tasks;
While not all tasks have been scheduled Do

Select the ready nodes u l with maximum blength (u l);
For each processor p k in the processor-set P Do

Insert the task u l into processor p k
 Compute corresponding EFT and R

 End-For
 EFT (u i , p x)=

Pp J

min {EFT (u i , p j)}

 For each processor p j in the processor-set P Do
 eft=|EFT(u l , p x) -EFT(u l , p j)|
 If ((eft = =0) or (eft<minf and |Rc lx -Rc lj | minR))

 Then u l is scheduled to p y , which has less Rc. mark u l scheduled and exit.
 End-For

If (u l is not marked)
Then u l is marked and scheduled to p x .

 Adjust the ready tasks set.
 Compute the blength of all tasks according to the schedule (u l , p j);
End-while with not all tasks scheduled

4 Example

To illustrate the effectiveness of the proposed algorithm, we use an example task
graph. Among all real-time heterogeneous algorithms, DBLF has best performance
(more detail can be found in [5]). For comparison, the schedules generated by DBLF
are also presented.

We describe the example in Figure 1. Assume there is a heterogeneous system that
consists of 3 heterogeneous PEs. An exemplary DAG is shown in figure 1(a). The
failure rate of the communication links between the PEs is 0.001 for both directions.
The communication delay between the PEs is shown in figure 1(b). The failure rates
of PEs are shown in figure 1(c). Interconnect architectures among 3 PEs are shown in
figure 1(d). The execution times of each node for different PEs are shown in figure
1(e). The criticality of all nodes is computed according to definition 4.

404 XuePing Ren, Jian Wan, and GuangHuan Hu

In the example, schedule length generated by DBLF and RRTS is completely the
same, as two schedules for the DAG are shown in Fig. 2 and Fig.3. In Fig. 2, its
system reliability cost is 8 by DBLF. In Fig. 3, task u5 is scheduled to processor p2,
so its system reliability cost is reduced to 3.4 by RRTS. Both schedules satisfy the
time constraint while the latter has a lower reliability cost. We reduce 57.5%
reliability cost without lost performances. This example shows that RRTS produces
less reliability cost and achieves high performance at the same time.

Fig. 1. (a) A DAG. (b) Communication delay between the PEs. (c) Failure Rate of PE.

(d) Interconnect architectures Among 3 PEs. (e) Computation times of tasks

Fig. 2. The schedule of the fig.1 task graph generated by DBLF

Fig. 3. The schedule of the fig.1 task graph generated by RRTS

5 Experiments and Conclusion

To evaluate the effectiveness of our algorithm, we simulate the heterogeneous
environment and generate several random DAGs in experiments. Two main
measurements to evaluate the scheduling algorithms are the schedule length and the

A Novel Task Scheduling for Heterogeneous Systems 405

reliability cost. The comparison of the results is shown in Table1. As a result, the
average fall of Reliability cost is 18.75% while the average increase of schedule
length is 3 % in experiments.

Table 1. Comparison of schedule result between DBLF and RRTS algorithm

Tasks 20 30
PEs 4 8 12 16 4 8 12 16
Schedule length add 3% 0 4% 6% 1% 3% 0% 6%
Reliability cost less 26% 18% 19% 22% 17% 15% 21% 12%

We propose a scheduling algorithm, the Real and Reliable Scheduling algorithm

(RRTS). The example and experiments all prove our approach is effective. Simulation
results show that the algorithm improves the system reliability significantly over the
DBLF while maintaining high performance. RRTS gives best reliability and high
performance in any situation.

References

1. Haluk Topcuoglu, Salim Hariri, and Min-You Wu, “Task scheduling algorithms for
heterogeneous processors,” in Proceedings of the 8th Heterogeneous Computing Workshop,
1999, pp. 3–14.

2. Haluk Topcuoglu, Salim Hariri, and Min-You Wu, “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” IEEE Transactions on Parallel
and Distributed Systems, vol.13, no. 3, pp. 260–274, March 2002.

3. Yu-Kwong Kwok and Ishfaq Ahmad, “Dynamic critical-path scheduling: An effective
technique for allocating task graphs to multiprocessors,” IEEE Transactions on Parallel
and Distributed Systems, vol. 7, no. 5, pp.506–521, May 1996.

4. Giovanni De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, New
York, 1994.

5. QIU Wei-Dong, CHEN Yan, LI Jie-Ping, PENG Cheng-Lian, “A Task Scheduling
Algorithm for Real-Time Heterogeneous Embedded Systems”, Journal of Software, vol.15,
No. 4, pp.504~511,2004.

6. Sol M. Shatz, Jia-Ping Wang, and Masanori Goto, “Task allocation for maximizing
reliability of distributed computer systems,” IEEE Transactions on Computers, vol. 41, no.
9, pp. 1156–1168, September 1992.

7. Yi He, Zi Li Shao, Bin Xiao, Qingfeng Zhuge, Edwin Sha,” Reliability Driven Task
Scheduling for Heterogeneous Systems,” in www.utd.edu /~edsha/papers/ YiHe/.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 406-411, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Applying Component-Based Meta-service in Liquid
Operating System for Pervasive Computing1

Bo Ma, Yi Zhang, and Xingguo Shi

Laboratory for Internet Software Technology
Institute of Software, Chinese Academy of Sciences

No.4 South Fourth Street, Zhong Guan Cun, Beijing, China
{mabo, zhangyi, shi}@itechs.iscas.ac.cn

Abstract. Liquid meta-service, a component-based operating system layer, is
intended to enable embedded operating system to support pervasive computing
by meeting the requirements of being spontaneous and adaptive. This is
accomplished through two key features: (1) configurable, component-based
infrastructure services called meta-service, and (2) a meta-service components
trading service, which provides selecting and configuring mechanism for meta-
service components. In this paper, we discuss the design principle, component
model, implementations of some meta-service, and analyze the performance
impact of using meta-service in embedded operating system.

1 Introduction

Pervasive computing raises a number of new challenges for application and the
underlying operating system. Effective use of smart spaces, minimal user distraction,
localized scalability and uneven conditions masking are recognized as the
characteristics of pervasive computing [5]. They require pervasive application to be a)
adaptive. Because the availability of underlying services keeps varying and pervasive
application keeps migrating from one computing context to another, and b)
spontaneous, that is to say, being able to dynamic discovering, adapting, connecting
and coordinating disparate software units to form working and reliable pervasive
applications.

There are two general approaches to implementing software adaptation [10].
Parameter adaptation modifies program variables that determine behavior, such as
the Internet’s Transmission Control Protocol (TCP). But parameter adaptation does
not allow new algorithms and components to be added to an application after the
original design and construction. This is unacceptable for pervasive applications for
its mobile and spontaneous nature. By contrast, compositional adaptation, which
exchanges algorithmic or structural system entities with others that improve a
program’s fit to its current environment. The composability, reusability and

1 Supported by the National High-Tech Research and Development Plan of China under Grant

No.2002AA1Z2302

Applying Component-Based Meta-service in Liquid Operating System 407

configurability of software components make it a good candidate technology to
implement compositional adaptive for pervasive application.

To tackle the problem of spontaneous in operating system level, we propose an
approach of using trading service in the kernel. Trading is the natural mechanism
defined in object- and component-based systems for searching and locating services.
Context-aware software, such as pervasive computing, can greatly benefit from
trading since it provides service discovery in local environments and enables
automatic application re-contexting [12].

Liquid operating system is designed as a platform for embedded networked
devices. Liquid meta-service is a component-based layer in the Liquid kernel. Liquid
meta-service enables Liquid to support pervasive computing by providing necessary
infrastructure components and a meta-service components trading service.

The remainder of the paper is organized as follows. Section 2 discusses related
work. Section 3 describes the design of Liquid meta-service. Section 4 describes some
meta-service in detail, and presents the performance analysis of using meta-service.
Section 5 draws some conclusions and presents future work.

2 Related Work

In pursuing the solution with component technology in the operating system level,
two critical choices have to be made. First, to what degree the operating system is
made into components, and second, what granularity these components are. They are
two sides of one coin.

Currently, most component-based operating systems take the approach of making
the entire system into components and keep the granularity of components relatively
fine-grained, as exemplified by PURE [2], Pebble [3]. Modularity achieved by
isolation comes at a price, partition of system into smallest components to maximize
reuse conflicts with efficiency. The granularity of Liquid meta-service keeps balance
between modularity and performance.

Task-oriented computing [11] defines a skeleton of infrastructure for pervasive
computing. Liquid meta-service components trading service can be employed as the
task assembly engine, thus the trading service presented in this paper can be used as a
complementation of task-oriented computing. General introduction of using trading
service in COTS development can be found in [12].

3 Design of Liquid Meta-service

3.1 Liquid Meta-service Principle

The principle of Liquid meta-service consists of the following four key ideas. When
combined, they enable our goals.
 The operating system services are divided into two categories, a) meta-service,

which consist of a group of meta-service components, and b) ordinary service.

408 Bo Ma, Yi Zhang, and Xingguo Shi

Among operating system services, some have more effect on the support of
pervasive computing than others on the aspect of meeting the levity requirements of
infrastructure, such as scheduling (may switch from time-sharing to real-time),
network communication (may switch from synchronous to asynchronous) and quality
of service (QoS) ensuring.
 Meta-service is implemented as a separate portable layer, which can run either

as an integrated part of the Liquid kernel, or on conventional operating systems.
Making meta-service a portable layer, we broaden its applicability so that it can be

adopted by conventional operating systems, which is meant to support pervasive
computing in system level.
 Each meta-service is designed as an extensible component framework [8] by

using a role-based paradigm [4]. Each role is specified by contract [9], and is
played by a specific kind of meta-service component.

Each meta-service can accept dynamic insertion of component instances, and
replace them at runtime. By forcing meta-service component instances to perform
certain tasks via mechanisms under the control of each meta-service, meta-service can
enforce specific polices and architectural principles.
 A trading service is responsible for configuring each meta-service with suitable

meta-service components when it accepts the infrastructure requirements raised
by pervasive application.

3.2 Liquid Meta-service Component Model

According to the principle described above, a component model for Liquid meta-
service component is conceived. The component model specifies how meta-service
components are structured and composed. Figure 1 shows an overview of the
component model.

A meta-service component is a computational element with a name, a bundle of
properties and ports, and a behavior. Ports are used to represent components’ data to
others. Each component may have multi provides-ports and requires-ports.
Components with compatible conjugated ports can be connected [1]. Behavior of a
component consists of a procedure that reads and writes data available at its ports, and
may produce effects in the physical world; the actual behavior is hidden in the
implementation of the component, and not shown in the figure. Components may
contain one or more sub-components.

Qos component

Fig. 1. Meta-services component model

Name, Type
Component Ports

Properties
Sub-components

Resource management componentCommu. component Meta-services trading component

Applying Component-Based Meta-service in Liquid Operating System 409

4 Meta-service Example and Performance Analysis

In this section, we present two meta-services in detail to illustrate how we design and
implement the features described above. Then the performance analysis is presented.

4.1 Scheduler Meta-service

Traditional scheduling mechanisms are limited when dealing with pervasive
computing: (1) the schedule strategy is fixed, that is, either schedule algorithms or
performance parameters are fixed, and (2) the schedule strategy is configured
statically before the system boots up, and makes no response to keep changing
scheduling requirements raised by pervasive application, such as switch from time-
sharing to real-time scheduling.

We tackle the problem with the scheduler meta-service. Its structure is showed in

figure 2. The schedule strategies are represented as roles (dash line rectangle) to be
played by scheduling meta-service component instances selected by trading service.
As the component framework for this meta-service, the scheduler supervises all
schedule-strategies. Each strategy component contains a task group (a queue, a stack
or a pool) of its own. As soon as a new computing task is submitted by pervasive
application, the scheduler asks the trading service to select a suitable schedule
strategy component from the repository according to the characteristics of the task,
and puts it into the task group.

4.2 Meta-service Component Trading Service

In Liquid, we apply trading in the support of pervasive computing. There is a trading
meta-service on each Liquid node. It is the portal for pervasive application to interact
with Liquid. To meet the infrastructure requirements dynamically, a pervasive
application gathers the infrastructure requirements in terms of meta-service as soon as
it comes into being in a given context through ad hoc networking [6], and feeds the
requirements to the trading meta-service. According to the requirements, the trading
service selects candidate meta-service components from the repository, configures
them, and submits the components to various meta-service. Then, each meta-service
configures its framework by placing the components at the right roles. This trading-
centric architecture of meta-service layer is inspired by Façade design pattern [7].

Fig. 2. Structure of scheduler meta-service

Scheduler

Abstract scheduling strategy Abstract task

FIFO strategy RM strategy HRT task Ts task SRT task EDF strategy

410 Bo Ma, Yi Zhang, and Xingguo Shi

The trading meta-service consists of a group of trading meta-service components;
each component is responsible for trading one category meta-service. On booting up,
all meta-service components register with the corresponding trading meta-service
component by passing a component descriptor in XML format. Figure 3 shows a
simple skeletal instance. The infrastructure requirement is also documented as XML
file as shown in Figure 4. The trading meta-service uses a backtracking algorithm to
select candidate components whose properties are compatible with the corresponding
requested properties, and then match these components against roles in each kind of
meta-service to form a valid configuration.

4.3 Performance Analysis

We conduct some experiments to evaluate the performance impact caused by meta-
service on ordinary computing tasks. A group of compute-intensive tasks (matrix
multiplication) are executed concurrently under the scheduling of Linux first, and
then run as tasks for scheduler meta-service. Table 1 shows some results we have
gained on Linux running on Pentium III 1.2G CPU with 256M memory. Numbers in
the first row indicates the task number; data in the table are the average execution
time (in seconds) under different running conditions. The average performance of
scheduler meta-service reaches 92.2% of Linux, results of other meta-service range
from 80% to 93% of Linux. The system can be used in a full version of meta-service
with slight performance degradation.

By applying the principle we identify in section 2, we achieve a fair balance
between modularity and efficiency as shown by the performance analysis results.

Table 1. Some results of performance tests of scheduler meta-service

Time(sec) 1 2 3 4 5 6 7 8 9 10
Linux 1.54 2.83 4.22 5.57 6.94 8.31 9.50 10.79 12.23 13.43
Scheduler 1.70 2.93 4.30 6.00 7.06 9.39 11.32 11.69 13.63 14.73

L / S 0.90 0.96 0.98 0.92 0.98 0.88 0.84 0.92 0.89 0.91

Fig. 3. A simple meta-services
component descriptor

Fig. 4. A simple meta-services
requirement

<?xml version=”1.0”?>
<LiquidMetaServicesComponent

name=”EDFScheduler”
type=”resource management”>

<ports>
<provides-ports>

<port name=”addTask”>…</port>
</provides-ports>
<requires-ports>…
</requires-ports>

</ports>
<property-bundle>

<property>…</property>
</property-bundle>

<sub-components>…</sub-components>
<LiquidMetaServicesComponent>

<?xml version=”1.0”?>
<LiquidMetaServicesRequirements
name=”LiquidWeatherStationReq”>
<ResourceManagement>
 <Scheduling type=”softRT”

threshold=”2sec”>…
<property-bundle>
 <property>…</property>
</property-bundle>

 </Scheduling>
</ResourceManagement>
<Communicatoin>…</Communicatoin>
<QoSReq>…</QoSReq>

</LiquidMetaServicesRequirements>

Applying Component-Based Meta-service in Liquid Operating System 411

5 Conclusion and Future Work

Pervasive computing is an important and difficult problem for the embedded system
design. In order to tackle the problem in system level, we propose an approach to
build a component-based meta-service layer in the embedded operating system. It
comprises (1) a group of configurable, component-based infrastructure services, and
(2) a trading service for meta-service components. With meta-service, the Liquid
operating system is capable of supporting pervasive computing by meeting the levity
infrastructure requirements raised by pervasive application.

The ongoing research includes extending the required meta-service specification
with priority, which enables the users to specify the importance of each sub-
requirement more precisely. Extra-functional properties and user preference are not
covered by our trading service. These can be used to form heuristic functions for
selecting, matching, and closing processes.

References

1. Ommering, R., Magee, J. J.: The Koala Component Model for Consumer Electronics
Software. IEEE Computer, Vol.33, No3 (2000) 78-85

2. Beuche, D., Guerrouat, A., Papajewski, H., Schroder-Preikschat, W., Spinczyk, O.,
Spinczyk, U.: The PURE Family of Object-Oriented Operating Systems for Deeply
Embedded Systems. In: Proc. of ISORC'99, St Malo, France (1999) 45-53

3. Gabber, E., Bruno, J., Brustoloni, J., Silberschatz, A., Small, C.: The Pebble Component-
Based Operating System. In: Proc. of the USENIX Annual Technical Conference,
Monterey, CA, USA, June 6-11 (1999) 267-282

4. Riehle, D.: Framework Design: A Role Modeling Approach. Ph.D. Thesis, No.13509.
Zrich, Switzerland (2000)

5. Satyanarayanan, M.: Pervasive Computing: Vision and Challenges. IEEE Personal
Communications, August (2001) 10-17

6. Feeney, L. M., Ahlgren, B., Westerlund, A.: Spontaneous Networking: An Application-
oriented Approach to Ad Hoc Networking. IEEE Communications Magazine, Vol.39,
No.6, June (2001) 176-181

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, Massachusetts (1995)

8. Szyperski, C., Gruntz, D., Murer, S.: Component Software. Addison Wesley (2002)
9. Helm, R., Holland, I. M., et al.: Contracts: Specifying Compositions in Object Oriented

Systems. In: Proc. of OOPSLA/ECOOP'90, ACM SIGPLAN Notices (1990) 169-180
10. McKinley, P. K., Sadjadi, S. M., Kasten, E. P., Cheng, B. H. C.: Composing Adaptive

Software. IEEE Computer, July (2004) 56-64
11. Want, Z., Garlan, D.: Task-Driven Computing. Technical Report, CMU-CS-00-154, School

of Computer Science, Carnegie Mellon University (2000)
12. Iribarne, L., Troya, J. M., Vallecillo, A.: A Trading Service for COTS Components. The

Computer Journal, 47(3) (2004) 342-357

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 412-417, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Embedded Operating System Design:
The Resolved and Intelligent Daemon Approach1

Hai-yan Li, Xin-ming Li

ZhuangBei Institution of Technology, Beijing, China
lhycya@21cn.com

Abstract. Embedded system with the kernel of embedded operating system
becomes the ubiquitous computing unit now. Embedded operating system
should be of hard real-time, high reliability and high availability. Aiming at
satisfying the demands of applications, based on analyzing the existing three
kinds of operating system architectures and some new design technologies, this
paper presents a novel design of operating system which is based on resolved
and intelligent daemon and agent-based coordination managing components.

1 Backgrounds

Fig. 1. Computing Everywhere

Demands of application and progress of technology drive the development of
embedded operating system. Especially in recent ten years, with the development of
network technology, chip technology, human-computer interaction technology and
software designing technology, the development speed of embedded operating system
has been accelerated greatly, which enables embedded operating system to meet the

1 This work has been supported by 863 program of China, grant no. 2003AA1Z2050

Embedded Operating System Design 413

abundant application demands day by day, and has promoted deepening and
popularization of embedded system. As Fig.1 shows, the embedded system with the
kernel of embedded operating system becomes the ubiquitous computing unit.

Our research will be used in co-ordination control information processing
subsystem in distributed spacecraft system. Distributed spacecraft system is made up
of several micro spacecrafts which cooperate to accomplish some tasks.

2 Analysis of Operating System Architecture and Design
Technology

Because more and more functions and characteristics are added to operating system,
at the same time the hardware platform becomes more and more complicated and
diversified, the scale and complexity of operating system increase notably. However,
the expanding of operating system scale causes three general problems: (1) function
of operating system becomes more difficult to be expanded. It needs more time to
develop a new operating system or upgrade and reconstruct an old operating system;
(2) relationship among numerous modules is difficult to identify. Operating system
has potential errors, and it’s very difficult to find out and eliminate these errors; (3)
performance can't always satisfy the demand of application.

In order to solve the problems mentioned above, researchers have carried on a
large amount of research on architecture and designing technology of operating
system for many years, and many research fruits have promoted development of
operating system technology and further popularization of computer.

Operating systems are broadly classified as three categories.
(1) Monolithic Operating System. This approach is well known as “The Big Mess”.

The operating system is written as a collection of procedures, each of which can call
any of the other ones whenever it needs. When this technique is used, each procedure
in the system has a well-defined interface in terms of parameters and results, and each
one is free to call any other one, if the latter provides some useful computation that
the former needs. DOS is a typical representative of this kind of operating system.

(2) Layered Operating System. Operating system is divided into a number of
layers, each built on top of lower layers. The bottom layer is the hardware; the highest
is the user interface. With modularity, layers are selected such that each uses
functions and services of only lower-level layers. In this design, the abstraction and
resource management code of the operating system are all placed into the operating
system kernel. UNIX is the famous example of this kind of operating system.

(3) Client/Server or Microkernel Operating System. In this design, abstraction and
resource management code is moved as much as possible outside of the kernel in the
interest of modularity. The interface among components of the system then becomes
message passing from the application to whatever component providing the desired
service. These components run as separate programs on the same operating system.
These system programs are called servers, and applications are their clients. Some
examples of microkernel architecture include Mach and QNX.

Generally speaking, operating system kernel of traditional architecture is becoming
larger and larger. The architecture has already been very complicated. Function is
difficult to be expanded and customized. System is difficult to be upgraded. The

414 Hai-yan Li and Xin-ming Li

essential reason is that designers often sacrifice the performance of some frequently
used systematic functions to satisfy the demands of a small amount of less used
functions. Conversely, enhancement of system complexity has increased the risks of
system unreliability and unsafety. A lot of researches, such as distributed operating
system, security operating system, real-time operating system, object oriented
operating system, have made a lot of achievements, but such kinds of problems exist
in practical applications. We believe that function and structure of the modern
operating system restrict development of operating system.

With the development of operating system technology, various kinds of new
technologies begin to be applied to the design of operating system too, for instance
object oriented technology, component-based technology and agent-based technology
and so on.

 (1) Object oriented technology. An object is an explicit software unit, which
includes a set of relevant data and processes. Usually, these data and processes are not
directly visible outside the object, and there is a set of interface for other software to
access the data and processes.

 (2) Component-based technology. Component is the reusable software component
which can be used to construct other software. It can be the form of encapsulated
object class, class tree, functional module, software framework, software architecture,
document, analysis component, design pattern and so on. Component can be
classified as component class and component instance. Application software can be
built through assembling and controlling component instance.

 (3) Agent-based technology. Agent is an entity which resides in the environment.
Agent-based software development method is a kind of abstract description form
which is used to describe complex parallel system. Its main idea is to regard computer
system as a society composed of agents, and introduce the concepts of psychology
and anthropology to understand and implement computer system.

3 Design of Operating System Based on RID

Embedded operating system is developing towards the direction of networked,
intelligent, low consumption, hard real-time, high trusted and high availability.
Aiming at new computation modes such as autonomous computation and pervasive
computation, after deep analysis and research on architecture and design technology
of many kinds of operating system, we put forward a new operating system design
based on RID (Resolved and Intelligent Daemon).

The key to RID has two points. One is "resolved" principle. Similar to the
hardware "RISC" technology, operating system kernel only supports the simple and
necessary mechanism. Complicated functions or tactics are offered through "making
up" on the basis of the mechanism that RID offers. The other is "intelligent" principle.
Some less used functions are only loaded when applications need. At the same time,
operating system based on RID can optimize itself and auto-configure according to
the application and environmental characteristic.

Logically, an information process system is made up of three cells: computation
cell, memory cell and human-computer interaction cell. As to computer hardware
system, the basic components are in mainly three parts: CPU, memory and I/O

Embedded Operating System Design 415

system. On the one hand, operating system separates hardware from application,
which makes the renewal of hardware and change of application will not influence
each other. On the other hand, operating system is a bridge between hardware and
application, through which application can access hardware resources. Operating
system should offer suitable support according to special demands and performance
for every application. However, there exists contradiction: if we develop an operating
system only aiming at one special application and hardware environment, application
effect should be good theoretically, but the development cost is very high, and the
system dependability may not been improved either. If we make use of a riper
operating system to support new applications, the cost is much lower, and the
dependability of operating system is much higher, but the effects of some applications
are relatively bad. Therefore, an ideal embedded operating system should hide the
impact of hardware change on applications, coordinate multi-application access to
hardware resources. A very important aspect is that operating system should offer
suitable support according to application background and hardware environment, in
order to reach the best ratio of cost performance.

As Fig.2 shows, logically, embedded operating system can be divided into three
layers: the upper layer is AFL (Application-specified Function Layer), the middle
layer is CFL (Common Function Layer), and the bottom layer is HSL (Hardware
Shield Layer).

AFL is a set of functions correlated with application to support all kinds of
applications. On the one hand, CFL utilizes HSL to manage hardware. On the other
hand, CFL offers support for AFL. HSL offers support for CFL and AFL according to
hardware of all kinds.

Fig. 2. Logic Architecture of Embedded Operating System

According to the design of RID, operating system is divided into two major parts:
RID and CMC (Coordination Managing Component). Fig.3 shows software
architecture based on RID.

The separation of policy from mechanism is a very important principle, which
allows maximum flexibility if policy decisions are to be changed later. In traditional
operating system, mechanisms and policies are usually all integrated in kernel, but in
our design only mechanisms reside in kernel. Policies, such as real-time scheduling
policies, memory management policies, are offered by CMC. It is favorable to system
flexibility and expansibility, convenient for customization according to application.

416 Hai-yan Li and Xin-ming Li

Fig. 3. Software Architecture Based on RID

RID is only responsible for CPU scheduling, memory management, primary
interrupt handling and CMC scheduling. In CPU scheduling, there is only schedule
mechanism without schedule policies. In memory management, it only maps logical
address to physical address. In primary interrupt handling, it only accepts and
identifies hardware interrupt. In CMC scheduling, it only loads and unloads CMC.

As to the address space management, we adopt sliding address window
technology. Sliding address space is that, working space of an execution entity is a
certain area of a virtual address, and its size is confirmed according to its demand. By
adopting this kind of technology, cost of process switch can be reduced, and
utilization ratio of memory resources can be raised. Foundation of sliding address
window technology is single address space technology. All processes operate in a
same address space and different process is in different area in the virtual space, this
is the thought of SASOS (Single Address Space Operating System).

4 Agent-Based Design of CMC

Each CMC is an agent. It’s convenient for modification and expansion of CMC
functions, without recompilating kernel and even restarting the system. CMC should
be designed of single function and modularization. Interaction among CMCs should
be little. All CMCs are independent in binary level. RID and CMCs communicate

Embedded Operating System Design 417

through well defined interfaces, so do one CMC and other CMCs. They do not need
to find out the realization details of the others.

CMCs are made up of ten parts.(1) Advanced process management component. It
provides policies of when to schedule and what to schedule. (2) Advanced memory
management component. It provides algorithm of memory allocation and release, and
protects adress space. (3) Advanced interrupt handling component. It provides
interrupt service routines to handle interrupt which is accepted and identified by RID.
(4) Device driver management component. It manages device drivers and provides
device driver communication mechanism of I/O request and IOCTL. (5) File system
management component. It handles requests of file open, close, read and write. (6)
I/O system management component. It manages all I/O devices of computer, handles
device errors and provides convenient interfaces for other parts of system to use
devices. (7) Network management component. It manages all network devices and
provides a set of uniform interfaces for other processes to establish network connect.
(8) Naming space management component. It manages name space for operating
system to implement accessing transparency, position transparency and transfer
transparency etc. (9) Distributed application platform component. It provides
distributed application mode of application task or service level. (10) Power
management component. It manages power supply to reduce energy consume and
prolong use period of battery.

5 Conclusions

Embedded systems, such as distributed spacecraft system, wireless micro-intelligent
sensor networks system and system in vehicles, require high dependability and real-
time performance. We have analyzed and researched the demands of application
backgrounds and characteristics of embedded operating system, and then put forward
a new design of operating system based on RID.

References

1. Andrew.S.Tanenbaum: Modern Operating Systems. China Machine Press, Beijing (2001)
18–19

2. Michael Wooldridge: An Introduction to MultiAgent System. Publishing House of
Electronics Industry, Beijing (2003) 15–18

3. Wilkinson.T, Murray.K, Russell.S: Single address space operating systems Technical
Report, UNSW-CSE-TR-9504, Sydney: University of NewSourthWales (1995)

4. Chase.J, Feeley, M,Levy.H: Some Issues for Single Address Space Systems In:
Proceedings of the 4th IEEE Workshop on Workstation Operating Systems. LosAlamitos,
CA: IEEE Computer Society Press (1993) 150–154

New Approach for Device Driver Development –

Devil+ Language

Yingxi Yu1, Mingyuan Zhu2, and Shuoying Chen3

1 Beijing Institute of Technology,
yuyx@coretek.com.cn

2 CoreTek System, Inc.,
zhumy@coretek.com.cn

3 Beijing Institute of Technology,
chensy@bit.edu.cn

Abstract. This paper presents a new approach to develop device drivers
for embedded system: Devil+ language [3, 4, 7] which can automati-
cally generate device driver code [9]. It demonstrates the whole process
to develop embedded system device driver with this new language. The
example project selects SHARP KEV79520 as hardware platform [8],
DeltaOS as software platform [5, 6, 7]. Development processes are illus-
trated with source code. Some programming details are also explained
in this paper. Finally we illustrate the benefit of the new methodol-
ogy in embedded system development with the comparison between the
Devil+ approach and the traditional raw C language method.

1 Introduction

Rapid advancement of the semiconductor industry has brought equally rapid
changes in the number, diversity and most notable complexity of embedded
systems. There is a significant design gap in embedded system engineering tools.

This lack of automation in the hardware/software integration layer, combined
with the growth of I/O complexity and design cycles reduction, is rapidly be-
coming a crisis. Today, the BSP task becomes an expensive bottleneck. Without
automation, it will soon be impossible to meet development windows.

Fortunately, a new methodology has appeared in software domain – Devil+
language. Devil+ language is derived from Devil language [3, 4, 5], which is an
extension of Devil language. It’s a domain-specific language, which is designed
specially for describing the I/O device. For its clear and simple syntax, the
development of the device driver becomes more efficient. The code generated by
Devil+ compiler is C language code, which is much easier to be maintained than
the code written in raw C language. And the code written in Devil+ language
is more logical and concrete than the raw C language. Devil+ code leads the
development more efficient and correct.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 418–422, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

New Approach for Device Driver Development – Devil+ Language 419

2 Hardware and Software Platforms

The device driver is the lowest level component in software. Developing device
driver involves the communication with the hardware and operating system. We
select SHARP KEV 79520, which is an evaluation board made by SHARP. There
are plenty of devices on this board. We choose DeltaOS to run on this eval-
uation board. DeltaOS is a hard real-time operating system with microkernel
architecture.

3 General Descriptions

The timer is so common that every computer system has it. During embedded
software development, you must write timer driver [1] to let your operating
system run on the board. So we choose it as an example.

There are four timers on KEV79520. Timer0 and Timer1 comprise one mod-
ule and receive one common clock from the LH79520 (CPU ARM7 [1]) RCPC
functional block [8]. Timer2 and Timer3 comprise a second module and receive a
second which is similar to clock. Each Timer can be programmed to generate an
interrupt output to the LH79520 VIC [8], and the output of Timer3 is available
externally. Timers are integrated into the LH79520 SOC [8]. The four Timers
can be used individually, or the Timers can be cascaded to provide longer count-
down periods than would be provided by an individual Timer. When the Timers
are cascaded, only the last Timer in the cascaded chain can cause an interrupt.
Each Timer includes three programmable registers (Control, Load, and Clear),
and one read-only register (Value).These four timers are almost the same except
that they have different base address. Below in this section is the base address
of every timer and hardware description of some registers in one timer.

Table 1. Timer Register Base Address

REGISTER BASE ADDRESS

Timer0Base 0xFFFC4000

Timer1Base 0xFFFC4020

Timer2Base 0xFFFC5000

Timer3Base 0xFFFC5020

4 Using Devil+ to Write Device Drivers

4.1 Reuse Devil+ Library Code

When writing device driver, if there is Devil+ description in Devil+ library, we
don’t need to write any more codes. We can reuse this component. Now suppose

420 Yingxi Yu, Mingyuan Zhu, and Shuoying Chen

Table 2. Load Register Bit-Fields

BITS FIELD NAME FUNCTION

31:16 Reserved. Write ’0’. Value returned on a read will be
unpredictable.

15:0 LOADVAL Load Value. A 16-bit value. Reset =0.

Table 3. Value Register Bit-Fields

BITS FIELD NAME FUNCTION

31:16 Reserved. Value returned on a read will be unpredictable.

15:0 CURRENTCOUNT The current value of the Timer. Reset = 0xFFFF.

that we don’t have a reuse unit in Devil+ library when writing the timer driver
of KEV79520.

4.2 Device Specification in Devil+

The first step is to describe the chip using Devil+ language. The complete
specification of timer is given as follows. Translating the natural language spec-
ification into the Devil+ specification is rather straightforward.

device timer(base : bit[32] port@{0..0x102c}) {
// Load Register
register load(i : int{0..3}) =
base@(-1344*i*i*i + 6048*i*i - 4672*i) : bit[32];

unused bit load(0, 1, 2, 3)[31..16];
segment timer_loadval(i : int{0..3}) = load(i)[15..0] : int(16);
// Value Register
register value(i : int{0..3}) = read base @
(-1344*i*i*i + 6048*i*i - 4672*i + 4) : bit[32];
unused bit value0(0, 1, 2, 3)[31..16];
segment timer_currentcount(i : int{0..3}) = value(i)[15..0],
volatile : int(16);
.....

}

The register declaration corresponds to the hardware register. But in some hard-
ware, the register can be multiplexed. In this circumstance we can declare dif-
ferent registers upon the same hardware register. The segment is a unit that
programmer can reference in Devil+ driver. It represents the special bits of the
register. In Devil+ driver we can reference segment by its name, using it like a
variable in C language.

The technology used here is register and segment parameterization. Here we
have four register declarations, but every one represents four timers’ same func-
tion registers. The parameter expression “-1344*i*i*i + 6048*i*i - 4672*i”

New Approach for Device Driver Development – Devil+ Language 421

is calculated from the four timers’ base addresses. The reference to the ev-
ery timer’s same function register is accomplished by the parameter, which is
the timer ID number. The theory also applies to segment parameterization.
Many same devices have simple relationship among their memory addresses. In
these situations, it’s more suitable to use this technology. The characteristics of
Devil+ language make sure the device driver works correctly. The description
language is simpler, clearer, and safer than C language.

4.3 Driver in Devil+

The driver written in Devil+ is simplified by encapsulating the low-level hard-
ware accesses and assignment in C code generated from Devil+ specification.
Here is a fragment of the code of KEV79520 timer controller device driver.

operation TIMER_RESET(timer_num : int(32)) : void {
timer_loadval(timer_num) = 0; timer_enable(timer_num) = 0;
timer_mode(timer_num) = 0; timer_cascade(timer_num) = 0;
timer_prescale(timer_num) = 0; timer_clr(timer_num) = 0;

}

Because of the length of the paper is limited, just one part of the code is illus-
trated here. The operations’ names are in uppercase. In operation part, there
are some assignments to the segments, also some logical control sentences, which
are very similar to C language. There are no timer hardware details can be seen
in the operations.

5 Target C Code Generated from Devil+

Here is the code fragment generated by the DeltaDevil+ compiler [7]. The
static inline function is generated from the Device Specification in Devil+.
Drvio LongRegSet is a set of macros defined in DeltaOS to access registers. If
you use other OS, we can define these two macros to appropriate basic operations.

static inline void devil_reg_set_load(u32 i, u32 v) {
Drvio_LongRegSet(base + (-1344*i*i*i+6048*i*i-4672*i), v);

}

static inline void devil_set_timer_loadval(u32 i, u16 v) {
u32 temp0;
temp0 = 0x0 | (v & 0xffff) >> 0 << 0;
devil_reg_set_load(i, temp0);

}

Here is a C function generated from Devil+ driver. The function uses the static
inline functions generated from Device Specification in Devil+ to accomplish
logical operation.

422 Yingxi Yu, Mingyuan Zhu, and Shuoying Chen

void TIMER_RESET(int32 timer_num) {
devil_set_timer_loadval(timer_num, 0);
devil_set_timer_enable(timer_num, 0);
devil_set_timer_mode(timer_num, 0);
devil_set_timer_cascade(timer_num, 0);
devil_set_timer_prescale(timer_num, 0);
devil_set_timer_clr(timer_num, 0);

}

KEV79520 has many other devices, like LCD, touch screen, interrupt controller,
Ethernet card, sound card, watch dog, serial port, IrDA, CF interface etc.
Devil+ language is used here to describe all these devices. These descriptions
should be loaded to the Devil+ library for later use. It is possible to reuse the
device driver code.

6 Conclusions

The approach of Devil+ provide a new alternative to write drivers by yourself,
writing once and running everywhere. By reusing what you and others have
created, it will reduce development effort and allow you to get your products to
market early.

Driver programmers can throw the traditional laborious work to the Devil+
compiler. Now the device driver development method remains on the manual
level. But in the future, with the improvement of the Devil+ compiler technol-
ogy and large and complex demands of the application, using Devil+ language
to automatically generate driver codes will replace the manual method.

References

1. A.Rubini: Linux Device Drivers. O’Reilly, first edition, February 1998
2. B.N. Bershad, T.E. Anderson, E.D. Lazowska, and H.M. Levy: Lightweight remote

procedure call. ACM Transactionson Computer Systems, February 1990.
3. Fabrice Mérillon Laurent Réveillère* Charles Consel* Renaud Marlet†Gilles Muller:

Devil: An IDL for Hardware Programming, In OSDI 2000, pages 17-30, San Diego,
October 2000.

4. Laurent Réveillère F. Mérillon, C. Consel, R. Marlet, and G. Muller: The Devil
Language release 0.4. August 24, 2000

5. Lei Luo, Ming-Yuan Zhu, Qing-Li Zhang: A formal semantic definition of DEVIL.
SIGPLAN Notices 38(4): 47-56 (2003)

6. M.-Y. Zhu, Lei Luo, and Guang-Ze Xiong: High-availability in δ-CORE: A formal
derivation. Dedicated Systems Magazine, July 2001.

7. Qing-Li Zhang, Ming-Yuan Zhu, Shuo-Ying Chen: Automatic generation of device
drivers. SIGPLAN Notices 38(6): 60-69 (2003)

8. SHARP Inc. LH79520 USER’S GUIDE
9. Tetsuro Katayama, Keizo Saisho, and Akira Fukuda: Prototype of the device driver

generation system for unix-like operation systems. In proceddings of ISPSE 2000,
November 2000.

On Generalizing Interrupt Handling into a

Flexible Binding Model for Kernel Components

Qiming Teng1, Xiangqun Chen1, and Xia Zhao1,2

1 Peking University, Beijing, PRC, 100871
{tqm, cherry, zhaoxia}@os.pku.edu.cn

http://os.pku.edu.cn/
2 Beijing Business and Technical University, Beijing, PRC, 100871

Abstract. This paper presents a flexible binding implementation in
JBEOS, a component based embedded operating system targeted at
resource-constrained devices. This binding model features an extensi-
ble framework, which consists of two stub segments named prolog and
epilog respectively. By making the binding service an ingredient of the
run-time infrastructure, dynamic loading and binding of system compo-
nents is supported in JBEOS. Synchronization, mutual exclusion issues
are made transparent by manipulating the inter-component communica-
tions using the binding model given.

1 Introduction

To facilitate the increasing demand for extensible platforms in embedded do-
mains, various prototypes and solutions have been proposed during the past
decade, μChoices[1], EPOS[2], DEIMOS[3] are examples of such systems. These
systems are all aimed at providing an extensible operating system for embedded
applications.

In this paper, we first present the architecture of the JBEOS operating system
and its design philosophies. Then the flexible binding model is discussed in detail
as a generalization from the practice of handling interrupts by incorporating user
supplied ISRs (Interrupt Service Routine). Then, we present initial lessons learnt
from experiments on the component service built upon the supposed model. At
last, conclusions and future works planned are given.

2 The JBEOS Nanokernel

The JBEOS is an extensible operating system designed for embedded devices.
The design of JBEOS borrowed its ideas from both the XOK [4] and the DEIMOS
[3] project. The primary responsibility of the nanokernel is to ensure the secure
interactions among components and secure access to hardware resources, but not
to provide traditional services or abstractions like threading, memory manage-
ment, IPC etc. The bare image consists of only an HAL (Hardware Abstraction
Layer), a component service and some low-level drivers, and thus forms the so

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 423–429, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

424 Qiming Teng, Xiangqun Chen, and Xia Zhao

called nanokernel in this paper. System services provided by a traditional ker-
nel are encapsulated into dynamically loadable system components. Protections
between components are dealt with the capability subsystem in the component
service. Nearly all portions of the nanokernel are portable with two exceptions:
the HAL is a source level component that is platform dependent, and the binding
module is semi-portable due to machine-level code relocation implementations,
see Fig 1.

bootstrap

BinLoader

BIND

IntfMgr

CAPS

ImplMgr

CompMgr

compsvc

HAL

Event

eth−drv uart−drv

Interrupt

LMM Timer

Exception

System Components

MsgQue ThreadSignal

PMM

UserAppNInit UserApp1 UserApp2 UserApp3

Fig. 1. The architecture of the JBEOS. Shaded boxes are parts of the nanoker-
nel, while traditional system services are provided by components running from
outside of the kernel. LMM is a component for linear memory management,
while PMM is the physical memory management unit

Fig 1 depicts the architectural structure of the JBEOS system. The compo-
nent service (compsvc) module consists of six major components. The CompMgr
component is responsible for component management, i.e. component registra-
tion, de-registration, query by name or ID, and maintenance of the associations
among components and implementations. The IntfMgr component is respon-
sible for interface management, including interface registration/deregistration,
enumerating interfaces by name and associating interfaces to implementations.
The ImplMgr does a similar work as the IntfMgr component, though the enti-
ties being managed are implementations, rather than interfaces. A component in
JBEOS is a binary file translated directly from a legacy ELF object file [5]. The
CAPS component is a vital part of the compsvc, for its responsibility in ensuring
the secure bindings among service and application components. By ejecting al-
most all operating system abstractions into loadable components [6], JBEOS is
able to adapt to different requirements raised in embedded application domains.

The BinLoader entity is used to load binary reusable component files, and
parsing the header of the component for IntfMgr and ImplMgr. The BIND module
implements a specific binding model, which is detailed in the next section.

On Generalizing Interrupt Handling into a Flexible Binding Model 425

3 The Binding Model

Since one of the design goals of JBEOS is a transparent programming paradigm
for the developers, so as not to bring in the burden of meeting yet another
derivative of COM as done in DEIMOS [3], we have to hide the CoInitialize
or OleInialize [7] and other routines from the programmers. On one hand,
this transparency made it possible to optimize inter-component communications
when necessary. On the other hand, reusing legacy software is easier even when
one has no access to the source. An approach to hook user supplied device drivers
is given in the next subsection, following which the flexible binding model is
introduced.

3.1 An ISR Hooking Model

For embedded operating systems, there are cases where special hardware inter-
faces are used. It is nontrivial to enable applications to handle IRQs from such
devices directly, because interrupts can not vector directly to C functions in user
programs. A common way to do this is shown in Fig 2[8].

save registers
setup stack
invoke routine
restore stack
restore registers
iret

myISR(int val)
{ ...
 /* handle interrupt */

...

}

intConnectWrapper built by

intConnect(INUM_TO_IVEC(SomeIntNum), myISR, someVal)

Fig. 2. Routine built by intConnect in embedded operating systems. By
wrapping the myISR function, registers and stack pointers are automatically
saved/restored when interrupts occur

Bindings among modules in traditional operating systems are usually done
statically. An entry in the caller is fixed by the link editor when the target im-
age is built, although a further step towards dynamic linking can be made using
specific information in object files. For example, GOT (Global Offset Table) and
PLT (Procedure Linking Table) sections in ELF (Executable and Linking For-
mat) [9] are employed in UNIX-family operating systems [10][11]. We extended
this linking procedure by intercepting procedure calls among system modules,
i.e. two skeleton code snippets are inserted before and after the procedure call
respectively. Thus, a new model for binding components was devised, which is
given in the next subsection.

426 Qiming Teng, Xiangqun Chen, and Xia Zhao

3.2 The Flexible Binding Model

As a component based operating system, JBEOS emphasizes the separation
between interfaces and implementations in contrast to a module based OS, which
further facilitates the separation of policies and mechanisms provided by the
system. These features are made possible using the flexible binding model, as
shown in Fig.3.

functionA1()
{
 ...
 functionB2()
 ...

}
 return;

if (A.priv<B.priv)
 return E_ACCESS;
...
seizeMutex(funcB2);
incRefCount(B);
...
goto functionB2;

...

...
return;

DecRefCount(B);
freeMutex(funcB2);

seizeMutex

freeMutex

lockComp

unlockComp

incRefCount

decRefCount

loccall

Component A Component B

functionB2()
{

 /* service code */

}

...

...

 return;

epilogprolog

Binding Routines

(1)

(2)

(3
)

(4
)

(5
)

(7)

(6
)

Fig. 3. The binding model illurstated. Binding routines are pre-translated bi-
nary relocatable code snippets shipped along with the compsvc component. This
repository is customizable when building the target image

Assume that we have two components A and B to be bound, where func-
tionA1 in A requires a service functionB2 from component B. This requirement
is detected when component A is loaded by the BinLoader module of compsvc.
After dealing with the internal relocations, BinLoader asks the BIND module
to bind A with other existent components. Binary versions of prolog (and epi-
log) code snippet are then dynamically generated according to the interface
requirement specified in the Interface section of A. In this case, functionB2

On Generalizing Interrupt Handling into a Flexible Binding Model 427

in component B claimed to be accessed exclusively. The corresponding prolog
and epilog thus incorporate textttseizeMutex and freeMutex logic copied from
the Binding Routines repository. The BIND module then redirects function call
(a REL32 entry) in the caller’s code to the prolog, points the last goto instruction
to functionB2. The prolog replaces the caller’s address (loccall in fig3) by the
start address of the epilog, so that it appears to B that functionB2 was called
by the epilog. When component B finishes servicing A, the return statement
actually transfer the execution to the epilog, which then mimic a stack frame
before return by pushing the originally saved loccall on A’s stack. Thus com-
ponent A is ignorant about the intercepting procedure happened, i.e. it seems
to A the function call behaves just like other usual cases; everything is done as
expected.

By following the directed lines shown in Fig.3, we can see what happens be-
hind the scene when neither A or B is aware of the actual process undertaken.
A more interesting point of this binding model is that reference counting, com-
ponent locking, and cross-domain interactions can be implemented in the same
way.

Prologs and epilogs are generated from binary code templates. A sample
prolog is shown as following:

byte prologCode[] = {
/* Three ’push $br_parameters’ instructions are used for passing
* parameters to connection code, which can be safely ignored
*/
0x68,0x00,0x00,0x00,0x00,
0x68,0x00,0x00,0x00,0x00,
0x68,0x00,0x00,0x00,0x00,
0xe8,0x00,0x00, 0x00, 0x00, /* call routinesEntry */
0x83,0xc4,0x0c, /* addl $12,%esp */
0xb8,0x00,0x00,0x00, 0x00, /* movl $loccall, %eax*/
0x8b,0x54,0x24,0x08, /* movl 0x8(%esp,1),%edx*/
0x89,0x10, /* movl %edx, (%eax) */
0xba,0x00,0x00,0x00,0x00, /* movl $_epilog, %edx*/
0x89,0x54,0x24,0x08, /* mov %edx,0x8(%esp,1)*/
0xe9,0x00,0x00,0x00,0x00, /* jmp _target_func */
/* Target function executes here, establishing its own stack
* frame, executing its functional logic using the parameters
* on stack. Finally, it returns by a ’ret’ instruction, which
* is caught by the _postStub.
*/

};

The following is a sample epilog:

byte epilogCode[] = {
0x68,0x00,0x00,0x00,0x00, /* pushl $br_parameter1*/
0x68,0x00,0x00,0x00,0x00, /* pushl $br_parameter2 */

428 Qiming Teng, Xiangqun Chen, and Xia Zhao

0x68,0x00,0x00,0x00,0x00, /* pushl $br_parameter3 */
0xe8,0x00,0x00,0x00,0x00, /* call _apxStub */
0x83,0xc4,0x0c, /* addl $12, %esp */
0x68,0x00,0x00,0x00,0x00, /* pushl callerAddr + 4 */
0xc3 /* ret */

};

Both prolog and epilog code here are targeted at the Intel32 architecture, and
this is why the BIND component is semi-portable. Zeroed bytes standing for those
relocation entries are filled when binding is carried out.

4 Initial Lessons

Although adopting component based software development paradigm into em-
bedded operating systems is deemed a promising way for extensibility and re-
usability requirements in practices, proposed solutions often impose a rigid pro-
gramming model on developers. Systems like SPIN [12] restrict the extensions to
be programmed in Modula-3, a type-safe language. MMLite [13] and DEIMOS
[3] adopt variants of COM [14] as their component models, forcing developers
and their programs to be aware of the underlying component run-time facilities.
The binding model proposed in this paper is a transparent one to developers.
However, compiled objects should be converted into an EBC format in order to
reinforce the interface specification in the component deployed.

Another aspect of this binding model is its capability to implement zero-
cost interactions among components. By filling the address of the method in the
target component, the BIND component can simulate what a link editor does.
On the other hand, remote bindings in a networking environment is possible
by providing marshalling functions in the Binding Routines repository, although
we have not yet implement such a scheme. All performance costs in the binding
model are inherent ones in the interacting scheme, because no additional costs
are introduced except for some stack manipulations where additional memory
accesses are required.

The safety of bindings are ensured by the CAPS unit in the BIND module,
which centralize protection issues like access control, as EROS[15] has done.

5 Conclusions and Future Work

Flexible, secure bindings in a component based operating system have notable
impacts in the customizability, performance, and dependability of the target sys-
tem. The binding model presented in this paper generalized an interrupt handling
model into a flexible framework, where prolog and epilog code snippets are in-
serted as the wrapper of methods from target service component. Future works
are to be carried out with respect to an optimal footprint, reimplementation of
traditional IPCs.

On Generalizing Interrupt Handling into a Flexible Binding Model 429

Acknowlegements

Thanks to Xinjie HU, Wei ZHU and Jianjun HU who took an active part in
developing the prototype implementations.

References

1. Campbell, R., Tan S. M.: μChoices: An Object-Oriented Multimedia Operating
System. In Proceedings of the Fifth Workshop on Hot Topics in Operating Systems,
Orcas Island, WA, May 1995. New York: ACM Press, 1995, pp. 90-94.

2. Fröhlich A., Application-Oriented Operating Systems. Ph.D Thesis, Germany:
GMD-Forschungszentrum Informationstechnik GmbH, 2001.

3. Clark M., Operating System Support for Emerging Application Domains. Ph.D
Thesis, Lancaster, UK: Lancaster University Computing Department, 2000.

4. Engler D. R., The Exokernel Operating System Architecture. PhD Thesis, Mas-
sachusetts Institute of Technology, October 1998.

5. TENG Qiming, CHEN Xiangqun, ZHAO Xia, On Building Reusable EOS Compo-
nents from ELF Object Files. Journal of Software, 2004, 15(sup)

6. Engler D., Kaashoek M. F., Exterminate All Operating System Abstractions. In
Proceedings of the Fifth Workshop on Hot Topics in Operating Systems, May
1995. pp. 78-85.

7. Eddon G., Eddon H., Inside Microsoft COM+ Base Services, Microsoft Press, 1999.
8. WindRiver Systems, VxWorks Programmer’s Guide, 2000.
9. TIS(Tool Interface Standard) Committee, Executable and Linking Format (ELF)

Specification, Version 1.2, May 1995.
10. Levine J. R., Linkers and Loaders, Morgan Kaufmann, 2000.
11. Rubini A., Corbet J., Linux Device Drivers, 2nd Edition. OReilly, June 2001.
12. Bershad B., Savage S., Pardyak P., et al. Extensibility, Safety and Performance in

the SPIN OperatingSystem. In Proceedings of the 15th Symposium on Operating
Systems Principles, NewCopper Mountain, CO, Dec 1995, NY: ACM Press, 1995.
pp.267-284.

13. Helander J., Forin A., MMLite: A Highly Componentized System Architecture. In
Proceedings of the 8th ACM SIOPGS European Workshop, pp.96-103, Sintra Por-
tugal, September 1998.

14. Microsoft Corp., The Component Object Model Specification, Version 0.9, 1995.
15. Shapiro J. S., Hardy N., EROS: A Principle-Driven Operating System from the

Ground Up. IEEE Software, 19(1):26-33, 2002.

Research Directions for Embedded Operating

Systems

Xiangqun Chen1, Xia Zhao1,2, and Qiming Teng1

1 Operating System Laboratory, Institute of EECS, Peking Univ., Beijing, 86-100871
{cherry, zhaox, tqm}@cs.pku.edu.cn

http://os.pku.edu.cn
2 School of Computer Science, Beijing Technology and Business Univ.,

Beijing, 86-10037
zhaox@th.bpbu.edu.cn

http://www.bpbu.edu.cn

Abstract. A brief survey for recent research works on embedded op-
erating systems (EOSs) is presented, including component based EOSs,
energy-aware EOSs, secure EOSs, and EOSs for sensor networks.

1 Introduction

Embedded operating systems are one of the enabling technologies for areas such
as industrial process control, precision agriculture, defense systems, and con-
sumer electronics etc. It serves an important role in the post-PC era. In fact,
modern embedded systems are becoming increasingly important elements of the
infrastructure for the ecosystem of the world. New research directions are emerg-
ing while embedded systems are becoming more ubiquitous and pervasive.

This paper presents a survey on research directions of modern embedded op-
erating systems. Directions surveyed in this paper include: composibility, energy-
efficiency, dependability, performance guarantees of embedded operating sys-
tems, and systems for emerging application domains , eg. sensor networks.

2 Composibility

Embedded applications can be deployed in many fields, each of which has its
unique set of requirements. Requirements with respect to processor performance,
memory, energy, cost, operation mode, and time to market vary from one field to
another, from time to time. A key challenge is to provide an embedded operating
system with a high degree of tailorability, which can evolve and make use of
legacy components. Composibility has long been a key issue for these systems.

A promising solution to this challenge is to introduce component based de-
sign to EOSs. There are some industrial component based embedded operating
systems and commercial ones available. Industrial products examples include:
MMLite [1], Pebble [2] and etc. Some academic systems are examined briefly in
this section, namely OSKit [3], PURE [4], 2K [5], and JBEOS [6].

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 430–436, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Research Directions for Embedded Operating Systems 431

2.1 OSKit

The OSKit [3] system developed at Utah university is a toolkit for system re-
search project. OSKit offers a component library for operating system configura-
tion and customization. The authors of OSKit made great efforts to minimize the
number of interactions and dependencies among components. This effort results
in enhanced flexibility between components and code created independently by
other developers. But OSKit does not provide any guidelines to build an oper-
ating system out of these components. Another issue of OSkit is that it does not
focus on embedded systems.

2.2 PURE

PURE [4] is an object-oriented operating system focused on deeply embedded
systems, with extreme resource constraints in terms of memory, CPU, and power
consumption. The smallest building unit of PURE is a class. For configuration
purposes, PURE provides tools to specify user requirements for the target sys-
tem. An annotation language was developed to provide necessary information
such as dependency and attributes, so that the composition tool can evaluate
and choose the right building-units.

2.3 2K

The 2K [5] system is a reflective, component-based operating system whose main
goal is to provide a generic framework that supports adaptation in a network-
centric computing environment. A component in 2K is a dynamically loadable
unit residing in a dynamic link library (DLL). Components can be loaded or
unloaded according to user’s needs. No analysis tool is provided to determine
correctness and performance of 2K. However, components can decide if adap-
tation is required based on the observed system state. The system provides
configuration and reconfiguration capabilities based on static and dynamic de-
pendencies.

2.4 JBEOS

JBEOS is a component-based embedded operating system developed at EECS of
Peking University. A component library for EOS composition was constructed.
The reusable EOS components are directly produced out of complied objects,
i.e. ELF object files [6]. The JBEOS component model has three layers: the
platform, the kernel and the feature layer. An XML-based component descrip-
tion language, named XCODE (eXtensible COmponent DEscription language),
is defined with some advantages: independence from tools, platforms and com-
ponents, exchangeable format, extensible, and eligible for varying scenarios. The
experiment result shows that XCODE is suitable for component based EOS
development [7].

432 Xiangqun Chen, Xia Zhao, and Qiming Teng

The current research objective is to develop a model for component composi-
tion that encompasses domains such as function, time, and fault tolerance. Fur-
ther research should concentrate on issues related to adaptive high-performance
fault-tolerant embedded systems that can satisfy functional and extra-functional
requirements. These systems should exhibit a priori correctness and acceptable
performance while ensuring graceful degradation in presence of sporadic fail-
ures. Unexpected requirements for functions and performance can be satisfied
by employing some scheme that makes the system evolve in a predictable way.

3 Energy Efficiency

Many embedded systems have energy constrains. Traditional operating systems
gave little consideration on energy consumption, if any. Nowadays, a new re-
source management perspective should take on energy management as an as-
pect of the resource management functionality of an operating system. Dynamic
power management as a promising research direction is discussed first in this
section, followed by a summary of research status on energy effects of an OS.

3.1 Dynamic Power Management (DPM)

At the operating system level, basic dynamic power management issues being
considered include: Dynamic Voltage Scaling (DVS) [8][9] for the processor unit,
and energy saving techniques for the I/O devices [10][11].

Software-conducted power management has gained much attention from both
research communities and industry vendors. The first standard developed is the
Advanced Power Management (APM) specification, a BIOS-based power man-
agement specification for PC platform. Due to problems found in APM, the Ad-
vanced Configuration and Power Interface (ACPI) specification was developed.
Power management related decisions are made now by the operating system
rather than the BIOS firmware. ACPI establishes an industry-standard inter-
face for OS-directed configuration and power management on different platforms
[12]. However, embedded platforms tend to exhibit distinguishable peculiarities
that make ACPI not directly applicable. A generic adaptation of the ACPI is
anticipated by embedded developers.

A research group from EECS, Peking University, has developed two DVS
algorithms [13] for dynamic power management. The preliminary experiments
have achieved significant energy saving while simultaneously preserving timeli-
ness guarantees the requirements by real-time tasks. The measurements indicate
that 15% to 35% energy savings can be achieved on the Samsung S3C44B0X
platform running the DeltaOS [14] real-time embedded operating system.

3.2 Engery Effects of the OS Software

An operating system, as the resource manager of a computer system, should
take in energy as a special kind of consumable resources. However, operating

Research Directions for Embedded Operating Systems 433

systems, like application softwares, should be assumed as one of the major energy
consumers at the same time. An operating system has significant impacts on the
energy efficiency of the embedded system. Researches on adapting software to
manage energy consumption include [15][16][17].

As pointed out by Vahdat et al. [18], a systematic reexamination of all as-
pects of operating system design and implementation from the energy efficiency
perspective is necessary to determine or to predict power consumption of the
system software. Services, policies, mechanisms, and the internal structure of an
operating system are all factors of energy efficiency.

According to research results published by T. K. Tan et al. [19], a systematic
framework for software architecture transformations to reduce energy consump-
tion is attainable. The experiment result presented is quite impressive: up to
66.1% reduction in energy can be obtained. During the early stage in the devel-
opment of embedded software and operating systems, energy should be taken
into consideration seriously. Further research works are encouraged in the fol-
lowing areas: hardware/software co-design to reduce power consumption, off-line
prediction of power consumption, techniques to conserve energy while preserving
the real-time performance requirements of the target system.

4 Dependability

Computer system has never achieved a high trustworthiness when compared to
hydroelectricity supply despite the latter can cause catastrophic accidents to
human. When embedded applications are spreading rapidly into nearly every
corner of our workplaces and daily lives, the trustworthiness of an embedded
system has become one of the focus areas of research recently. The term Trust-
worthiness is in a sense the macroscopical description of the dependability of a
system. Laprie [20] refers to dependability as the trustworthiness of a computer
system, and defines it in terms of four attributes: reliability, availability, safety
and security. Reliability is the aspect of dependability referring to the continuity
of a system’s correct service; Availability refers to a system’s readiness for us-
age; Safety concerns itself with systems avoiding catastrophic consequences on
their environment and/or operators; Security captures the ability of a system to
prevent unauthorized access to information. Due to the space limitation, only
security for EOSs is investigated here.

A well-known standard is the Common Criteria specification by CCIE [21]
which defines 7 levels of security a product provides, named as Evaluated As-
surance Levels (EALs). The basic requirements for an OS to be secure are [22]:
Non-bypassable, Evaluatable, Always invoked, and Tamper-proof. These four
basic tenets are very hard to achieve simultaneously. A viable approach to build
a secure EOS, among others, is to construct a separation kernel, which is strictly
limited in functions provided. Given the small code base of the kernel resulted
from removing as much work out of the kernel space into application space, the
security of the kernel can be formally proven. A kernel in this case degenerates
into a channel enforcing isolations among applications. The security policies are
thus always invoked and are non-bypassable.

434 Xiangqun Chen, Xia Zhao, and Qiming Teng

One example is the DO-178B standard used by the FAA for flight systems
[23] certification purposes. Comparison between DO-178B and Common Crite-
ria reveals that software that conforms to the DO-178B Level A criteria will
map closely to either EAL 4 or 5 with some additional works [24]. Examples of
embedded operating system satisfying the DO-178B Level A standard are emerg-
ing, e.g. LynxOS-178, whose core is LynxOS, a hard UNIX-style RTOS. Further
researches are encouraged with certifiable dependability and QoS assurance in
the presence of real-time.

5 EOSs for Emerging Application Domains

In a rapidly developing world, pervasive computing is apparently a wheel in
the family of next-generation computer systems. Emerging domains, most of
which may be unknown, may raise unexpected requirements to the EOS on
which applications run. In this section, EOS for sensor networks is taken as an
example to illuminate some research issues when developing application-specific
EOSs for emerging domains.

The emergence of sensor networks is a natural evolution of the trend in com-
puting and communication technologies toward smaller, more powerful informa-
tion appliances that are becoming ubiquitous [25]. Key research areas for this
flavor of EOSs are: self-configuration and adaptive coordination, trustworthiness,
and computational models. TinyOS developed at Berkeley is an example of such
systems [26]. TinyOS provides an extremely efficient multi-threading engine with
a two-level scheduling structure, so that processing overhead to hardware events
can be reduced to a minimal degree. High concurrency is handled using an event
model with small space cost.

Another research issue is the simulation of sensor networks. These simulation
environments have to scale well enough to handle up to thousands of nodes at
a high fidelity. A simulator that can accurately capture the dynamic properties
of a sensor network is favorable. Sample simulators are emerging, e.g. TOSSIM
[27], Ns-2 [28].

Each application domain has its unique set of functional and extra-functional
requirements, so the research issues have close relationships to evolvability of an
EOS. An open infrastructure can make an embedded system more evolvable than
ever: hardware and software components insertion and removal can be made in
a safe and cost-effective way.

6 Conclusions

This paper discussed several strategic research directions for embedded operating
systems. Researches related to composability are more active than in the other
fields. Current research related to energy efficiency, dependability and meeting
requirements from emerging domains are preliminary. There is still a long way
to go for academic community and industrial vendors, so a closer cooperation
between academic researchers and industrial organizations is anticipated.

Research Directions for Embedded Operating Systems 435

Acknowlegements

This work was supported by the National High Technology Research and Devel-
opment Program of China (863 Program) under Grant No.2002AA1Z2204, and
the National Natural Science Foundation of China under Grant No. 60373001.

References

1. Helander J., Forin A.: MMLite: A Highly Componentized System Architecture.
In: Proc. of 8th ACM Special Interest Group on Operating Systems European
Workshop (SIGOPS). ACM Press, New York. (1998) 96–103

2. Gabber E., Bruno J., Brustoloni J., Silberschatz A., Small C.: The Pebble
Component-Based Operating System. In: Proc. USENIX Annual Technical Con-
ference. USENIX Assoc, California. (1999) 267–282

3. Ford B., Back G., Benson G., Lepreau J., Lin A., Shivers O.: The Flux OSKit: A
Substrate for Kernel and Language Research. In: Proc. of the 16th ACM Sympo-
sium on Operating System Principles. ACM Press. (1997) 38–51

4. Beuche D., Guerrouat A., Papajewski H., Schroder-Preikschat W., Spinczyk O.,
Spinczyk U.: The PURE Family of Object-Oriented Operating Systems for Deeply
Embedded Systems. In: Proc. of 2nd IEEE International Symp. on Object Oriented
Real-Time Distributed Computing. (1999)

5. Kon F., Singhai A., Campbell R.H., Carvalho D., et al.: 2K: A Reflective,
Component-Based Operating System for Rapidly Changing Environments. In:
ECOOP’98 Workshop on Reflective Object-Oriented Programming and Systems.
(1998)

6. Teng Q., Chen X.: On Building Reuseable EOS Components from ELF Object
Files. Journal of Software, Vol. 15 (2004) 157–163

7. Teng Q., Chen X.: XCODE: A Extensible Component Description Language for
System Software. Journal (Natural Sciences) Of Peking University. Vol. 41 (2004)
388–396

8. Pering T., Brodersen R.: The Simulation and Evaluation of Dynamic Voltage Scal-
ing Algo-rithms. In: Proc. of the International Symp. on Low-Power Electronics
and Design. (1998) 76–81

9. Flautner K., Reinhardt S., Mudge T.: Automatic performance-setting for dynamic
voltage scaling. In: Proc. of the 7th Conference on Mobile Computing and Net-
working. (2001)

10. Swaminathan V., Chakrabarty K., Iyengar S. S.: Dynamic I/O Power Management
for Hard Real-Time Systems. International Symposium on Hardware/Software Co-
Design. (2001) 237–242

11. Benini L., Bogliolo A., Micheli G. D.: A Survey of Design Techniques for System-
level Dy-namic Power Management. IEEE Transactions on VLSI Systems, Vol.8(3)
(2000)

12. The ACPI Standard, available at http://www.acpi.info/
13. Zhao X., Chen X., Gao Z., et al. Dynamic Voltage Scaling for Power-Aware Em-

bedded Operating System. In Proc of 2004 Intl. Conf. on Embedded System and
Software. (2004)

14. DeltaOS: http://www.coretek.com.cn/
15. Frakas K., Flinn J., Back G., Grunwald D., Anderson J.: Quantifying the En-

ergy Consumption of a Pocket Computer and a Java Virtual Machine. In Proc. of
SIGMETRICS’00. (2000)

436 Xiangqun Chen, Xia Zhao, and Qiming Teng

16. Flinn J., Satyanarayanan M.. Energy-aware Adaptation for Mobile Applications.
In Proc. ACM SOSP. (1999) 48–63

17. Lorch J.R., Smith A.J.: Software Strategies for Portable Computer Energy Man-
agement. IEEE Personal Communications, Vol.5(3) (1998) 60–73

18. Vahdat A., Lebeck A., Ellis C.S.: Every Joule is Precious: The Case for Revisit-
ing Operating System Design for Energy Efficiency. In: Proc. 9th ACM SIGOPS
European Workshop. (2000)

19. Tan T.K., Raghunathan A., Jha N.K.: Software Architectural Transformations: A
New Approach to Low Energy Embedded Software. In: Proc. Design Automation
& Test in Europe. (2003)

20. Laprie J.C.(ed.): Dependability: Basic Concepts and Terminology. Dependable
Computing and Fault-Tolerant Systems. Springer Verlag. (1991)

21. NIST, Common Criteria for Information Security Evaluation. Parts(1-3). (1999).
Available at: http://csrc.nist.gov/cc

22. Lynx. http://www.lynuxworks.com/products/whitepapers.php3
23. RTCA: DO-178B/ED-12B. Software Considerations in Airborne Systems and

Equipment Certification. (1992)
24. Alves-Foss J., Taylor C., Rinker B.: Merging Safety and Assurance: The Process of

Dual Certification for Software. (2002) Avai at http://www.csds.uidaho.edu/ jimaf

25. National Academies: Embedded, Everywhere: A Research Agenda for Networked
Systems of Embedded Computers. ISBN: 0-309-07568-8. (2001)

26. Hill J., Szewczyk R., Woo A., Hollar S., Culler D., Pister K.: System architecture
directions for networked sensors. In: Proc. of ASPLOS IX. (2000)

27. Levis P., Lee N., Welsh M.,Culler D.: TOSSIM: Accurate and Scalable Simulation
of Entire TinyOS Applications. In: Proc. of the 1st ACM Conf. on Embedded
Networked Sensor Systems (SenSys 2003) (2003)

28. NS-2: http://www.isi.edu/nsnam/ns/

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 437-442, 2005.
 Springer-Verlag Berlin Heidelberg 2005

SmartOSEK: A Real-Time Operating System for
Automotive Electronics

Minde Zhao, Zhaohui Wu, Guoqing Yang, Lei Wang, and Wei Chen

Zhejiang University Hangzhou, P. R. China, 310027
{zmdd48, wzh, ygq78, alwaysbeing}@cs.zju.edu.cn

Abstract. This paper puts forward SmartOSEK, a dependable platform for
automobile electronics, which consists of an operating system compliant with
OSEK/VDX specifications and an integrated development environment (IDE)
that consists of many convenient tools, such as visual designer, system
generator, time analyst, scheduling analyst, and running tracer. In the operating
system, SmartOSEK OS and SmartOSEK COM are presented. In the IDE, we
apply the graphic design, automatic code generation and time analysis to help
developers devote their mind to the modeling of the applications. A design
example of automated transmission system based on SmartOSEK platform is
given, and good results are achieved.

1 Introduction1

Vast arrays of embedded technologies are used increasingly in automobiles to
improve the performance and reliability of the system, and the system becomes
complex. To manage the complex system, it is desirable to use operating system in
the automotive electronic system. An operating system will perform task
management, abstracting away task switching and synchronization from the
application code, and simplifying application development and verification.

A consortium, led by automotive and microcontroller corporations, has developed
the OSEK/VDX (Open systems and corresponding interfaces for automotive
electronics /Vehicle Distributed executive) standard, which includes specifications for
operating system, communication subsystem, and network management subsystem
[1]. For simplicity OSEK will be used instead of OSEK/VDX in the paper. The goal
of OSEK standard is to improve the reusability and compatibility of software. The
OSEK standard allows multiple parties to develop applications and subsystems that
can work together and be integrated easily.

Based on the OSEK operating system specification, we have developed a small,
efficient operating system called SmartOSEK, which is implemented on the Freescale
MPC555 microprocessor. An integrated development environment is developed for
SmartOSEK. The hierarchy of SmartOSEK and IDE is shown in Fig. 1.

1 This work is supported by 863 National High Technology Program under Grant No.
2003AA1Z2141.

438 Minde Zhao et al.

The rest of this paper is organized in the following way. We present an overview of
SmartOSEK platform in section 2; a development example is introduced in section 3
based on SmartOSEK platform; in section 4 we introduce time analysis technology
for SmartOSEK platform. The paper is concluded in section 5.

SmartOSEK

BSP

IDE

SmartOSEK OS SmartOSEK COM

Application

CAN Driver ADC Driver

8051

MPC555 9S12

ARMMSP430

DSP

Engine
Control

AMT
Control

Body
Control

Visual Designer

Time Analyst

Scheduling Analyst

Running Tracer

Compiler Interface

Debugger Interface

System Generator

SmartOSEK Platform

Fig. 1. The architecture of SmartOSEK platform

2 Overview of SmartOSEK Platform

SmartOSEK platform is developed by Embedded System Engineering Laboratory in
Zhejiang University. It consists of an operating system compliant with OSEK
specifications and an integrated development environment that consists of many
convenient tools. The operating system consists of a kernel named SmartOSEK OS
and a subsystem name SmartOSEK COM, and we will discuss them in detail.

2.1 SmartOSEK OS

SmartOSEK OS is a small embedded operating system kernel designed to meet the
OSEK OS 2.2.1 specifications [2]. It contains the components, namely task
management, scheduling, resource management, and interrupts handling. As it is
designed for embedded systems that are typically running on low processing power
and low-capacity systems with static applications, it does not provide the mechanisms
for memory management or dynamic modification of the task set.

Task Management and Scheduling
As the task set is statically defined for the system at the time of system generation,
task management is quite limited in SmartOSEK OS. A basic OSEK task can switch
between active states (either READY or RUNNING) and an inactive state
(SUSPENDED). As for an extended task, a WAITING state can block its execution
until some event occurs. Tasks that are ready to run achieve temporal partitions on the
processor. Basically the scheduling strategy uses a static priority scheme to conform

SmartOSEK: A Real-Time Operating System for Automotive Electronics 439

to OSEK specification. Higher priority tasks are processed before any lower priority
tasks. Additionally, tasks may be preemptive or non-preemptive. Aiming at the best
utilization of the processor time and the responsive time for aperiodic non-blocking
tasks, a scheme of sporadic server [3] is implemented within the scheduler. This
server is treated as a task that has the highest priority among all the tasks.

Synchronization
To share and protect critical data between tasks, resources in SmartOSEK OS are
managed in a specific way. Only one task can hold a resource at a given time. Two
underlying problems will occur when resources are used, namely priority inversion
[4][5] and deadlock [6]. To avoid these problems, priority ceiling protocol [7] is
implemented in SmartOSEK OS. Any task holding a resource will have priority or at
least as great as any other tasks that may request the resource, so these other tasks will
not run until the resource is released. So when a task tries to obtain a resource, no task
can possibly be holding that resource, and hence no blocking can occur when
obtaining resources.

Alarms
SmartOSEK provides alarms to facilitate some time-based task activation. An alarm
is tied to a counter or system clock and is triggered when the count reaches the alarm
value. When an alarm is triggered, the system will either activate a task or signal that
task with an event. The alarms are defined statically at system generation, but the time
at which they are triggered is set dynamically to either relative or absolute values. If a
task is not related to an alarm during system generation, it will be considered an
aperiodic task and will be scheduled within sporadic server.

2.2 SmartOSEK COM

SmartOSEK COM compliant with the OSEK COM specification offers services to
transfer data between tasks and/or interrupt service routines. Access to SmartOSEK
COM services is only possible via the specified Application Program Interface (API).
SmartOSEK COM is based on messages. A message contains application-specific
data. Messages and message properties are configured statically via the OSEK
Implementation Language (OIL) [8].

In the case of internal communication, the Interaction Layer (IL) makes the
message data immediately available to the receiver. In the case of external
communication the IL packs one or more messages into assigned Interaction Layer
Protocol Data Units (I-PDU) and passes them to the underlying layer. The
functionality of internal communication is a sub-set of the functionality of external
communication. Internal-external communication occurs when the same message is
sent internally as well as externally.

The data that is communicated between the IL and the underlying layer is
organized into I-PDUs which contain one or more messages. A message must occupy
contiguous bits within an I-PDU and must not be split across I-PDUs. Within an I-
PDU, messages are bit-aligned. The size of a message is specified in bits. The IL
offers an API to handle messages. The API provides services for initialization, data

440 Minde Zhao et al.

transfer and communication management. Services transmitting messages over
network are non-blocking. This implies, for example, that a service that sends a
message may be unable to return a final transmission status because the transfer to the
network is still in progress. SmartOSEK COM provides notification mechanisms for
an application to determine the status of a transmission or reception [9].

2.3 SmartOSEK IDE

Visual Designer
In SmartOSEK platform, we implement a visual designer which adopts graph based
programming. It supports graphic modeling and automatic code generation, so
developers can devote their minds to modeling and designing arithmetic. The visual
designer provides most objects of OSEK specifications in the form of graph, such as
task, alarm, event, message and APIs; developers can move them from tool bar to the
designing area freely. When the control model is built, visual designer can generate
code in C language automatically. So the efficiency for automobile application
development is improved greatly by graph based programming.

Time Analyst
In hard real-time distributed control systems, jobs have stringent timing constraints
and are often required to be executed on a sequence of processors. Timing constraints
are typically given in form of end-to-end deadline. A job in such a system meets its
timing constraint if it completes before its end-to-end deadline. In order to analyze the
process time of system, IDE presents a time analysis tool to calculate each task in the
real-time system, and it provides references for system scheduling. Developers can
master the tasks’ time properties by the tool.

System Generator
In the OSEK specification, much of the system is statically defined, and SmartOSEK
provides system generator to configure the real-time system. The configuration of the
system can be implemented by OSEK implementation language (OIL), which is
specified in OSEK OIL specification. The system generator configures the system
according to the OIL files or the visual designer. The visual designer can create OIL
files automatically. The OIL files provide the definition of the whole system,
including all objects in OSEK. In OIL files, each task is defined by its task name,
priority, alarms, resources, and the amount of stack space needed and how it is
scheduled Other objects are defined in the same way in OSEK.

Running Tracer
As the real-time system runs in the embedded devices, it is hard for developers to get
the running state of each task. When the running system encounters failure, the
developer cannot find the position of the failure. The IDE presents a running tracer for
developers to trace the system running in the embedded device. Developers can get
the state of the running system at any time by the tracer. In the top of the tracer,
graphic display is presented, which consists of running task, ready queue, waiting

SmartOSEK: A Real-Time Operating System for Automotive Electronics 441

queue, suspend queue, and the objects in the system. In the bottom of the tracer, the
running state of the real-time system is displayed in the text form.

3 SmartOSEK Based Development

This section demonstrates the development based on SmartOSEK platform.
SmartOSEK provides a visual designer which supports automatic code generation.
Fig. 2 shows the visual designer for SmartOSEK. In the left of the designer, tool bar is
composed of most objects in SmartOSEK, including task, alarm, event, APIs and so
on. In the right of the designer, graphic design area and code area are presented.
Developers can model their application in graphic design area by moving the objects
from the left to the right; they can double-click the objects to set their attributes. The
designer generates the corresponding code in the code area.

Fig. 2. Visual designer for OSEK

We take the designing of the automated transmission system as an example. Five-
speed gearbox is assumed. Each of three shifting rods is actuated by servo that can
shift the collar from neutral to the first gear or to the second gear. The clutch actuated
by servo is supposed. Gearbox and clutch are controlled by software running in
electronic transmission unit (ETU), which consists of three tasks.

In the system, TaskA, Automated Transmission Task selects appropriate gear
according to the engine condition. It is assigned by the lowest priority 2 and it is
periodically activated by an alarm. The speed of the engine is captured by Interrupt1,
and then the ISR1 is called, which activates TaskC. If TaskC finds that it is the time to
shift the gearbox, it sets an event, Event1 to TaskA. TaskA gets the event and
activates TaskB, GearBox Task. TaskB opens the clutch, disengages current gear, and
engages desired gear. TaskB has to read the messages of the speed of engine and the

442 Minde Zhao et al.

speed of the vehicle to determine when to close clutch. Msg1 sent by TaskD presents
the speed of engine, and Msg2 sent by TaskE presents the speed of vehicle. This task
is assigned by the middle priority 3. When TaskB disengages or engages any gear, it
specifies which shifting rod servo and in which direction it is necessary to move.
Then it activates the highest priority task TaskF, Rod Servo Task which controls the
movement to the desired position.

4 Conclusions and Future Work

Operating system plays an important role in automobile electronics, and in this paper
we bring forward the framework of SmartOSEK platform. By the SmartOSEK
platform, it is more convenient to develop automobile electronics applications. In the
visual designer, we apply the graphic design and automatic code generation to help
the developers devote their minds to the modeling of the applications. SmartOSEK
platform also provides a time analysis tool for the developers to optimize the design.
We design an automated transmission system by SmartOSEK, thus the development
effort is decreased and the time is shortened.

Some tasks are left for future work. Firstly, the network management subsystem
compliant with OSEK NM specification will be developed to support multi-ECUs’
collaboration. Secondly, the visual designer should support high level modeling.

References

1. K. M. Zuberi, P. Pillai, K. G. Shin, W. Nagaura, T. Imai, and S. Suzuki, EMERALDS-
OSEK: A Small Real-Time Operating System for Automotive Control and Monitoring, in
Society of Automotive Engineers Congress and Exposition (March 1999). SAE Technical
Paper Series 1999-01-1102.

2. OSEK/VDX: OSEK/VDX Operating System Specification Version 2.2.2. July 5th, 2004
Available: www.osek-vdx. org.

3. S. Ramos-Thuel, P. Lehoczky. On-line scheduling of hard deadline aperiodic tasks in fixed-
priority systems. In proc.14th IEEE Real-Time Systems Symposium, pages 160–171, North
Carolina, USA, December 1993.

4. D.Locke, L.Sha, R.Rajikumar, J.Lehoczky, G.Burns. Priority inversion and its control: An
experimental investigation. ACM SIGAda Ada Letters, Volume 8, Issue 7, November 1988.

5. D. Locke, L. Sha, R. Rajikumar, J. Lehoczky, G. Burns. Priority inversion and its control:
An experimental investigation. Proceedings of the second international workshop on Real-
time Ada issues, June 1988.

6. Dieter.Zöbel. The Deadlock problem: a classifying bibliography. ACM SIGOPS Operating
Systems Review, Volume17, Issue 4,October 1983.

7. Jaehong Shim, Kyunghee Choi, Gihyun Jung, Seungkyu Park, HyeonSik Shin, Dongyoon
Kim. Priority inversion handling in microkernel-based Real-Time Mike. Proceedings of the
Third International Workshop on Real-Time Computing Systems Application, October
1996.

8. OSEK/VDX: OSEK/VDX System Generation OIL: OSEK Implementation Language
Version 25. July 1st, 2004 Available: www.osek-vdx. org,

9. OSEK/VDX: OSEK/VDX Communication Specification Version 3.0.3. www.osek-vdx.
org, July 20, 2004

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 443-448, 2005.
 Springer-Verlag Berlin Heidelberg 2005

A Functionality Based Instruction
Level Software Power Estimation Model for

Embedded RISC Processors

Jia Chen, Sheng-yuan Wang, Yuan Dong, Gui-lan Dai, Yang Yang

Dept. of Computer Sci. & Tech., Tsinghua Univ., Beijing 100084, China
chenjia02@mails.tsinghua.edu.cn

Abstract. This paper describes a functionality-based instruction-level power
analysis model, which aims at reducing workload of computing inter-
instruction power and keeping the convenience to observe necessary parameters
from a source-code description. The model treats the total power as the sum of
basic power of individual functional component and switching power of con-
secutive components pairs. To get the switching power, the switching activities
between two functional components are treated as one changing from working
state to sleeping state and the other from sleeping state to working state. NOP
instructions are used to model transitions between the two states. The model is
experimentally validated on a wide range of embedded software routines. Ex-
periments show that our model is within 95% accuracy on the average, and can
reduce the workload from a complexity of O(n2), which is the workload of tra-
ditional instruction-level energy estimation techniques, to a complexity of O(n).

1 Introduction

Energy consumption has become one of the critical constraints in system-level design
of embedded applications. Since power consumption depends significantly on the
software being executed, a shift towards power estimation from the software stand-
point is natural.

A well-designed model for software energy estimation should satisfy the following
four qualifications: accuracy, simplicity, accountability and retargetability.

This paper presents an instruction-level functionality-based energy estimation
model for embedded software, with major contributions listed as follows.

1. It is easy to identify important functional components which have signifi-
cance in the energy consumption.

2. By taking a functionality-based standpoint, the model has effectively reduced
the computing complexity.

3. The model building approach is generally applicable to a wide variety of
processors, although experiments are carried out on MIPS like simulator.

444 Jia Chen et al.

2 Related Work

Initial work has been done by Tiwari [1]. He computes the energy consumption by
summing up basic energy costs for individual instructions and switching power of
consecutive instruction pairs. A problem is that there are too many instruction pairs,
and the workload to compute switching power is onerous. To solve it, Mehta gathers
those instructions with similar power into a cluster [2]. Klass proposes a model in
which inter-instruction effects are measured by considering only the additional en-
ergy consumption when a generic instruction is executed after an NOP [3]. Anantha P.
Chandrakasan’s [8] research work shows that lots of overheads are common across
instructions and the overall consumption of a program primarily depends on operating
frequency and voltage. He proposes the first order model, the second order model and
implements them into JouleTrack.

3 Functionality-Based Power Consumption Estimation Model

3.1 Model Description

Many components are left unused when an individual instruction is running. Since
each instruction uses different components, switching activities of instructions would
lead to switching of components. The execution process of a program turns into a
working and switching process of functional component. Based on such a viewpoint,
we construct our power estimation model as the following equation.

 1 1 1 1
(,) (,)

m n m n

i j i j
P B i j S i j O

 (1)

Suppose that there are n instructions and m functional components. P is the total

power consumption; B(i, j) is the basic power consumption of component i caused by
instruction j; S(i, j) is the switching power of component i caused by instruction j,
which includes the startup stage power and stop stage power of the ports used on
component i; and O is other factors that might influence the total power consumption,
such as pipeline stalls.

3.2 Basic Power Consumption of Functional Components

When two instructions use the same component, the basic power consumption might
be different for the following reasons.

1. For multi-ported hardware units, conditional clocking is used to disable part
of a hardware unit to reduce power consumption. Different instructions may
use different ports, thus the power of hardware unit might differ accordingly.

2. Different instructions might engross a certain functional component for dif-
ferent number of clock cycles.

A Functionality Based Instruction Level Software Power Estimation Model 445

3. Power consumption is actually the product of voltage and electric current.
The representations of “0” and “1” in binary system are physically differed by
voltage. Since the binary codes of instructions are different, the voltage also
defers and so does the basic power consumption of each component.

Considering above factors, a table is used to record hardware resources used by
each instruction. “0” is used if Instruction i occupies Component j. Otherwise a coef-
ficient ij is used, which represents basic power of Component j when running In-
struction i. It can be measured through the way of instruction profiling [9].

We repeat Instruction i for 100,000 times, with different operands (such as register
names and immediate values). A cycle-by-cycle instruction-level simulator, SimpleS-
calar/Wattch tool set [4,7], version 3.0, is used to collect statistical data of the power
dissipation of each functional component. After profiling every individual instruction,
we get all the coefficients.

3.3 Switching Power of Functional Components

For each port of components, there is additional power consumption when it changes
between the working state and the sleeping state. The switching power is actually the
sum of the additional power consumption of these two stages.

To get this additional power, special test samples must be designed to keep the
components and ports continuously changing their states. Since the NOP operation
hardly wakes up any component, we construct loops by adding several NOPs be-
tween individual instructions.

Several NOPs instead of one are used for two reasons. First, enough time should
be left for components to change their states. For example, for an m-stage pipeline,
m-1 NOPs should be added before the components completely finish their switching
activities. Second, in our test programs there is high probability of hardware resource
dependency. By adding m-1 NOPs, the probability of resource dependency is lowered.

4 Experiments and Results

Our simulations are done on SimpleScalar/Wattch [4,7], version 3.0 with RTL level
power model. We only give the results assuming that power is scaled linearly with
port usage, except that unused units dissipate 10% of their maximum power[7].

4.1 Experiment Environment

The target machine includes a five-stage pipelined data path, general registers, I-
cache, D-cache, integer ALU, float ALU, control units and so forth. The configura-
tion of the processor is shown in Table 1.

446 Jia Chen et al.

Table 1 Configuration of SimpleScalar.

Issue Width 4 l1 data cache config, dl1:128:32:4:1
Window Size 16 l2 data cache config, ul2:1024:64:4:1
Number of Virtual Registers 32 l1 inst cache config, il1:512:32:1
Number of Physical Registers 16 memory access bus width (in bytes) 8
instruction decode B/W (insts/cycle) 4 number of integer ALU’s 4
instruction issue B/W (insts/cycle) 4 number of integer multi/dividers 1
register update unit (RUU) size 16 number of memory system ports 2
load/store queue (LSQ) size 8 number of floating point ALU’s 4

 floating point multi/dividers 1

4.2 Feasibility Validation

The semantics of SimpleScalar ISA, a superset of MIPS, is used as testing instruction
set. By instruction profiling, we get the basic power and switching power of func-
tional components caused by each instruction, which has been depicted in Figure 1.
The components include branch predictors, instruction window, load/store queue,
registers, result buses, clock buffers and clock wires, ALU, data and instruction
caches.

Fig. 1. Basic Power & Switch Power of each functional component

4.3 Accuracy Validation

Benchmarks are used to validate the accuracy of the model. Since for many instruc-
tions, the basic power and switching power of their functional components are similar,
it is feasible to reckon the usage statistics of each component. We look up the basic
power and switching power of the components, and then calculate the total energy
consumption using the aforementioned model and the components’ usage statistics.
Compared with the energy directly measured on Wattch, our model has shown an
error of 5% on average and no more than 9% at most, as Table 2 has shown.

A Functionality Based Instruction Level Software Power Estimation Model 447

Table 2 Test results measured on Wattch and computed by our model.

5 Advantages and Limits

5.1 Advantages

A limitation of traditional instruction-level power estimation model is the complexity
to compute inter-instruction power. For an ISA that has n instructions, there are C2

n+1
possible instruction-pairs, which mean the computing complexity is 2()O n [2]. Our
functionality-based model is much simpler. By proposing the idea that the switching
power of two components is the sum of the cease stage power of one component and
the startup stage power of the other, we reduce the work load to O(n).

The model proposed in this article is accurate and its parameters are easy to get by
means of instruction profiling. Although the experiments are made on SimpleSca-
lar/Wattch, a close derivative of the MIPS architecture, the model and the analysis
process can easily be applied to other target processors.

5.2 Limitations

The model assumes an ideal situation where pipelines are fully occupied. Practically,
instruction correlation is unavoidable and pipeline stalls are expected. Thus power
consumption of clock systems must be underestimated since actual executing time is
longer. This is an explanation of why the total power computed by our model is on an
average 5% less than the power measured on Wattch.

Our model is based on the assumption that the overhead cost for functional com-
ponents of an instruction is not strongly dependent on the neighboring instructions,
but dose depend on whether the neighboring instructions is the same or different. The
energy for a particular component is either B(i, j) or B(i, j) + S(i, j) depending on the
previous instruction. Actually, switching power of components is dependent on the
previous instruction. Yet considering that grouping instructions into clusters also
decreases accuracy, this should compare favorably [3].

Some components may startup and stop during the execution of instructions and
their switching power is ignored. Fortunately, the phenomenon seldom happens when

Benchmark
Power consumption
measured on Wattch

Power consumption computed
with our model Error

bubble 412243.15 390737.67 5.23
fibo 17178445 15687847.76 8.68
qsort 9991871.33 9586222.36 4.06
sort 9585787.66 9243115.58 3.57
hello 144890.46 138672.16 4.29
dhry 5958441.76 5572296.74 6.48
sieve 19867955.72 18191993.95 8.44
whetd 21919019.6 21235230.4 3.12
wheds 21899118.5 21362921.6 2.45

448 Jia Chen et al.

one instruction is repeatedly executing. Even if it does happen, the switching power
would be compensated in the process of computing basic power.

6 Conclusions and Future Work

This paper describes a functionality-based instruction-level power analysis technique.
By considering the program executing process as hardware components changing
between working state and sleeping state, we use NOP instructions to model transi-
tions between the two states. Experiments show that our model is able to estimate the
energy consumption within 95% accuracy on the average.

The model reduces workload of computing switching power between instruction
pairs. It is also convenient to have a quick glance at the run-time software power from
assembly code description.

Future work attempts to take pipeline stalls into account and implement the model
into a tool in our development of THUMP (TsingHua University’s Micro Processor)
and its operation system TUESLinux (Tsinghua University Embedded System Linux),
whose ISA is an derivative of MIPS 4KC. More data are to come and we would
evaluate our model on the developing board.

References

1. Tiwari Vivek, Malik Sharad, and Wolfe Andrew. “Power analysis of embedded software: A
First step towards software power minimization.” IEEE Transactions on VLSI Systems, vol.
2, no. 4, Dec. 1994, pp. 437-445

2. Mehta Huzefa, Owens Robert Michael, and Irwin Mary Jane. “Module energy characteriza-
tion using clustering.” Proceedings of Design Automation Conference, June 1996.

3. B.Klass, D.Thomas, H.Schmit, and D.Nagle. “Modeling inter-instruction energy effects in a
digital signal processor.” In Power-Driven Microarchitecture Workshop, June 1998.

4. D.Burger and T.M.Austin, “SimpleScalar Tool Set”, Univ. of Wisconsin-Madison Computer
Science Dept., Tech, Report #1342, June, 1997.

5. M. Lajolo, A.Raghunathan, S.Dey and L.Lavagno, “Efficient power co-estimation tech-
niques for system-on-chip design” In Proc. Design and Test Europe, Mar 2000, pp. 27-34

6. G. Qu, N. Kawabe, K. Usami, and M. Pothonjak, “Function-level power estimation method-
ology for microprocessors” In Proc. Design Automation Conf. June 2000, pp. 810-813

7. D.Brooks, V.Tiwari, and M.Martonosi “Wattch: A Framework for Architectural Level
Power Analysis and Optimizations” Princeton Univ.

8. Anantha P. Chandrakasan, Amit Sinha, “JouleTrack: A Web Based Tool for Software En-
ergy Profiling”, Proc. 38th Conference on Design Automation, June 2001, pp. 220-225

9. H. Mehta, R. M. Owens, M. J. Irwin, “Instruction Level Power Profiling”, ICASSP’96, pp.
3326-3329

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 449-455, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Robust and Adaptive Dynamic Power Management for
Time Varying System1

Min Li1,2, Xiaobo Wu1, Menglian Zhao1, Ping Li2 and Xiaolang Yan1,2

1 Institute of VLSI Design, Zhejiang University
2 School of Information Science and Engineering, Zhejiang University

limin@imec.be

Abstract. Dynamic Power Management (DPM) is an effective power reduction
technique to dynamically control power state of system components. Although
there are already a lot of papers on DPM, few of them present robust and adap-
tive solution to handle the inherent time varying behavior of real world system.
In this paper, we propose techniques for targeting DPM on the time varying be-
haviors. In our approach, we apply efficient policy optimization method to gen-
erate online power management policy to achieve adaptiveness. Moreover, in
order to handle the small scale varying behavior (perturbation) that tends to
significantly degrade the performance of DPM, we apply the Bounded Parame-
ter Markov Decision Process and Interval Value Iteration to derive robust pol-
icy tolerant to perturbations. Simulation results show that the proposed tech-
niques are effective.

1 Introduction

Rapid growth in the demand for portable, battery-operated electronics for communi-
cations, computing and consumer applications, as well as the continued scaling of
VLSI technology, has begun to alter significantly the power constraints under which
the systems are designed. The battery life, weight, and volume needed to supply en-
ergy to a portable electronic system are typical dominant considerations in the design
of that system. However, improvements in battery capacity have not kept pace with
the development in microelectronics technology. Consequently, efficient energy utili-
zation becomes one of the key challenges faced by the system designer.

As well known, Dynamic Power Management (DPM) can achieve a great power
reduction by controlling performance and power levels of electronic systems in
which, a Power Manager (PM) monitors the overall system states, and controls the
power state of system components. The general framework for DPM is depicted in
Fig. 1 [1] [2]. The Service Requester (SR) generates requests for service, which are
queued in buffer first, and then handled by Service Provider (SP); the PM observes
states of SP, SR as well as buffer, and then decides which power mode of SP to use.

1 This work is supported by the National Natural Science Foundation of China under grant No.

90207001.

450 Min Li et al.

The unavoidable problem in DPM is that power state changing (e.g., spin up and
down a disk drive, change service rate of a network interface) will impose penalty in
terms of power, time and performance. Hence, the balance between potential penalty
and power reduction should be judiciously exploited. In the coming deep-submicron
era, leakage current becomes the dominant source of power consumption in
semiconductor devices, while DPM is the most effective way to combat with it on the
system level.

Fig. 1. The power manage system consists of Power Manager, Service Requester, Buffer and
Service Provider

A lot of existing DPM algorithms are based on Markov Decision Process (MDP),
and most of them assume DPM controlls a completely known stationary stochastic
system [1][2][3], i.e., the probability characteristics of Markov chains are completely
known in prior and never change over time axis. However, this is not the true case
since real world system is usually uncertain and time-varying. Recently, some papers
have studied how to handle the uncertainty and nonstationary characteristics of the
real world, among which, [4] one proposes a method for nonstationary service re-
quests. In this approach, power management policies are optimized offline on a set of
possible parameter vectors using linear programming; and, when running online, the
transitioning probability of system components are estimated by Maximum Likeli-
hood Estimation (MLE), and then the most similar parameter vectors will be looked
up from pre-encoded table, based on which the power management policy, generated
by linear interpolation,[5] extends the work by designing a more delicate mode-
switching controller. However, those methods are effective only for a small-scale
system. For a moderate scale system, say, 500 states and 5 actions, it is infeasible to
partition parameters into fine-grained intervals and perform policy optimization in
prior. In addition, the policy generated from linear interpolation is imprecise. Fur-
thermore, with a mode switcher, the existing methods can track only large scale vary-
ing behavior. Actually, small variations called perturbations in this paper are also
very likely to happen, and parameters estimation itself is inherently imprecise. Some
existing work has shown that the performance of MDP is very sensitive to such kind
of perturbations [6][7]. Hence, the perturbation also needs to be judiciously handled.

In this paper, firstly, we present the experimental results of implementing a number
of policy optimization methods, namely linear programming, policy iteration and
value iteration. It is shown that the widely discussed linear programming runs ex-
tremely slow in practice, and is not suitable for online policy optimization. On the
contrary, policy iteration and value iteration, which are designed specifically for
MDP, consume a great deal less time, hence are suitable for online policy optimiza-
tion by which, the large scale varying behavior can be tracked. Secondly, we apply

Service Requester Buffer Service Provider

Power Manager

Robust and Adaptive Dynamic Power Management for Time Varying System 451

Bounded Parameter MDP (BPMDP), which is a generalization of MDP and assigns a
real interval instead of an exact figure to the transition probability of Markov chain,
to combat the small scale varying behaviors and achieve robustness. Finally, simula-
tion results are shown in section 4, and concluded in section 5 that our method is
indeed effective for time varying systems.

2 DPM and Online Policy Optimization

2.1 MDP and Formulation for DPM

The key concept in MDP is Stationary Controllable Markov Chain (SCMC))(aM ,
which is actually a Markov chain with state set and transition probability con-
trolled by command a . Denote the command set by }{ iaA , element of the transition
probability matrix P by]1,0[:)(, Aap

ji ss , which does not vary with time.
The controller of SCMC is the procedure that issues command Aa at the begin-

ning of each time interval according to history of the system. If the decision depends
only on current system state, it is called Markov decision. A policy ,...),[21 is a
sequence of decisions at discrete intervals; is called stationary policy if ji for

i and j . If the policy is Markovian stationary policy, each decision can be repre-
sented by a vector),...,(

||11
, where is a vector of probability for issuing

action Aa when system is in state . In a more formal way

}..),|{Pr(Aatsa ,)|Pr(a :]1,0[, 1)|Pr(
Aa

a . (1)

Deterministic Markovian policy is a special case of above model, in which
)|Pr(a : }1,0{ . We consider stationary deterministic Markovian policy in this

paper.
The MDP is a composition of a SCMC, and a reward function: RAr : .

Formally, MDP is a tuple),,,(rPAM . The reward function reflects interests for
specific MDP. In the context of DPM, the reward is power reduction or a function of
power reduction.

The expected value function, denoted by)(V , is associated with each state of
MDP. The)(V maps each state to its expected discounted cumulative reward de-
fined by

))(()())(,()(,pVrV , (2)

where 10 is the discount factor. The optimal value function *V is defined as

))()(),((max)(,
* apVarV

Aa
 (3)

452 Min Li et al.

An optimal policy is any policy * for which *

* VV Every MDP has at least one
optimal policy.

Generally speaking, when solving DPM based on MDP, the SCMC model of the
whole system is a composition of a set of Markov chains and SCMCs. Specifically,
the system level of SCMC consists of SP, SR and buffer, among which SP is a
Markov chain independent of any other components; SR is a SCMC with control
set }{ iaA ; the buffer is a SCMC controlled by SR and SP. Hence, the state space of
the complete system is QDS , where S is the state space of SP, D is the state
space of SP, and Q is the state space of buffer. The details of MDP and DPM formu-
lation are omitted here due to space limitation. Related information can be found in
[1][2].

2.2 Efficiency of Online Policy Optimization

The stationary policy can be optimized via a number of ways, e.g., Linear Pro-
gramming (LP), Policy Iteration (PI) and Value Iteration (VI) and various variances.
LP is adopted in most previous papers because the QoS (Quality of Service) con-
strained energy optimal policy optimization can be easily formulated as a LP prob-
lem. Unfortunately, since the state space of DPM system usually is large, LP runs
extremely slow in most cases. Hence, in [4][5], policies are optimized offline. As
discussed above, it is very hard to take into account all possible parameter configura-
tions when optimizing policy offline. Hence, we prefer online policy optimization
that can indeed deal with various situations in a real system.

In order to evaluate the efficiency, i.e., the required computation time, of online
policy optimization, we implement LP, PI, and VI with ANSI C and build executable
file targeting on x86 personal computer, then measure the time needed by policy
optimization with different problem scales. We have found that PI and VI consume
only less than one second for a moderate scale MDP (500 states, 5 actions), and it is
feasible to implement online policy optimization. There are many methods to decide
when to perform online policy optimization, and the simplest and effective way is to
perform it periodically.

However, not like LP, PI and VI can deal with only one objective function. Hence,
we use a linear projection of all metrics (power consumption, delay, loss rate, etc.) as
the objective function. Actually, the weighted sum of metrics is similar to the propor-
tional QoS, which is very practical and becomes very popular in recent years [8].

3 Perturbation -Tolerant Policy Optimization

As discussed above, the real world is inherently time varying. It’s impossible to ac-
count for all variations in the periodical online policy optimization, because the opti-
mization period has to be long enough to estimate parameter (transition probability)
accurately. Between two consecutive policy optimizations, perturbations, i.e., small

Robust and Adaptive Dynamic Power Management for Time Varying System 453

scale variations, are very likely to happen. Hence, during policy optimization, we
need to derive a policy that is tolerant of these possible perturbations.
We adopt the BPMDP for perturbation tolerant online policy optimization. The
BPMDP is proposed in [9], and the key idea is to assign a closed interval to transition
probability and reward function, so that uncertainty can be taken into account. For-
mally speaking, BPMDP is a tuplet)ˆ,ˆ,,(rPAM B .)(ˆ aP and),(ˆ ar are closed real

interval, in another word,)](),([)(ˆ
maxmin aPaPaP ,)],(ˆ),,(ˆ[),(ˆ maxmin ararar . Con-

sequently, V̂ is also a closed real interval,
)](max),(min[)(ˆ

,, MMMMMM
VVV

BB

 . (4)

More important, [9] proposed a slightly modified variant of value iteration algorithm.
It is proved that, for fixed discount rate , the iteration algorithm converge to the
optimal value function in a number of steps is a polynomial express of the number of
states, actions, and bits used to represent the MDP parameters. Due to the space limi-
tation, details of the algorithm and proof are omitted herein; those who need them
please refer to the journal paper [10].

4 Simulation Result

The system to be simulated is a mobile device that has certain data to deliver to a
base-station via wireless communication channel. According to the general model
depicted in Fig.1, SR is a Markov modulated traffic source that can represent various
data traffic, like H.263, MPEG4, Telnet, FTP, etc.[11]; SP is a wireless transmitter
that has a number of power states. The wireless channel quality herein is assumed to
be constant. In real world system, mobile device users often launch different applica-
tions alternatively, and this is simulated by adjusting dynamically related SR parame-
ter. Moreover, we apply small scale white noise to the parameters to model small
scale varying.

Fig. 2. Comparison of normalized energy consumption

454 Min Li et al.

Fig. 3. Comparison of accumulated energy consumption

The plot of reduced energy consumption shown in Fig. 2 is normalized to the en-
ergy consumption without DPM. In this figure, the dashed line is the result of offline
optimization and online policy interpolation; the solid line is the result of our method.
Apparently, the proposed method significantly outperforms the existing one in most
cases. Moreover, we plot the accumulated average energy consumption in Fig. 3 to
study the long term behavior. It is shown that the proposed method consumes about
30% energy, while the existing approach consumes about 45%. Hence, 50% im-
provement is achieved.

5 Conclusion

As an effective technique of power reduction, DPM is becoming more and more
important. In this paper, we have proposed a new DPM techniques targeting on the
time varying and uncertain behavior of real world embedded systems which has not
been extensively studied yet. The proposed techniques are adaptive and robust. Spe-
cifically, the adaptiveness is achieved by efficient online policy optimization, and the
policy is derived from BPMDP so that it is tolerant of perturbations. Simulation re-
sults show that the proposed techniques can indeed outperform existing one.

References

1. Qiu, Q., Qu, Q., Pedram, M.: Stochastic Modeling of a Power-Managed System-
Construction and Optimization. Computer-Aided Design of Integrated Circuits and Sys-
tems, IEEE Transactions on, Vol. 20. Oct. (2001) 1200–1217

2. Benini, L., Bogliolo, A., Paleologo, G.A., De Micheli, G.: Policy Optimization for Dy-
namic Power Management. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, Vol. 18. June (1999) 813–833

3. Benini, L., Bogliolo, A., De Micheli, G.: A Survey of Design Techniques for System-Level
Dynamic Power Management. Very Large Scale Integration (VLSI) Systems, IEEE Trans-
actions on, Vol. 8. June (2000) 299–316

Robust and Adaptive Dynamic Power Management for Time Varying System 455

4. Eui-Young Chung, Benini, L., Bogliolo, A., Yung-Hsiang Lu, De Micheli, G.: Dynamic
Power Management for Nonstationary Service Requests. Computers, IEEE Transactions
on, Vol. 51. Nov. (2002) 1345–1361

5. Ren, Z., Krogh, B., Marculescu,,R.: Hierarchical Adaptive Dynamic Power Management,
in Proc. Design, Automation and Test in Europe Conf., Paris, France, Feb. (2004)

6. Altman, E., Schwartz, A.: Adaptive Control of Constrained Markov Chains Automatic
Control. IEEE Transactions on, Vol. 36. April (1991) 454–462

7. Ren, Z., Krogh, B.H.: Adaptive Control of Markov Chains with Average Cost. Automatic
Control, IEEE Transactions on, Vol. 46. April (2001) 613–617

8. Yang Chen, Chunming Qiao, Hamdi, M., Tsang, D.H.K.: Proportional Differentiation: a
Scalable QoS Approach. Communications Magazine, IEEE, Vol. 41. June (2003) 52–58

9. Givan, R., Leach, S., Dean, T.: 1997. Bounded Parameter Markov Decision Processes. In
Steel, S., and Alami, R., eds., Proceedings of the 4th European Conference on Planning
(ECP-97): Recent Advances in AI Planning, Berlin: Springer Vol. 1348 of LNAI, 234–246

10. Robert Givan, Sonia Leach, Tom Dean: Bounded-parameter Markov Decision Processes.
Artificial Intelligence, Vol. 122. (2000) 71-109

11. Daniel P. Heyman, David Lucantoni: Modeling Multiple IP Traffic Streams with Rate
Limits. IEEE/ACM Transactions on Networking (TON), December (2003)

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 456-461, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Skyeye: An Instruction Simulator with Energy
Awareness1

Shuo Kang, Huayong Wang, Yu Chen, Xiaoge Wang, and Yiqi Dai

Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, P.R.China

{ks02, wanghy02}@mails.tsinghua.edu.cn,
{yuchen, wangxg}@mail.tsinghua.edu.cn,

dyq@theory.cs.tsinghua.edu.cn

Abstract. This paper presents a novel strategy aimed at modeling the instruc-
tion energy consumption of ARM microprocessors with dynamic voltage scal-
ing (DVS) support. A novel energy estimation algorithm is designed, which can
record the function calls, and generate a detailed energy profile for each func-
tion in a specific program. Some of the optimization policies for implementa-
tion are also discussed. These optimization policies reduce the workload of the
energy estimators for the individual SOC systems. The prototype system,
SKYEYE, can automatically detect the voltage/frequency variation activated by
DVS system, and adjust the energy estimation model accordingly. The experi-
ment results further prove the effectiveness of the algorithm.

1 Introduction

With the advent of portable and hand-held computing/communication systems, en-
ergy consumption has recently become a critical issue in system design. En-
ergy-awared simulator is a key tool to develop energy efficient programs. The devel-
opment of a simulation environment that can provide useful information to the
programmers faces a number of challenges: The first step that must be taken is to de-
velop an abstract energy model. The model must provide a simplified but accurate
picture of how energy consumption is related to the actions of an application. In this
way, any causality between the application source code and the energy consumption
of the device can be exploited. The next step is to design experiments that accurately
characterize the energy consumption of the device in terms of the model. These val-
ues are then used as parameters in a simulator incorporating the abstract energy
model.

There is so much research work that tries to address the problem of energy saving
from the hardware level, such as low-power circuits or processors [1] and voltage
scaling techniques [2]. Though it is true that maximum energy savings are possible
through hardware optimizations, this paper tries to consider this problem from the

1 This research was supported by National 863 project of China (No. 2003AA1Z2090) and Na-

tional Science Foundation of China (No. 60203024).

Skyeye: An Instruction Simulator with Energy Awareness 457

software aspect. This paper proposes a novel energy estimation algorithm and opti-
mization policies for its implementation. According to this algorithm, a prototype sys-
tem, named SKYEYE, is downloadable from website http://www.skyeye.org, which
incorporates energy models for many different kinds of ARM architectures and vari-
ous peripheral devices, such as NIC and LCD.

2 Related Researches

Vivek Tiwari develops an instruction level energy model for Intel 486DX2 and Fu-
jitsu SPARClite 934 in paper [3]. The basic idea is the sum of the energy costs of
each instruction that is executed in a program can be estimated for the energy cost of
the whole program. Jeffry T. Russell believes that there is actually no need to con-
sider the individual assembly instructions to accurately predict the energy consump-
tion [4]. The energy consumption can be predicted by using the processor average
power consumption multiplied by the software execution time. This easier method
accurately predicts energy consumption with 99% confidence based on physical
measurements. Paper [5] presents an instruction of class profiling technique, which
has an estimated error of less than 3% with trivial runtime overhead. Figure 1 is the
data provided by paper [5].

Fig. 1. Current of ARM instructions

With the improvements of the research on energy model, quite a lot of simulators
appear in the field of embedded systems. CycleSim [6] is an event and execu-
tion-driven simulation engine for the PowerPC architecture. It is developed to provide
fast, cycle-accurate simulation of operating systems and applications. Paper [7] de-
scribes a suite of simulation tools for the PalmOS family. And paper [8] illustrates a
way to estimate SOC.

458 Shuo Kang et al.

Most of the traditional work mentioned above focuses on the processor unit, not
the overall system. The effect of a model on the overall system energy consumption is
more important than its effect on the particular component it concerns. And, the sup-
port to DVS system has never been taken into consideration. That is, it is always as-
sumed that the voltage or frequency is constant during runtime. However, more and
more embedded systems have the ability to change the processor’s voltage or fre-
quency to save energy. The major source of energy consumption in digital CMOS
circuits is the dynamic power dissipation, which is computed by formula:

fVNCP ddswa
2 , (1)

where Ca is the output capacitance, Nsw is the number of switches per clock, Vdd is
supply voltage, and f is the processor clock frequency. Processor clock frequency is
almost linearly related to Vdd as following:

dd

thdd

V
VV

kf
2)(

 , (2)

where k is a constant, and Vth is the threshold voltage. In practice, the voltage Vdd will
decrease by slowing down the clock. And the energy consumption, which is propor-
tional to the square of the voltage, will usually be reduced. By these means, DVS sys-
tem is widely researched and becomes a challenge for the designers of energy-awared
simulators.

3 Energy Model

In this paper, it is assumed that voltage scaling has a fixed discrete value domain, de-
fined as S={V1,…,Vm}. The instruction set of the ARM architecture is denoted as
ISA={A1,…, An}.

Definition 1: Instruction Average Current Matrix (IACM) is a matrix to record the
average current of each instruction at each supply voltage.

mnmm

n

III

III

IACM

21

11211

, (3)

where Iij denotes the average current of instruction Aj at voltage Vi.
Definition 2: Instruction Execution Time Vector (IETV) is a vector to record the

total execution time of each instruction Aj in a program segment.
T

nn MNMNMNIETV),,,(2211 , (4)

where Mj denotes how many instruction Ajs are executed in the program segment, N is
the number of execution cycles for one Aj, and is the clock period.

Skyeye: An Instruction Simulator with Energy Awareness 459

Definition 3: Voltage Selection Vector (VSV). Since different segments may adopt
different voltages, VSV describes which voltage is selected by current segment.

}0,,,,0{ kVVSV . (5)

VSV has m elements, but only one can be nonzero. If the kth element is nonzero, the
kth element must be equal to Vk, which means the current segment selects supply
voltage Vk.

The energy consumption of one program segment can be estimated by the seg-
ment’s IETV and VSV.

)(segsegseg IETVIACMVSVE . (6)

And the total energy of the whole program in a DVS system is estimated by:

seg
segEE . (7)

In formula (6), IETV and VSV are online recorded by simulator during runtime;
IACM is provided by offline measuring the instruction current on a specific target
hardware platform.

In our energy model, we have considered another problem. Even the same instruc-
tion may have different energy consumption with different arguments. For example,
LDR/STR instruction can access I/O address space, which usually involves various
peripheral devices to work and the energy consumption varies greatly. In SKYEYE,
several peripheral devices are simulated and multiple device states are defined for
each of them. Different device states have different energy models. The transition cost
between states is computed by a fixed value of energy cost, which is obtained by ex-
periments on the target hardware.

4 Optimization Policies

The optimization policies include “macro-modeling” and “energy and delay caching”.
The idea of macro-modeling is derived from RTL hardware energy estimation [9].
Software macro-modeling refers to the pre-characterization of a comprehensive set of
high-level macro-operations in terms of various metrics such as code size, perform-
ance and energy. For example, a macro-operation could be an arithmetic operation
with assignment to a variable, an emission of an event, and etc. Characterization
process is performed by compiling each macro-operation down to a sequence of as-
sembly-level instructions for the target processor, and computing its energy dissipa-
tion using an instruction-level simulator. If the energy consumption of a
macro-operation is known as a priori, the energy estimation can be based on
macro-operation, rather than single instructions.

Energy and delay caching technique comes from our observations to runtime sys-
tems. In our experiments of energy estimation, we have observed that a few “paths of
computation” in the software components are executed for a large number of times.
This conforms to the empirical observation that a small fraction of the code accounts

460 Shuo Kang et al.

for a large part of the total execution time. In general, it is possible that each execu-
tion of a block of code results in a distinct delay and energy consumption. However,
in practice, we have also observed that the number of distinct energy and delay values
for a single code block is much smaller than expected. SKYEYE exploits the above
observation to significantly enhance the efficiency of energy estimation.

5 Experiments and Results

We run five applications to compare their energy costs in a DVS environment. The
following table records the parameters for each application.

Table 1. Five applications in DVS system

 APP1 APP2 APP3 APP4 APP5
Instructions 25175079 25053189 25095178 23904860 29100672

Cycles 55148607 54821274 67557386 54048354 72031032
Energy(J) 0.097121 0.096557 0.095776 0.095453 0.110202

The Linux kernel is modified to support DVS. Then, the CPU frequency is scalable

during runtime. Table 1 displays the instruction number, cycles and energy recorded
by SKYEYE. And Figure 2 compares the energy estimated by SKYEYE and the en-
ergy measured on the real hardware platform (sitsang board).

Fig. 2. Compare SKYEYE to hardware

These five applications are also measured in an environment without DVS. Their
parameters are recorded in the table 2.

Table 2. Five applications in non-DVS system

 APP1 APP2 APP3 APP4 APP5
Instructions 25175079 25053189 25095178 23904860 29100672

Cycles 55148607 54821274 67557386 54048354 72031032
Energy(J) 0.107347 0.108842 0.105753 0.107843 0.121132

The comparison between SKYEYE and the hardware measurement is recorded in

figure 3.

Skyeye: An Instruction Simulator with Energy Awareness 461

Fig. 3. Compare SKYEYE to hardware without DVS

6 Conclusions

This paper presents a novel energy estimation algorithm for ARM simulators and
discusses the optimization policies for its implementation. This new algorithm sup-
ports DVS system and considers the problem of peripheral devices. The future work
will focus on how to improve the precision of the energy estimation.

References

1. Anantha Chandrakasan, Robert W. Brodersen: Low-power CMOS design. IEEE Press, Pis-
cataway, New Jersey (1998)

2. Tajana Simunic, Luca Benini, Andrea Acquaviva, Peter Glynn, Giovannl De Michell: Dy-
namic voltage scaling and power management for portable systems. In: Proceedings of De-
sign Automation Conference. IEEE Computer Society Press, California (2001) 524-529

3. Vivek Tiwari, Sharad Malik, Andrew Wolfe: Power analysis of embedded software: a first
step towards software power minimization. IEEE Transaction on VLSI Systems. 2(4) (1994)
437-445

4. Jeffry T. Russell, Margarida F. Jacme: Software power estimation and optimization for high
performance, 32-bit embedded processors. In: Proceedings of International Conference on
Computer Design. IEEE Computer Society Press, California (1998) 328-333

5. Amit Sinha, Nathan Ickes, Anantha Chandrakasan: Instruction level and operation system
profiling for energy exposed software. IEEE Transaction on VLSI Systems. 11(6) (2003)
1044-1057

6. Hazim Shafi, Patrick Bohrer, James Phelan, Cosmin Rusu: Event-based system power simu-
lation. In: Proceedings of the IBM Austin Conference on Energy Efficient Design. IBM
Press, Austin, Texas (2002)

7. Cignetti Todd L., Komarov Kirill, Ellis Carla Schlatter: Energy estimation tools for the Palm.
In: Proceedings of the 3rd ACM International Workshop on Modeling, Analysis and Simu-
lation of Wireless and Mobile Systems. ACM Press, Boston Massachusetts (2000) 96-103

8. Marcello Lajolo, Anand Raghunathan, Sujit Dey, Luciano Lavagno: Efficient power
co-estimation techniques for system-on-chip design. In: Proceedings of Design, Automation
and Test in Europe Conference and Exhibition. ACM Press, Paris, France (2000) 27-34

9. Tan T. K., Raghunathan A., Lakshminarayana G., Jha N. K.: High-level software energy
macro-modeling. In: Proceedings of Design Automation Conference. IEEE Computer Soci-
ety Press, California (2001) 605-610

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 462-467, 2005.
 Springer-Verlag Berlin Heidelberg 2005

The Modeling for Dynamic Power Management of
Embedded Systems

Jiangwei Huang, Tianzhou Chen, Minjiao Ye, Yi Lian

College of Computer Science, Zhejiang University,
Hangzhou, Zhejiang, 310027, P. R. China

{hjw, tzchen, yeminjiao, yl}@zju.edu.cn

Abstract. In this paper we present a new modeling technique using software
engineering tool Flow Model for modeling and solving the Dynamic Power
Management (DPM) with complex behavioral characteristics. Using this tool
we can model the whole system easily. Experimental results show that the
proposed technique can achieve more than 12% power saving compared to
other DPM techniques.

1 Introduction

As mobile computing is getting popular, there is an increasing interest in techniques
that can minimize energy consumption. The goal of low-power design for battery-
powered devices is thus to extend the battery service life while meeting performance
requirements. Incorporating a dynamic power management scheme in the design of an
already-complex system is a difficult process that may require many design iterations
and careful debugging and validation. [1]

As the processor may not be fully utilized all the time, the variation in system load
can be exploited to reduce power dissipation. The processor can be turned off or made
to operate at lower speed when the processor has no or little work to do. Some
processors allow the voltage to be dynamic adjusted. This is called Dynamic Voltage
Scaling (DVS). The relationship among the power consumption rate (P), supply
voltage (Vs) and clock frequency (f) can be described by the following formula: P=C

f Vs
2, where C is the switched capacitance [8].

We have targeted a more complex power-managed system which is shown in Fig 1.
This model shows a typical multi-server and multi-requester system. The system
contains multiple SPs (Service provider) with their own Local Service Queue (LSQ).
There are multiple SRs (Service Request) that generate the requests that need to be
serviced. The Request Queue (RQ) buffers the requests that generate by SRs. The
Request Dispatcher (RD) makes decisions about which SP should serve which request.
Different SPs may have different power/performance parameters. In real applications,
the RD and LSQs can be part of the operating system, while SPs can be multiple
processors in a multi-processor computing system or number of networked computers
in a distributed computing system. [3][5]

The Modeling for Dynamic Power Management of Embedded Systems 463

Services
Requester 1

Services
Requester n

Services
Requester 2

Request
Queue

Request
Dispatcher

Local
Service
Queue 1

Local
Service
Queue n

Local
Service
Queue 2

Service
Provider 1

Service
Provider n

Service
Provider 2

Fig. 1. Multi-server and multi-requester system.

Because of the complex system behaviors that are present. It needs an accurate
modeling method to build the whole system. For example, we need to consider the
synchronization of LSQs and SPs, the synchronization of the SRs and RQ, the
synchronization of the RQ and LSQs, the dispatch behavior of the RD, and so on. In
this situation we need new DPM modeling techniques for large systems with complex
behaviors. In this work, we first present a methodology based on Flow Model to
model complex systems such as the one shown in Figure 1. [2]

2 Modeling System with Flow Model

The whole DPM model can be broken into three major parts as shown in Fig 2. The
first part is called Request Producer (RP) which is used for producing request
including the SRs and RQ. The second part of the process includes the RD which is
used for dispatching the request to the request to a suitable SP. We name this part
Request Transfer (RT). The RT is used to send the Request to the suitable SP and
adjust the states of SP. The last part is Request Consumer (RC), including the SPs and
LSQs, used for offering services. Because the buffer between RP and RT is limited,
we can find the relationship of RP and RT is producer and consumer, such as RT and
RC. If the buffer between the RP and RT is full, the RP needs to stop producing the
requests till there is a free space in the buffer.

Request
producer

Request
consumer

Request
Request

SP number

SP infoControl info

Request
dispatcher

Fig. 2. Three major parts of the whole process

464 Jiangwei Huang et al.

[7] Presents a method to reduce energy consumption by inserting data buffers. The
method determines whether power can be reduced by inserting a buffer between two
components. This method calculates the length of the period and the required buffer
size to achieve the optimal energy savings. With the help of this method, we have
designed the size of the buffer between each part. The whole system will be explained
by the three single models next.

The single Request Consumer Flow model is given in the Fig 3. We have found that
the number of requests generated by the consumer is a Poisson distribution. In the
Flow mode, which is graphically represented by a circle in the model is correspondent
to a possible server status. A server status is composed by its working mode and its
power mode. A working mode can be idle or busy or switching, etc. A power mode
can be sleeping or active etc. The server can be in different working modes with the
same power mode.

The Pswitch is correspondent to a random time duration which follows exponential
distribution with certain mean value. A Unit Server System (USS) contains a SP and a
SQ. The information needed for SP is its power consumption in each power state, its
service speed in each power state, and the time and the energy needed to switch from
one state to another state. Initially, there is one token in the starting state of this model
for the single server. The token switches from one place to another with the status
changing of the server. The timing of the token transition from one place to another is
decided by the time duration of the activity. [6]

Pswitch

P idle (s)

P work (a)Pidle (a)

PswitchPswitch

Fig. 3. Flow model of a single Request Consumer

A flow model of a request producer is given in Fig 4. The request generator can
generate many types of requests. The time of generating different request is different.
We give the definition that the Request type A can only be served by server A, and
request type B can only be served by server B, however, request type AB can be
served by both server A and B. The Request Generation System (RGS) can generate
various types of requests constraint by the probability distribution of request types.
Some types of requests can be served by several USS; whereas some other types of
requests can be served by only a special USS. If the SQ is full, the RGS will stop
generating request. It will resume request generation when there is free space in the
SQ.[4]

The Modeling for Dynamic Power Management of Embedded Systems 465

Generate
Request

Request
Dispatcher

Request
Type

Adjust_
SP_ B

Choose suitable
SP

Adjust_
SP_AType A

Type AB

Type B

Type A

Type B

Fig. 4. Request Generation System Modeling

Fig 4 includes the RP and RT. There is one token in Generate Request (GR), it
means that the starting state of the system is the request generator. After certain time,
the token in GR is switched to Request Dispatcher. After negligible time, the token
will be switched to the Adjust_SP_B or Adjust SP A or choose suitable SP.

A multi-server and multi-requester system is a complex system including several
USSs and RGSs, many request generators and different interactions among the
components. The requests are sending to a suitable server i with certain probability Pi
through a dispatcher. If the request can only be served by a server, then Pi=1, such as
Pi=0 means the request cannot be serviced by the server. The probability Pi is
controlled by the dispatcher when Pi 0|1. It is state dependent and need to be
optimized. In the modeling of multi-server system, we must evaluate the function of
correlation between the request queue and request generators. If the request queue is
full, then the request generator procedure must be stopped. Fig 5 shows the MSS
which contains two USSs and one RGS described above.

Type B
Unit Server System B

Unit Server System AType A
Capture of SQ

Capture of SQ

Request
Generation

System
Modeling

Fig. 5. Multi-server System Modeling

3 Experimental Results

There are two USSs and two RGSs in our MSS. The RGSs are used to generate
requests, which can be served by the USS. The requests are queued in the request

466 Jiangwei Huang et al.

queue, and the capacity of the request queue (RQ) is 6. The two USS have the
difficult power consumptions and service speeds. The SP in both USSs has three
power states: {active, waiting, sleeping}. When the USS was in active state, the USS
consume more power than other states. When the USS is in the waiting state, it means
there are not many requests being served by this USS. If the USS is in the sleeping
state, it means there is no request. The capacity of SQ is 2 [3]. We use the Sistang
Board as the USS and RGS. The experimental model is showed in Fig6.

In this setup, we compare the following methods: Optimal USS power management
+ heuristic dispatch policy, Time-out + heuristic dispatch, Greedy + heuristic dispatch
Flow Model-based method.

iMac

Fig. 6. Experimental Model

Table 1 shows the comparisons of experimental results for the four methods
described above.

Table 1. comparisons of experimental results

4 Conclusion

From the experimental results, we can find the flow modeling mechanism can save
more than 12% power compared to other methods. The improvement shows it is
important to build an accurate system model and accurate policy for embedded
system. It can save more power than we can expect. We use the Flow model to model
and solve the DPM problem for systems with complex behavioral characteristics. It
gives an easy way to build the DPM model for embedded system.

 vs. Greedy
DPM policy

vs.Timeout
DPM policy

vs.Local
optimal

Average
Saved

pA=0.2, pB=0.8 22.75% 13.49% 26.33% 20.856%
pA=0.4, pB=0.6 23.91% 14.99% 23.55% 20.816%
pA=0.5, pB=0.5 24.15% 15.87% 26.63% 22.21%
pA=0.6, pB=0.4 23.01% 14.94% 25.9% 21.28%
pA=0.8, pB=0.2 19.62% 13.65% 44.83% 26.03%

The Modeling for Dynamic Power Management of Embedded Systems 467

References

1. IBM and MontaVista Software: Dynamic Power Management for Embedded Systems, 2003
2. Dexin Li, Qiang Xie and Pai H. Chou Center for Embedded Computer Systems University of

California, Irvine: Scalable Modeling and Optimization of Mode Transitions Based on
Decoupled Power Management Architecture 2003

3. Qinru Qiu, Qing Wu and Massoud Pedram Department of Electrical Engineering – Systems,
University of Southern California: Dynamic Power Management of Complex Systems Using
Generalized Stochastic Petri Nets, June 2000

4. M. A. Viredaz and D. A. Wallach: “Power evaluation of a handheld computer”, IEEE Micro,
vol. 23, no. 1, Jan./Feb. 2003.

5. Q. Qiu, Q. Wu, M. Pedram, “Stochastic Modeling of a Power-Managed System:
Construction and Optimization”, Proceedings of the International Symposium on Low
Power Electronics and Design, pp. 194-199, Aug. 1999.

6. Balakrishnan, N. and Basu, A. P. “The Exponential Distribution: Theory, Methods, and
Applications”. New York: Gordon and Breach, 1996

7. “Dynamic Power Management Using Data Buffers Le Cai and Yung-Hsiang Lu Proceed-
ings of the Design, Automation and Test in Europe Conference and Exhibition (DATE 04)
2004

8. Li, Dexin, Xie, Qiang, and H, Pai. Chou Center for Embedded Computer Systems University
of California, Irvine: Scalable Modeling and Optimization of Mode Transitions Based on
Decoupled Power Management Architecture 2003

Why Simple Timeout Strategies Work
Perfectly in Practice?

Qi Wu and Guang-ze Xiong

College of Computer Science & Engineering
University of Electronic Science & Technology of China

Chengdu 610054, China
{Henrywu,Gzxiong}@uestc.edu.cn

Abstract. In all kinds of dynamic power management (DPM) policies, the time-
out policy works perfectly in practice, but this could not be elucidated in the
traditional queuing theory. With the pareto distribution, the drawback of the ex-
ponential distribution was overcome, and this phenomena was explained well.
The conclusion provided the theoretical basis for the simplification of DPM al-
gorithm. In this paper, a simple DPM algorithm was described when the length
of idle time follows the Pareto distribution. The simulation result testified the
conclusion above.

1 Introduction

Battery powered portable appliances impose tight constraints on the power dissipation
of their components. Such constraints are becoming tighter as complexity and perfor-
mance requirements are pushed forward by user demand. Reducing power dissipation
is also a design objective for stationary equipment, because excessive power dissipation
implies increased cost and noise for complex cooling systems.

One of the most successful techniques employed by designers at the system level is
dynamic power management (DPM) [1]. This technique reduces power dissipation by
selectively turning off system components when they are idle. In practice, the most com-
mon power management policy at system level is the timeout policies [2,3,4], which of-
ten reduce a great deal of the energy consumption of computer devices. But the devices
seem to waste energy when waiting for the timeout expire. This inefficiency impels
the exploration of more effective techniques. Predictive policies shut down a device as
soon as an idle period begins when the predicted idle period is long enough to equalize
the cost of shutting down and later reactivating the system [5,6,7]. The stochastic poli-
cies take the DPM problem as a stochastic optimization control problem [8,9,10,11]. It
guarantees the optimal results. But its own overhead is very high when the stochastic
models are used directly.

What is the optimal policy of DPM? With stochastic models, Wu [12] has proved
that the DPM optimal policy is a deterministic Markov policy, namely timeout policy.
But if the arriving process of service requests was taken as a Poisson flow and the
interval of arriving time obeyed the exponential distributions, the practical effect of the
timeout policy could not be explained with traditional queuing theory. Why a simple
timeout strategy works perfectly in practice?

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 468–473, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Why Simple Timeout Strategies Work Perfectly in Practice? 469

In recent years, a series of experimental researches have shown that network traffic
has obvious self-similarity [13,14].Both service and idle time fit heavy-tailed distribu-
tions [10]. And this is also true for the length of files [15] and lifetime of processes
[16]. These all show the universality of self-similarity of service request. The self-
similarity of the sequences implies that their probability distribution function scales
in a well-defined way when we change the time scale over which the sequence is cal-
culated. Its autocorrelation function r(k) = E[(τt − μ)(τt+k − μ)]/σ2 has the nature
of lim

k→∞
r(k) ∼ k−β , and the sequence is long-range dependent. Unlike the exponential

distribution, the heavy-tailed distribution has the memory characteristics, and its vari-
ance and average value are not sure to exist, making it difficult to study self-similar
time sequence with mathematics. Some researches on self-similarity were reported in
the area of net-traffic [13] and process schedule [17], but there is no report about its
effect on the DPM algorithm.

2 System Model

The hardcore of a DMP system is power manageable components (PMCs), which has
multiple low power states in the idle time. A PMC can be abstracted as a state machine,
and transforms its power state in response to the idle events or state switch commands
from Power Monitor. Suppose the random variable τ is the length of idle time and
its distribution function is F (t). A series of τ make up a random variable sequence
T = (τ0, τ1, τ2, . . .). When τi is independent identically distributed, [12] has proven
that the DPM optimal strategy is a deterministic Markov control strategy.

Suppose PMC has K low power states, which are signed with z1, z2, . . . , zk, from
the highest holding power to the lowest; the state of idle is z0 and the power of state zk

is wk; the mean power and time switching from state zk to zl are ekl and λkl, and from
state zk to active state are ek and λk; the DPM deterministic Markov control algorithm
is: if the idle period is larger than κk, the state is switched to zk. Assume κ0 = 0 and
κk+1 = +∞. The expectation of the total power consumption of this algorithm can be
expressed as Lebesgue integral:

E =

κ1∫
0

w0tdF (t) +
K∑

k=1

κk+1∫
κk

wk(t − κk) + ek +
k−1∑
l=0

(wl(κl+1 − κl) + el,l+1)dF (t)

(1)
So the DPM problem is transformed into the problem of the optimization of the multi-
parameters function:

E = min
0≤κ1≤κ2≤...≤κK

f(κ1, κ2, . . . , κK) (2)

3 DPM for Self-Similar Requests

In recent years, a series of experimental researches showed most of the computer ser-
vice requests have self-similarity, and the interval of these requests follows heavy-tailed
distribution, which has the following characteristic:

470 Qi Wu and Guang-ze Xiong

lim
x→+∞P (X > x)

xα
= c, 0 < α < 2 (3)

The Pareto distribution is a representative heavy-tailed distribution that is some-
times used to model the distribution of wealth in individuals and value of oil reserves.
Its cumulative distribution function is F (x) = 1 − (c/x)α, c > 0 and α ∈ (0, 2).The
generalized Pareto distribution arises in one of the key limit theorems in extreme value
theory, and it is usually used to model the distribution of excess value over a high thresh-
old in the Peak Over Threshold (POT) methodology. Referring to POT methodology,
we assume the idle time length fits the Pareto distribution in this paper.

Fig.1 shows the relationship between E and κk when the idle time length fits the
exponential and Pareto distribution respectively. There is no extremum point in the ex-
ponential distribution situation [18], and this can also be proven theoretically. Obvi-
ously, the exponential distribution can not expound why a simple timeout strategy can
reduce much energy consumption of PMCs. Unlike exponential distribution, in Pareto
distribution situation, there is an extremum point. The practical effect of the time-out
strategy is well interpreted with Pareto distribution.

Fig. 1. The relationship between switch time and the expectation of the total energy
consumption

Now the DPM problem is transformed to the one of parameter estimation and de-
cision control. The minimum interval of service request might be very short, but the
excessively short interval is insignificant to DPM. Similar to the POT methodology, we
took Tbe/10 (Tbe was described in [10]) as the threshold value of the length of idle
periods, namely the scale parameter c of Pareto distribution is Tbe/10 . The tail index α
can be estimated using the Maximum Likelihood (ML) method. If the window size is n,
the value of α can be calculated:

Why Simple Timeout Strategies Work Perfectly in Practice? 471

α̂ =

(
n∑

l=1

log Xl − log c

)−1

(4)

4 Experimental Results

For the sake of validating the above analytical results, we did a simulation experiment
of the DPM algorithm with a hard disk drive (HDD), which has four power states when
idling: Idle, LPidle, Standby, and Sleep. Idle state spells the HDD is idle, but keeps
all electrical and mechanical parts ready for reading or writing HDD data. The holding
power is a little higher and the activation time is almost 0. In LPidle state some HDD
electrical parts are shutdown, but disk keeps spinning, so the holding power is less and
the activation time is longer than those of the idle state. In Standby and Sleep states, as
the disk stop spinning, it takes longer time and more power to activate the disk.

Both eij and λij (i < j)are 0, and the subscripts 0, 1, 2, and 3 represent Idle, LPidle,
Standby, and Sleep, respectively. Other relational parameters are:⎛
⎜⎜⎝

w0

w1

w2

w3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1.0
0.8
0.3
0.1

⎞
⎟⎟⎠Watt,

⎛
⎜⎜⎝

e0

e1

e2

e3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0.04
2.2
6.0

⎞
⎟⎟⎠Joule,

⎛
⎜⎜⎝

λ0

λ1

λ2

λ3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0.04
2.2
6.0

⎞
⎟⎟⎠ second

(5)
For comparison, two distributions, exponential and Pareto, which the length of idle

time obeys were studied, and the mean of them are same. The performances of DPM
timeout strategy under two distributions were shown in Fig.2 and Fig.3 respectively,
when only one low power state of HDD was used. According to the simulation results
we may conclude:

Fig. 2. The relationship between switch time and the total energy consumption in the
exponential distribution

472 Qi Wu and Guang-ze Xiong

Fig. 3. The relationship between switch time and the total energy consumption in the
Pareto distribution

1 Obviously, DPM is applicable in practice. Fig.3 shows that over 60% energy can be
saved with correct use of the sleep mode.

2 DPM optimal strategy is quite stable. Fig.3 shows that the good effect can be received
when the switch time is much later than some extremum value.

3 The exponential distribution supposition is not suitable to DPM. Fig.2 shows that
there exists big error between the practical situation and this supposition.

4 The results of DPM optimal strategy change largely when the loads are different.
Fig.3 shows much energy can be saved Standby and Sleep modes, but the LPidle
mode is almost of no practical use for energy saving under the loads used in this
experiment.

5 Conclusions

If service request arriving is taken as a stochastic event, timeout policy is enough for
DMP. It is not necessary to search more complex DPM algorithm. The exponential
distribution supposition taken by traditional queuing theory is not suitable to DPM. The
reason that simple timeout policy works perfectly in practice is self-similarity.

References

1. Benini, L., Micheli, G.: Dynamic Power Management: Design Techniques and CAD Tools.
Kluwer Academic Publishers, Norwell,MA (1997)

2. Douglis, F., Krishnan, P., Bershad, B.: Adaptive disk spin-down policies for mobile comput-
ers. In: The Second Usenix Symposium on Mobile and Location- Independent Computing
(MOBLIC). (1995) 121–137

3. Helmbold, D., Long, D., Sherrod, B.: A dynamic disk spin-down technique for mobile
computing. In: The Second Annual ACM International Conference on Mobile Computing
and Networking. (1996)

Why Simple Timeout Strategies Work Perfectly in Practice? 473

4. Douglis, F., T.Killian: Adaptive modem connection lifetimes. In: The 1999 USENIX Annual
Technical Conference. (1999) 27–41

5. Srivastava, M., Chandrakasan, A., Brodersen, R.: Predictive system shutdown and other
architectural techniques for energy efficient programmable computation. IEEE Trans. on
Very Large Scale Integration Systems 4 (1996) 42–55

6. Hwang, C., Wu, A.: A sredictive system shutdown method for energy saving of event-driven
computation. In: IEEE/ACM International Conference on Computer-Aided Design. (1997)
28–32

7. Lu, Y., Micheli, G.: Adaptive hard disk power management on personal computers. In: IEEE
Great Lakes Symposium on VLSI. (1999) 50–53

8. Benini, L., Bogliolo, A., Paleologo, G., Micheli, G.: Policy optimization for dynamic power
management. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems
18 (1999) 813–833

9. Qiu, Q., Pedram, M.: Dynamic power management based on continuous-time markov de-
cision processes. In: The 36th ACM/IEEE conference on Design Automation Conference,.
(1999) 555–561

10. Simunic, T.: Energy Efficient System Design and Utilization. PhD thesis, Stanford Univer-
sity, Stanford, CA 94305, USA (2001)

11. Chung, E., Benini, L., Bogliolo, A., Lu, Y., Micheli, G.: Dynamic power management for
nonstationary service requests. IEEE Trans. on Computers 51 (2002) 1345–1360

12. WU, Q., ze XIONG, G.: A study of the optimal policy of dynamic power management for
pervasive computing system. (to appear in Chinese Journal of Computers)

13. Crovella, M., Bestavros, A.: Self-similarity in world wide web traffic. evidence and possible
causes. IEEE/ACM Trans. on Networking 5 (1997) 835–846

14. Taqqu, M.S., Willinger, W., Sherman, R.: Proof of a fundamental result in self-similar traffic
modeling. ACM Computer Communications Review 27 (1997) 5–23

15. S.D. Gribble, G.S. Manku, D.R.: Self-similarity in file systems. In: The 1998 ACM Confer-
ence on Measurement and Modeling of Computer Systems (SIGMETRICS). (1998) 141–150

16. M.Harchol-Balter, A.Downey: Exploiting process lifetime distributions for dynamic load
balancing. ACM Trans. on Computer Systems 15 (1997) 253–285

17. Harchol-Balter, M.: The effect of heavy- tailed job size distributions on computer system de-
sign. In: ASA-IMS Conference on Applications of Heavy Tailed Distributions in Economics.
(1999)

18. Greenawalt, P.: Modeling power management for hard disks. In: The Conference on Model-
ing, Analysis, and Simulation of Computer and Telecommunication Systems. (1994) 62–66

An Adaptive Fault Tolerance Scheme for

Applications on Real-Time Embedded System

Hongzhou Chen, Guochang Gu, and Yizun Guo

AUV Lab2, College of Computer Science and Technology,
Harbin Engineering University, Harbin HLJ 150001, China

Abstract. An adaptive fault tolerance scheme aiming at those real-time
embedded systems that have single processor and limited resources is pre-
sented in this paper. As the fault behavior exhibited by system changes
with time and environment, it can decide a suitable strategy among
various reliable techniques that have been introduced into application
software. Prediction on fault emergence is made by strategy decider ac-
cording to its memory of fault emerging history. The application module
is assigned to contact with fault tolerance controller through its stubs.
Performance of the scheme is measured and evaluated in experiment.
Some parameters are also discussed.

1 Introduction

Real-time embedded systems (RTES) have developed greatly during the past
several decades. As these systems and the environment in which they work be-
come more complex, there is a high likelihood that at any given time, some parts
of the system will exhibit faulty behavior. The ability to tolerate this behavior
must be an integral part of a real-time system. And it raises the requirement of
designing reliable RTES for consumer with capability of fault tolerance (FT).

There are some fundamental FT models. N-modular Redundancy makes a
number of identical copies of the software running on separate components, the
majority decision is used among all the output of them [1]. This method, however,
subjects to many redundant components and is thus luxurious for some systems
not rich in hard and soft resources.

Recovery block approach combines checkpointing and backup alternatives to
support recovery from failures [2]. All tasks are replicated but only one copy
of each task is active at any time. A backup replica turns to run when the
active one fails. Task may be completely restarted, which increases the chance
of deadline missing, or else executed from its most recent checkpoint, which
requires checkpoint updating and results in a large amount of overhead.

Since in some occasions, it is better to have less precise results on time than
delayed precise results, forward error recovery comes into being [3], [4]. It is
characterized by resuming from an erroneous state and making corrections that
will clean up the damaged state, rather than rolling back and continuing from
previously checkpointed state. But forward error recovery depends on accurate
damage assessment and is often system-specific.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 474–480, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Adaptive Fault Tolerance Scheme 475

Different from static versions of these technologies mentioned above, adap-
tive FT (AFT) can operate in dynamic environments by deciding a suitable FT
strategy for an arriving computation to assure required reliability. This feature
thus has raised many AFT models, some of which focus on distributed system
with multi-processor [5], [6], but too costly (if transformed) for single processor
embedded system with poor resources; some try to provide scheduler with capa-
bility of FT [7], [8], which are more operating system-specific; most are mainly
based on redundant hardware components [9], [10], and adaptive mechanisms
such like continually attempting among alternatives to guarantee a new task in
[9] entail lots of overheads.

The adaptive fault tolerance scheme (AFTS) presented in this paper tar-
gets those embedded real-time systems that possess single processor and poor
resource. Its application-level FT achieved by way of incorporating reliability
techniques within the application software is a powerful counterpart of lower-
level FT when the latter does not provide enough required reliability by itself.
Because detection and recovery of some faults are application-specific, imple-
mentation of them at the application level will work better.

Furthermore, AFTS features the adaptability of choosing suitable FT strat-
egy for tasks when the emerging fault varies with the change of system-inside
or system-outside environment. This capability is constructed on the predicting
mechanism on fault emergence at current time according to its memory of fault
emerging history.

The result of an actual project shows the good performance of AFTS, and
some parameter settings are discussed.

2 Adaptive Fault Tolerance Scheme (AFTS)

Adaptive fault tolerance scheme has three compositions: some application mod-
ules (AM), fault tolerance controller (FTC), and replica management unit (RM),
as Fig. 1 shows.

In the framework of AFTS, some FT stubs are inserted into application
software to obtain the ability of detecting faults, sending fault tolerance request
and recovering from where it encounters with a fault according to the response
of fault tolerance controller. Fault tolerance controller contacts with application
modules and replica management unit, decides an appropriate fault tolerance
strategy when fault happens in running application task. The reliability of fault
tolerance controller itself can be guaranteed by extra redundancy component if
necessary or by aborative design of self-checking which maintains a state log.

Replica management unit collects all replicas of their counterpart primary
AMs, attributes such like time/space constraint, addressing of every replica, are
also implemented in RM, so as to cater to the retrieval by FTC. Actually, RM
can be combined with FTC.

476 Hongzhou Chen, Guochang Gu, and Yizun Guo

Fig. 1. The framework of adaptive fault tolerance scheme

2.1 Application Module (AM)

In AFTS, original application program code is equipped with some stubs (named
FT stub) to take charge of fault detection and recovery via communication with
FTC, and then turns to be the application module mentioned here. Since ap-
plication’s particular behavior and the situation in which it is located can be
monitored effectively, it is convenient to handle problems at the locale, espe-
cially for some application-specific faults. The spot where fault occurs will be
the perfect place where fault detection and recovery should be done.

Every FT stub comprises a head and a tail. They cooperate with FTC
through two types of communication: FT request and FT reply, which are ac-
tually the messenger between a task’s primary running (in AM) and redundant
running (in FTC). The anterior includes two types of request:

1. H-type: ask FTC to register the key current state of corresponding stub span
and raise an FT strategy, used at an FT stub head;

2. T-type: ask for result of the execution of FT strategy in FTC raised by
relative H-type request, used at an FT stub tail.

Responsibility on reliability of an FT stub span, which means the section between
head and tail of an FT stub, is consigned to its FT stub head and tail.

At every stub head, the stub sends an H-type request to FTC, and sets a
timeout for fault detection. Either if it overtimes or any fault occurs in the
execution procedure of the stub span before corresponding stub tail is arrived, a
fault is identified, then go to stub tail. At corresponding stub tail, the stub sends
a T-type request to FTC, when an FT reply is received, it begins to work on

An Adaptive Fault Tolerance Scheme 477

acceptance testing and synchronization of results among primary running and
redundant running.

FT stub span in AM is nestable, such as in Fig. 1. There is stub 2 in the span
of stub 1, which forms a nested FT. The guaranteed sections in an AM are all
of the stub spans, those sections outside any stub spans are provided with no
FT, which run just as what their original versions do. So AM designer should
be careful to determine into which section should a stub be inserted according
to his or her experience of where faults often or maybe happen.

2.2 Fault Tolerance Controller (FTC)

Fault tolerance controller is the kernel part of AFTS, which communicates with
application modules and replica management unit. It accepts and replies the
request from AM, manages the memory of fault emerging, and selects replica
from RM to carry out.

FT Stack Similar to the interrupt system in computer, an FT stub stack is
kept for each application module to implement nested FT. Each item in a stack
contains data such as program state, key variables, redundant results, etc., based
on which communication between application’s primary running and redundant
running is undertaken.

When an H-type request comes, an item about its relative stub is pushed into
relative stack, and an FT strategy is evoked and putted into effect subsequently;
when a T-type request comes, an FT reply will take the redundant result to
stub tail associated with the top item of relative stack, and then the top item is
popped out. All the FT stacks of every AM are linked to be an FT stub stack
list.

Memory of Fault Emerging Simulating the brain of mankind, FTC has
memory of various faults emerging history in terms of fault emerging probability.
It can increase relative memory quantity when a fault happens, and decrease
when there is no fault. Let Pi denote the fault emerging probability of stub
spans with the type of i, two stub spans with the same type mean that they
have similar chance to potential fault. The memory of fault emerging changes
with time according to equation (1):

Pi(t + n) = Min {1, ρiPi(t) + mΔτi} (1)

where ρ denotes the factor of memory lapse, 0 < ρ < 1. m means the count
number of fault emergence in period t to (t + n). Δτi is the memory quantity
that should be enhanced when a fault emerges in a stub span with type of i.

Strategy Decider AFTS chooses three candidate redundant strategies for its
decider: N-modular, recovery block and forward error recovery.

478 Hongzhou Chen, Guochang Gu, and Yizun Guo

Because the target system owns a single processor, replicas of N-modular
run concurrently rather than in parallel. Then N-modular and recovery block
can share common replicas with each other. The difference is that replicas run
concurrently in N-modular strategy but serially in the latter one. For the third
strategy, lite versions are kept as its replicas running at situations where less
precise but timely result is preferred.

When an item is pushed into FT stack, strategy decider begins to work.
First, it evaluates the time and space requirement of the first two strategies. If
none of them can meet the requirement of AM and system in term of time, the
third strategy will be taken; otherwise, if there is only one that can meet the
requirement of AM and system in term of time and space, that strategy will be
chosen.

If there are two strategies that can meet the requirement of AM and system
in term of time and space, strategy decider will decide the probability of fault
emerging in relative stub span. If the estimated probability is less than the
remembered one Pi associated with the stub span, N-modular strategy will be
chosen, otherwise, recovery block will be chosen, since N-modular provides more
reliability than recovery block. This means that N-modular strategy will be
chosen with probability Pi.

After the strategy is determined, it is carried out immediately, and the result
is recorded in FT stack. When a T-type request comes, corresponding results
are sent to AM.

3 Experiments

Evaluation of AFTS is done in a multi-task system with the configuration: Mizil-
inux, S3C2410, 32M memory, which serves as an unmanned monitor on city
environment, dealing with sound and air data via communication with front-end
and back-end. Measures are obtained by periodically inserting faults into the
system.

As shown in Fig. 2(A), AFTS provides considerable reliability for system
compared with original application. It is also found that although AFTS-8 or
AFTS-2 has more replicas than AFTS-1, they perform alike. But when time
cost is considered as shown in Fig. 2(B), AFTS-1 obviously excels others. This
suggests that the strategy decider should choose a rational number of replicas,
which is not the more the better.

Parameters ρ and τ in equation (1) are set to ρ = 0.9, τ = 0.1. In experiments
with various types of fault inserting, it is indicated that when fault emerging
chance in a stub span with type of i is growing, ρi should become bigger and
τi less. So application programmers should choose them according to different
types of stub span.

4 Conclusions

This work presents an adaptive scheme for fault-tolerant system that possesses
a single processor and limited resources. The application-level fault tolerance

An Adaptive Fault Tolerance Scheme 479

Fig. 2. Performance of no FT, AFTS and other FT with different degree of
replication. NM-1 and RB-1 respectively refer to single N-modular and recovery
block with one replica. AFTS-n refers to AFTS with n replicas for its N-modular
or recovery block strategy. r denotes system reliability and T denotes the cycle
of inserting fault. Part A shows er as a function of log2(T), part B shows a ratio
(similar with the ratio of performance to cost) of er to time cost as a function
of log2(T)

makes it easy and effective to detect and recover from fault. Stubs inserted into
AM take charge of fault detection and recovery and communicate with FTC
conveniently. FT stack makes nested FT possible. Strategy decider chooses suit-
able alternative with change of environment. Memory of fault emerging provides
basis for guessing mechanism. And the replica management unit maintains a
collection of various replication of their primary AMs.

The experiment indicates that framework of AFTS is appropriate for poor
system and simple to implement. It provides system with more reliability and
less unbearable overheads than other FT strategies.

References

1. D.P. Siewiorek and R.S. Swarz: Relialble Systems Design and Evaluation. 2nd
edn. Digital Press, Burlington, MA (1992)

2. J. J. Horning, H.C. Lauer, etc.: A Program Structure for Error Detection & Re-
covery. Lecture Notes in Computer Science, vol. 16 (1974) 172–187

3. J.W. S. Liu, W. Shih, etc.: Imprecise Computations. Proceedings of the IEEE, vol.
82, no. 1, Jan (1994) 83–93

4. David Kalinsky: Design Patterns for High Availability. Embedded System, vol. 15,
no. 8 August (2002)

5. Fábio Favarim, Frank Siqueira, etc.: Adaptive Fault-Tolerant CORBA Compo-
nents. Departament of Computer Science, Federal University of Santa Catarina
(2003)

480 Hongzhou Chen, Guochang Gu, and Yizun Guo

6. Olivier Marin, Pierre Sens, etc.: Towards Adaptive Fault-Tolerance for Distributed
Multi-Agent Systems. In Proc. of ERSADS’2001, Bertinoro, Italy, May (2001)

7. LIU Huai, FEI Shu-Min: A Fault-Tolerant Scheduling Algorithm Based on EDF
for Distributed Control Systems. Journal of Software, vol. 14, no. 8 (2003)

8. Larry Sieh, Peter Haniak, etc.: Implementing Transient Fault Tolerance in Embed-
ded Real-Time Systems. US Army Tank-Automotive Research Development and
Engineering Center, Warren, MI (2001)

9. O. Gonzalez, H. Shrikumar, etc.: Adaptive Fault-tolerance and Graceful Degrada-
tion under Dynamic Hard Real-time Scheduling. In Proc. IEEE Real-Time System
Symp. (1997)

10. J. Haines, V. Lakamraju, etc.: Application-level Fault Tolerance as a Complement
to System-level Fault Tolerance. The Journal of Supercomputing, vol. 16, (2000)
53–68

11. J. Karlsson, P. Folkesson, etc.: Application of Three Physical Fault Injection Tech-
niques to the Experimental Assessment of the MARS Architecture. In 5th IFIP
Working Conf. on Dependable Computing for Critical Applications, (1995) 267–
287

12. O. Marin, M. Bertier and P. Sens: DARX - A Framework For The Fault-Tolerant
Support Of Agent Software. ISSRE2003, Colorado, USA, November (2003)

Concurrent Garbage Collection Implementation

in a Standard JVM for Real-Time Purposes

Yuqiang Xian, Ning Zhang, and Guangze Xiong

School of Computer Science & Engineering
University of Electronic Science & Technology of China

Chengdu 610054, China
xian@uestc.edu.cn

Abstract. Programming in Java is attractive for its maintainability and
reliability, but much work is to be performed to apply it into the real-
time software development. We try to address the two main issues, thread
scheduling and garbage collection, with real-time concerns. Besides, the
extra memory requirement caused by the introduction of garbage collec-
tion in systems is carefully concerned. As a result, a concurrent garbage
collector that combines incremental collection and real-time scheduling
is figured out and implemented in a standard JVM, which plays a key
role in our future real-time JVM.

1 Introduction

The growing trend of larger scale embedded real-time applications caused by
the evolution of the complexity of embedded systems requires a revolution in the
developing methodology for such systems. Conventional developing methods that
depend greatly on some popular yet traditional languages like C are inefficient
and error-prone, which could be improved by the adoption of Java since it has
been verified by enormous experiences in desktop and enterprise applications
development that programming in Java alleviates the efforts of programmers and
enhances the robustness and correctness of applications for its maintainability
and reliability.

Reasons for Java in real-time have been presented, much work has to be
performed to adapt it to real-time environments, though. A typical issue is the
automatic memory management, say, garbage collection (GC) which introduces
nondeterministic pausing time to user programs in the JVM, which is intol-
erable to real-time systems. We have proposed a concurrent garbage collection
algorithm in previous work [1] with rigorous analysis and simulation verification.
The results solve the problem well by not jeopardizing the original schedulability
of the tasks with hard time constraint in the system. Other various approaches
addressing the GC problem are also referenced in [1] .

Since many real-time systems are memory constrained, we further concerned
the extra system memory requirement caused by the introduction of garbage col-
lection in [1] and the resulting collection algorithm showed better performance

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 481–487, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

482 Yuqiang Xian, Ning Zhang, and Guangze Xiong

on reducing the system memory requirement than any other concurrent collec-
tion algorithm by simulations, which is promising for the environment without
strong memory.

We then provide an overview of our garbage collection algorithm in the fol-
lowing sections. Differing from our previous work, this paper concentrates more
on the implementation of the algorithm that covers an incremental collector,
a real-time scheduler, and real-time Java threads, etc. The implementation is
based on Jikes RVM [2].

2 Review of the Algorithm

An incremental collector is the prerequisite of a concurrent collector. The system
is composed by periodic Java threads (called “mutators” from the notation by
Dijkstra et al. [3]) with hard time constraint in our model. They are scheduled
using the Rate-Monotonic (RM) policy. The collection work, however, is serviced
by a deferrable server (DS), and the server has a higher priority than any of the
mutators. Therefore, through the classical DS algorithm that jointly schedules
hard periodic and soft aperiodic tasks, the Java threads and collector run con-
currently. We give the worst case response time of the collector by the following
equation.

RG = CG +
⌈

CG
Cds

⌉
(Tds − Cds) (1)

where RG , CG , Cds, Tds denote the worst case response time of the GC, the
WCET of the GC, the capacity and the period of the DS respectively.

To avoid the danger of running the system out of memory, a certain number
of memory resources should be reserved for the mutators when they are within
a GC cycle. The minimum amount of reserved memory can thus be given by

Mres =
n∑

i=1

κiAi (2)

where Ai stands for the maximum amount of memory allocated by the mutator i
(τi) during one period for it (Ti). κi is the maximum number of active instances
of τi during RG and is in direct ratio to RG .

In order not to jeopardize the schedulability of the mutators, the parameters
of the DS (i.e. Tds, Cds) need to be assigned properly. A necessary and sufficient
condition to guarantee the schedulability is given:

for all i between 1 and n,(⌈
Ti − Cds

Tds

⌉
+ 1

)
Cds +

∑
j∈hep(i)

⌈
Ti

Tj

⌉
Cj � Di

(3)

where hep(i) is the set of mutators whose priorities are not lower than τi.
Typically Tds is set to the value of the shortest period among all mutators.

Then Cds is derived from the above inequality and the already known Tds. But

Concurrent Garbage Collection Implementation in a Standard JVM 483

from our analysis and verification in previous works, there’s a better scheme on
the parameter selection, which minimizes the worst case response time of the
collector and the reserved memory requirement as well: Tds is not fixed at the
shortest period, but rather the final decision on the selection of the parameters is
figured out by enumerating all the pairs of Tds and Cds that satisfy the inequality
(3), which is possible to be done off-line since in our assumptions the parameters
of the periodic mutators are known a priori, and the pair which makes RG
calculated by equation (1) reach a minimum is therefore our solution. It can be
seen that the required reserved memory is minimized from equation (2), too.

3 Implementation

Jikes RVM [2] is adopted as the implementation platform and testbed for our
garbage collection algorithm. It’s a Java virtual machine written in Java and has
been widely taken as the base of various researches in the VM field, profiting from
the state-of-the-art VM techniques contained in it. (e.g. the just-in-time optimiz-
ing and adaptive compilers, an “efficient, composable, extensible and portable
framework for building garbage collectors” [4], et al.) However, Jikes RVM is
originally designed for servers and any real-time abilities were not concerned
during its evolution. Therefore quite lot efforts are lying on the way to a real-
time extension to the RVM, which is beyond the scope of this paper. However,
the thread and memory management subsystems that are related to concurrent
garbage collection are addressed in detail.

3.1 Thread Subsystem

The thread subsystem including the scheduling strategy in Jikes RVM lacks many
real-time necessities, which prohibits the use of Java in real-time occasions. The
lacks are listed below.

Insensitive to priorities. Although the interface that the VM presents to the
users provides 10 priorities for the users to denote the preference of a se-
quence of threads for execution (see Thread.java in the Sun JDK or the
GNU classpath library), the priorities are ignored in the internal processing
of Jikes RVM. Furthermore, the original 10 priorities are not enough for the
real-time processing.

Unpredictable scheduling. The threads in the RVM are distributed to one
or more virtual processors, say, VM Processor. The rule how the different
threads are assigned to a particular virtual processor, and the order how the
threads on the same virtual processor are placed in the queues (readyQueue,
transferQueue, etc.) are both not deterministic. The scheduling between dif-
ferent virtual processors, however, depends totally on the underlying oper-
ating system. But it’s not a case for a uni-processor system because there’s
typically only one virtual processor.

484 Yuqiang Xian, Ning Zhang, and Guangze Xiong

Absence of periodic thread specific operations. Since most tasks in a typ-
ical real-time system are periodic, convenient representations (e.g. the pe-
riod, cost and deadline, etc.) and operations (e.g. the method doing the
action of waiting for next period) of such tasks should be available. The
RVM has nothing to show for those periodic thread specific operations.

Uninterruptible classes and methods. Many classes and methods in the
RVM are uninterruptible and thread scheduling is disabled there. The typical
examples are those of the garbage collector.

Each of the above issues is an obstacle to implement our algorithm and needs
to be swept away. The Real-time Specification for Java (RTSJ) [5] presents a
solution, which contains sufficient and convenient interfaces for real-time threads
(priority extensions, real-time and even periodic thread specific operations, etc.)
and for real-time scheduling. We adopt the same approach as that of the RTSJ
in the thread and scheduling subsystem (excluding the NoHeapRealtimeThread),

which offers the compatibility with the RTSJ as well. The listed shortcomings are
thus corrected, e.g. as the priority of threads does make sense, the readyQueue and
transferQueue for a virtual processor can be managed according to the priorities.
To the uninterruptible classes and methods, currently we only remove those of
the garbage collector by making it incremental; however, minimizing the occur-
rence of uninterruptible points in the total VM system requires a lot of hard work
and it does make sense in future exploration. Furthermore, the deferrable server
is treated as a periodic thread with the period Tds and WCET Cds. It’s not ready
to run at the beginning of each period as the normal ones, but instead, begins
to run when there’s collection work to do and Cds is not exhausted. At last, the
RVM must be built upon the option VM.BuildForDeterministicThreadSwitching

enabled, which uses the count of method prologues executed rather than timer
interrupts to drive preemptive thread switching, (in our case the count is set
to 1, that is, thread switching is able to be performed just after one single un-
interruptible operation finishes.), while in the default case, thread switching is
enabled only at the discrete time points with an interval of 10 ms typically.

3.2 Memory Management Subsystem

Jikes RVM provides concurrent allocation and parallel collection of the objects.
We modify the collection scheme by applying our concurrent algorithm. Because
of the “stop-the-world” feature of the original collector, little or none synchro-
nization between the user program and collector is necessary, whereas it’s not
the case for a concurrent collector because the user program (now can be called
“mutators”) can change the object reference graph during a collection cycle,
which may cause incorrect collection if no additional mechanism appended. [3]

As we addressed before, our concurrent collector is a combination of an
incremental garbage collector and a particular scheduling strategy, so a pri-
mary mission is to have the original collector in the RVM incremental. Fortu-
nately, there’re some commendable features in the memory management toolkit
(MMTk) of the RVM such as the composability and extensibility [4] that make

Concurrent Garbage Collection Implementation in a Standard JVM 485

a new collector implementation quite easy. Besides, the well organized internal
data structures representing a Java object that distinguishes primitives from ref-
erences are helpful for an accurate garbage collector, and the potential problems
caused by arbitrarily switching between the user program and the collector are
removed with the “safe points” generated automatically by the compiler. Both
benefit an incremental collector. We take the mark-sweep plan of the MMTk as
the basis of the incremental collector because it avoids the copying overhead and
the semi-space cost of a copying collector, while fragmentation is kept at a low
level owing to the segregated free lists provided in the RVM. [2]

Therefore, the remaining work to do will cover a modification to a write
barrier (read barrier can be an alternative, but in most cases it introduces higher
overhead.), some slight adjustment to each phase of a mark-sweep collector, and
a trivial (or none) alteration to the internal object model.

Object model. We adopt the “tri-color” algorithm advocated by Dijkstra et
al. [3] to implement an incremental collector, which marks the object with
three different colors (i.e. black, grey and white) representing its different
states. Therefore at least two bits of an object are required to store the color
info, but the object model in the RVM only provides one bit for marking
(another to denote large object) in the case when using a 10 bits hash code
of the object in its header. Another scheme is to use the address of the object
as its hash code, in which only two bits in the object header are required
and thus the remaining 8 bits can be exploited for GC purpose. At present
we are obliged to use the second hash code scheme for the tri-color marking.
An alternative is to modify the object model so that it supports the tri-color
marking in either case, which will cause correlative modifications to many
other parts of the RVM, and we’ll try it in future work.

Write barrier. The Dijkstra-style write barrier (the fine-grained solution) [3]
for incremental garbage collection is introduced into the RVM. We override
the method writeBarrier of class BasePlan to mark a white object grey if a
black object attempts to reference it.

public final void writeBarrier(VM_Address src, VM_Address slot,
VM_Address tgt, int mode)
throws VM_PragmaInline, VM_PragmaInterruptible {

VM_Magic.setMemoryAddress(slot, tgt);
if (inMarkPhase() && hasScanned(src) && !isLive(tgt)) {

traceObject(tgt);
}

}

The barrier is called when the VM encounters the bytecode putfield or
putstatic, through which the mutators’ alterations to the reference graph
during a collection cycle can’t be missed by the collector and incorrect col-
lection is thus avoided.

Collection phases. To handle the mutators’ alterations to the reference graph,
the collection phases should be modified slightly. For the marking phase, the
original collector stores all the to-be-traced objects’ addresses into some
queues, and once an object has been scanned by the collector it is dequeued.
However, we must also enqueue an object that has been marked grey by

486 Yuqiang Xian, Ning Zhang, and Guangze Xiong

mutators (through the write barrier), and the marking phase completes when
there’s no grey object, i.e. the queues are emptied. In the sweeping phase,
the white objects (garbage) are appended to a free list that matches its size
for future allocation, and the black ones are reset to white for next GC cycle.
Some modifications to the preparing and releasing phases of GC that deals
with the augmented color are also necessary.

So far we have presented the work to implement an incremental collector in the
RVM, and the DS, as an ad hoc periodic real-time thread, is able to service the
collection now, which forms a concurrent collector. At each yield point (i.e. when
the thread switching attempt happens) the execution time of garbage collection
is checked and if the time exceeds the maximum allowable time for current server
period (i.e. the capacity of the server is exhausted), the collector thread yields
into a wakeupQueue and is dequeued at the beginning of its next period. The
implementation is like the code below.

if (elapsedMillis >= capaMillis) { //whether the capacity was exhausted
myThread.wakeupCycle = VM_Time.cycles() //when should the collector be awakened

+ VM_Time.millisToCycles((double) (periodMillis - elapsedMillis));
if (myThread.proxy != null) {

myThread.proxy.wakeupCycle = myThread.wakeupCycle;
VM_Scheduler.wakeupMutex.lock();
VM_Scheduler.wakeupQueue.enqueue(myThread); //yield processor to the mutators
VM_Scheduler.wakeupMutex.unlock();

}
}

Although at present the collector is just a prototype and is less optimized, future
work will perfect it to a good production.

4 Experimental Results

Our work in the implementation is in progress yet. Currently we have completed
the prototype, and the correctness verification has been performed by executing
the standard Java applications provided in the test harness of Jikes RVM and
some RTSJ compliant real-time Java applications that have nothing to do with
the aspects we have not considered up to now or we have discarded in the RTSJ.
We achieved successful results.

The concurrency between the garbage collector thread and mutators is also
tested and we select the results of running the program LargeAlloc that contin-
uously consumes memory and turns it to junk quickly. The following example
shows the execution behaviors of the collector (’+’) and the mutator (’x’) :

[cluer@clue gctest]$ rvm -verbose:gc -cp ./ LargeAlloc 500
LargeAlloc running with 500 Mb of allocation
Run with verbose GC on and make sure space accounting is not leaking

[Forced GC]+xxx[GC 1 Start 5.86 s 15348 KB +xxxxx+xxxx+xxxxx+xxxxx+xxxxx+xxxxx+xxx
xx+xxxxx+xxxxx+xxxxx+xxxx+xxxxx+xxxxx+xxxxx+xxxxx+xxxxx+xxxxx+xxxx+xxxxx+xxxx+xxxxx+
xxx+x+xx+x+xx+x+xxx++x+x+x+x+x+xx+xx+x+xxx+x+xxx++x+xxx+xx+x+xx+xx+x+xx++xx+xx++xx+x
++xx+x+xx+x+xxx+x+xx++x+xx+xx+x+xx+x+xx+x+x+x+x+xx+++x+xxx+xx+x+x++x+xxx+x+xxx+xxx+x
x+x+xxx+x+xxx+x+xxx+x+x+xx+xx++x++x+x+xx++xx+xx+xx++x++x++x+xx++xx+x+x+x+xx+x+x+xx++
x+x+x+xx++x+x+x+x+xx+xx++x+x++++x++

Concurrent Garbage Collection Implementation in a Standard JVM 487

We can see from the results that the garbage collector is interrupted by the
mutator even if it doesn’t complete its work for current collection cycle (GC1),
because it yields the processor to the mutator when it exhausts the capacity
for one period of the deferrable server. The diversification of the number of
’x’ between two neighboring ’+’ is mainly due to the fact that the mutator
repeatedly requires memory allocation but the size of each allocation differs
from that of the others.

Despite the fact that current GC implementation is a prototype, we have a
coarse performance evaluation on it. The result shows that the average response
time of GC increases dramatically (about 9 times longer than the original) caused
by the removal of the uninterruptible points related to the collector, which reveals
a general problem in general real-time systems: with more interruptible points
for task preemption, the system is burdened with the large overhead introduced
by frequently checking and performing thread switching. Therefore, design of a
more efficient and more lightweight thread switching mechanism is essential to
real-time systems.

5 Conclusions and Future Work

We have reviewed our concurrent garbage collection algorithm in this paper, and
the emphasis is given to the implementation issues. Future work will complete
a real-time extension by implementing the other aspects addressed in the RTSJ
excluding the complex memory management scheme, such as synchronization
(e.g. the priority inheritance algorithm) and asynchronous event handling mech-
anisms. Performance optimization should also be concerned, which includes the
actions of minimizing the occurrence of the uninterruptible classes and meth-
ods, lowering the overhead caused by frequently checking and performing thread
switching, and developing a real-time oriented JIT compiler.

References

1. Xian, Y., Xiong, G.: Minimizing memory requirement of real-time systems with
concurrent garbage collector. ACM SIGPLAN Notices (2005, to appear)

2. Alpern, B., Attanasio, C.R., Barton, J.J., Burke, M.G., Cheng, P., Choi, J.D., Coc-
chi, A., Fink, S.J., Grove, D., Hind, M., Hummel, S.F., Lieber, D., Litvinov, V.,
Mergen, M.F., Ngo, T., Russell, J.R., Sarkar, V., Serrano, M.J., Shepherd, J.C.,
Smith, S.E., Sreedhar, V.C., Srinivasan, H., Whaley, J.: The Jalapeno virtual ma-
chine. IBM Systems Journal 39 (2000) 211–238

3. Dijkstra, E.W., Lamport, L., Martin, A.J., Scholten, C.S., Steffens, E.F.M.: On-
the-fly garbage collection: An exercise in cooperation. Communications of the ACM
21 (1978) 965–975

4. Blackburn, S.M., Cheng, P., McKinley, K.S.: Oil and water? high performance
garbage collection in Java with MMTk. In: The 26th International Conference on
Software Engineering (ICSE’04). (2004) 137–146

5. Bollela, G., Gosling, J., Brosgol, B.M., Dibble, P., Furr, S., Hardin, D., Turnbull,
M.: The Real-Time Specification for Java. Addison-Wesley (2002)

Relating FFTW and Split-Radix�

Oleg Kiselyov1 and Walid Taha2

1 Monterey, CA 93943. (oleg@okmij.org)
2 Department of Computer Science, Rice University. (taha@rice.edu)

Abstract. Recent work showed that staging and abstract interpretation can be
used to derive correct families of combinatorial circuits, and illustrated this tech-
nique with an in-depth analysis of the Fast Fourier Transform (FFT) for sizes 2n.
While the quality of the generated code was promising, it used more floating-
point operations than the well-known FFTW codelets and split-radix algorithm.
This paper shows that staging and abstract interpretation can in fact be used to
produce circuits with the same number of floating-point operations as each of
split-radix and FFTW. In addition, choosing between two standard implemen-
tations of complex multiplication produces results that match each of the two
algorithms. Thus, we provide a constructive method for deriving the two distinct
algorithms.

1 Introduction

Hardware description languages are primarily concerned with resource use. But ex-
cept for very high-end applications, verifying the correctness of hardware systems can
be prohibitively expensive. In contrast, software languages are primarily concerned
with issues of expressivity, safety, clarity and maintainability. Software languages pro-
vide abstraction mechanisms such as higher-order functions, polymorphism, and gen-
eral recursion. Such abstraction mechanisms can make designs more maintainable and
reusable. They can also keep programs close to the mathematical definitions of the
algorithms they implement, which helps ensure correctness. Hardware description lan-
guages such as VHDL [7] and Verilog [14] provide only limited support for such ab-
straction mechanisms. The growing interest in reconfigurable hardware invites us to
consider the integration of the hardware and software worlds, and to consider how ver-
ification techniques from one world can be usefully applied in the other. Currently,
programming reconfigurable hardware is hard [1]: First, software developers are typi-
cally not trained to design circuits. Second, specifying circuits by hand can be tedious,
error prone, and difficult to maintain. The challenge in integrating both hardware and
software worlds can be summarized by a key question:

How can we get the raw performance of hardware without giving up the ex-
pressivity and clarity of software?

� Supported by NSF ITR-0113569 “Putting Multi-stage Annotations to Work” and Texas ATP
003604-0032-2003 “Advanced Languages Techniques for Device Drivers.”

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 488–493, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Relating FFTW and Split-Radix 489

Program generation [4,3] provides a seed for an answer to this question: it gives us the
full power of a high-level language to generate descriptions of hardware (or any other
kind of resource-bounded computation). Each generator represents a family of circuits.
The practical benefit is a high-level of flexibility and reuse. The research challenge lies
in finding analysis and verification techniques that can check and reason about this full
family of circuits just by looking at the generator, and without having to generate all
possible circuits. Resource-aware Programming (RAP) languages [12,5] are designed
to address these problems by providing:

1. A highly expressive untyped substrate supporting features such as dynamic data-
structures, modules, objects, and higher-order functions.

2. Constructs that allow the programmer to express the stage distinction between com-
putation on the development platform and computation on the deployment plat-
form.

3. Advanced static type systems to ensure that computations intended for execution
on resource-bounded platforms are both type-safe and resource-bounded without
generating all possible programs.

Developing a program generator in a RAP language proceeds as follows:

1. Implement the input-output behavior in an expressive, type-safe language such as
OCaml [6]. For FFT, this step is just implementing the Cooley-Tukey recurrence.

2. Verify the correctness of the input-output behavior of this program. Because we
used an expressive language, this step reduces to ensuring the faithful implementa-
tion of the textbook algorithm and the correct transformation of the program into a
monadic style. The monadic transformation is well-defined and mechanizable [8].

3. Determine which parts of the computation can be done on the development plat-
form, and which must be left to the deployment platform (cf. [11]).

4. Add staging annotations. In this step, staging constructs (hygienic quasi-quotations)
ensure that this is done in a semantically transparent manner. Staging a program
turns it into a program generator. A two-level type system understands that we are
using quasi-quotations to generate programs (cf. [13]) and can guarantee that there
are no inconsistent uses of first- and second-stage inputs. A RAP type system [12,5]
goes further and can ensure that second-stage computations only use features and
resources that are available on the target platform. The source code of the resulting
generator is often a concise, minor variation on the result of the first step.

5. Use abstract interpretation techniques [2] to improve generated code, by shifting
more computations from the generated code to the generator.

1.1 Contributions

The use of abstract interpretation in the RAP process (Step 5 in the above) was only re-
cently proposed and investigated [5]. It provides a safe, systematic means for augment-
ing the generator with knowledge of domain-specific optimizations, and is a key dif-
ference between RAP and previous approaches to program generation including those
used in the widely popular FFTW [3]. Despite the merits of this approach (see [5]), the

490 Oleg Kiselyov and Walid Taha

number of arithmetic operations in RAP generators for FFTW circuits only approached
those in implementations generated by FFTW.

This paper shows that the technique of [5] can in fact be used to produce circuits
with the same number of floating-point operations as in FFTW. In addition, choosing
a different standard implementation of complex multiplication gives us circuits with
the same number of floating-point operations as in split-radix FFT, another optimal
FFT algorithm [9]. Thus, we provide a new, constructive method to deriving the two
different classes of algorithms.

2 Matching FFTW and Split-radix

Previous work [5] uses staging and abstract interpretation to construct a concise genera-
tor of combinatorial FFT circuits. The starting point is the textbook decimation-in-time
FFT F (N, x)k of the N -point complex-valued sample xj

F (1, x)0 = x0

F (N, x)k = F (N
2 , E(x))k + F (N

2 , O(x))k · wk
N

F (N, x)k+ N
2

= F (N
2 , E(x))k − F (N

2 , O(x))k · wk
N

where
E(x)j = x2j

O(x)j = x2j+1

where wk
N = e−i2πk/N is the N th root of unity. E and O split the input x into even

and odd parts, respectively. The transform is first applied to both halves, recursively,
and the result is combined to yield the two halves of the transform sequence. Given
the sample size N , the generator code literally follows this recursive algorithm. But
instead of performing multiplications and additions, staging constructs [11] are used to
generate a circuit that performs these computations. Observing that circuits generated
this way are not always efficient, abstract interpretation is used to improve the quality
of the generated code. In essence, abstract interpretation is used to enrich the generator
with knowledge about several specific identities of real numbers, namely:

r · 0 = 0
r + 0 = r
r · 1 = r

r + (−1 · r′) = r − r′

f · r + f · r′ = f · (r + r′)

sin(0) = 0
cos(0) = 1
sin(π

4) = cos(π
4)

sin(t + π
2) = cos(t)

cos(t + π
2) = −sin(t)

(1)

With these optimizations, the quality of the generated code in terms of number of
addition and multiplication operations came very close to that of FFTW codelets [3].
But the resulting circuits had more floating point operations than in the corresponding
FFTW codelets for sample sizes larger than 8. Whether it is possible to reach the same
numbers as FFTW or other optimal algorithms remained open. This paper reports on
three modifications to the abstract interpretation step that yield code with the same
number as operations as FFTW:

1. Exploiting identities of complex roots of unity rather than their floating-point rep-
resentations,

Relating FFTW and Split-Radix 491

2. Switching from decimation in time (DiT) to decimation in frequency (DiF),
3. Exploiting the pattern of additions and subtractions in the algorithm.

FFT deals with complex-valued operations. Analysis of the algorithm shows that
factors known at generation time are not arbitrary. In particular, they are never zero, and
are always roots of unity (ei2πj/n). If instead of representing such constants as floating
points we represent them as rational numbers j

n , we can implement the identities on
these values exactly. In particular, we are able to exploit the following identity:

ei2πj/n · ei2πj′/n′
= ei2π(j

n + j′
n′)

When roots of unity are represented as a pair of floating-point numbers, such equiva-
lences do not hold except for trivial cases.

The decimation-in-frequency definition of FFT is as follows:

F (1, x)0 = x0

F (N, x)2k = F (N
2 , E(x))k

F (N, x)2k+1 = F (N
2 , O(x))k

where
E(x)j = xj + xj+ N

2
,

O(x)j = (xj − xj+ N
2
) · wj

N

We have already noted that all complex multiplications in the FFT algorithm multiply a
root of unity with a linear combination of input values. As a result, complex additions
and complex subtractions in FFT always have the form w1 · c±w2 ·d where w1 and w2

are roots of unity. Such patterns can be computed in two different ways. The first is to do
the multiplications by w1·c and w2·d first, and use the result for the final addition and the
subtraction. The second approach is to re-write the expression as w1(c ± w2/w1 · d).
The second approach is useful when the multiplication either by w1 or by w2/w1 is
trivial. The trivial multiplication is the one by ±1, ±i.

These are all the optimizations needed to match FFTW operation count.

2.1 Split-Radix FFT

Split-radix FFT is a particular FFT algorithm that aims to compute FFT with the least
number of multiplications. In the general case, complex multiplication can be computed
with four real multiplications and two real additions

(a + ib) · (c + id) = (ac − bd) + i(ad + bc) (2)

or, with three multiplications and five addition/subtractions

(a + ib) · (c + id) = (t1 − t2) + i(t1 + t3) where

⎧⎨
⎩

t1 = a(c + d)
t2 = d(b + a)
t3 = c(b − a)

(3)

The benefit of that particular formula among others with the same operation count is
that when the factor a + ib is known at generation time, two of the required addi-
tions/subtractions, namely, b + a and b − a, can be computed at that time, leaving the
other three additions and three multiplications to the run-time of the generated code.

Choosing equation (2) gives us the code that matches FFTW in operation count,
whereas choosing equation (3) gives us the code that matches split-radix.

492 Oleg Kiselyov and Walid Taha

2.2 Experiments

The following table summarizes our measurements of the effect of abstract interpreta-
tion for FFT. The first column gives the size of the FFT input vector. The second column
gives the number of floating-point multiplications/additions in the code resulting from
direct staging. The column “RAP DiT” reproduces previous results [5]. The column,
“RAP DiF 1” demonstrates the improvement of the more precise abstract interpretation
described here. The next column shows the number of multiplications/additions in code
generated by FFTW for the various problem sizes3. The column “RAP DiF 2” is “RAP
DiF 1” but with complex multiplication with three real multiplies and five real addi-
tions, two of which are done at code generation time. The last column is the data for a
split-radix algorithm with the complex input [9, Table II].

Size Direct staging RAP DiT RAP DiF 1 FFTW [3] RAP DiF 2 Split Radix

4 32/32 0/16 0/16 0/16 0/16 0/16
8 96/96 4/52 4/52 4/52 4/52 4/52

16 256/256 28/150 24/144 24/144 20/148 20/148
32 640/640 108/398 84/372 84/372 68/388 68/388
64 1536/1536 332/998 248/912 248/912 196/964 196/964

128 3584/3584 908/2406 660/2164 ≈ 752/2208 516/2308 516/2308
256 8192/8192 2316/5638 1656/5008 ≈ 2016/5184 1284/5380 1284/5380

We have used our FFT generator to generate all the circuit descriptions summa-
rized by above table. To check the correctness of these implementations, we have trans-
lated them into C programs and checked their results and performance against FFTW.
The following table shows the performance of the algorithms above as measured by
the FFTW benchmark v3.1 on a Pentium IV 3GHz computer. The numbers show re-
ported MFLOPS relative to FFTW for double-precision, complex, in-place, forward
FFT. All code was compiled with GCC 3.2.2. The performance numbers show that
on a Pentium IV, the floating-point multiplications are about just as fast as floating-
point additions, and on modern super-scalar CPUs, the performance depends on many
other factors (such as caching, pipelines stalls, etc.) rather than merely the floating-
point performance. On DSP, FPGA and other similar circuits/processors, floating-point
performance is usually the bottleneck.

Size 4 8 16 32 64 128 256
RAP DiF 1 335% 162% 97% 96.1% 83.1% 77.7% 68.8%
RAP DiF 2 323% 162% 102% 88.0% 79.2% 78.6% 69.6%
FFTW 100% 100% 100% 100% 100% 100% 100%

3 Conclusions

With systematic improvements to the domain-specific optimizations used, we found that
staging and abstract interpretation can generate FFT circuits that match both FFTW and

3 The numbers for FFTW are obtained from its codelets. FFTW does not have codelets for
sample sizes 128 and 256. For those and larger sizes, FFTW uses the composition of smaller
FFTW transforms. For those sample sizes, the operation counts in the table are estimates based
on the counts for smaller sizes and on the Cooley-Tukey recurrences for the power-of-2 FFT
algorithm.

Relating FFTW and Split-Radix 493

the split-radix algorithm in terms of operation count. Furthermore, to generate circuits
that match each of the two algorithms, all that is needed was to chose between two
different definitions of complex multiplication.

Unlike FFTW, we know precisely where savings are coming from, and which par-
ticular equivalences contribute to which improvements in the code. We do not search for
optimal code using extensive low-level optimizations at the level of real-valued terms.
Rather, we use a small number of optimizations at the level of complex-numbers. Com-
plex numbers are the domain-specific type for this application. We do not attempt to
apply optimizations after generation, but rather, during generation. As such, our ex-
perience provides further evidence that abstract interpretation is a promising tool for
expressing domain-specific optimizations in a program generation system.

Acknowledgements: We would like to thank Anthony Castanares, Emir Pašalić, and
Abd Elhamid Taha for comments on this manuscript.

References

1. W. Boehm, J. Hammes, B. Draper, M. Chawathe, C. Ross, R. Rinker, and W. Najjar. Mapping
a single assignment programming language to reconfigurable systems. In Supercomputing,
number 21, pages 117–130, 2002.

2. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In 4th ACM Symposium on
Principles of Programming Languages, pages 238–252. ACM, 1977.

3. Matteo Frigo. A fast Fourier transform compiler. In Proceedings of the Conference on
Programming Language Design and Implementation, pages 169–180, 1999.

4. C. S. Burrus I. W. Selesnick. Automatic generation of prime length FFT programs. In IEEE
Transactions on Signal Processing, pages 14–24, Jan 1996.

5. Oleg Kiselyov, Kedar Swadi, and Walid Taha. A methodology for generating verified com-
binatorial circuits. In the International Workshop on Embedded Software (EMSOFT 04),
Lecture Notes in Computer Science, Pisa, Italy, 2004. Springer-Verlag. To appear.

6. Xavier Leroy. Objective Caml, 2000. Available from http://caml.inria.fr/ocaml/.
7. R. Lipsett, E. Marschner, and M. Shaded. VHDL - The Language. In IEEE Design and Test

of Computers, pages 28–41, April 1986.
8. Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1),

1991.
9. M.T.Heideman and C.S.Burrus. On the number of multiplications necessary to compute a

length-2n DFT. IEEE Trans. ASSP, ASSP-34(1):91–95, February 1986.
10. Oregon Graduate Institute Technical Reports. P.O. Box 91000, Portland, OR 97291-

1000,USA. Available online from ftp://cse.ogi.edu/pub/tech-reports/README.html.
11. Walid Taha. Multi-Stage Programming: Its Theory and Applications. PhD thesis, Oregon

Graduate Institute of Science and Technology, 1999. Available from [10].
12. Walid Taha, Stephan Ellner, and Hongwei Xi. Generating Imperative, Heap-Bounded Pro-

grams in a Functional Setting. In Proceedings of the Third International Conference on
Embedded Software, Philadelphia, PA, October 2003.

13. Walid Taha and Michael Florentin Nielsen. Environment classifiers. In The Symposium on
Principles of Programming Languages (POPL ’03), New Orleans, 2003.

14. Donald E. Thomas and Philip R. Moorby. The Verilog Hardware Description Language.
Kluwer Academic Publishers, 3rd edition, 1996.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 494-501, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Selecting a Scheduling Policy for Embedded Real-Time
Monitor and Control Systems1

Qingxu Deng, Mingsong Lv, Ge Yu

School of Information Science and Engineering, Northeastern University
Shenyang 110004 China

dengqx@mail.neu.edu.cn, newlms@163.com, yuge@mail.neu.edu.cn

Abstract. An integrated solution to guarantee real-time requirements in
embedded real-time monitor and control systems is presented in this paper. First
a typical task model is abstracted from such a control system, together with
specific characteristics of the tasks. These system characteristics lead to a
hybrid scheduling policy of the rate monotonic algorithm and the sporadic
server algorithm. The feasibility and rationality of such a policy are also
analyzed. The rate monotonic algorithm is extended in this paper, providing a
schedulability test that incorporates factors such as context switching overhead
and task synchronization.

1 Introduction

Varies working environments lead to different type of embedded systems. Among
these systems, a major one is industrial monitor and control system, which plays an
important role in product lines. The background of this paper is such an industrial
embedded system designed for real-time control of large-scale electro-mechanical
devices.

In the reality, characteristics of different embedded systems may vary a lot. For
example, major tasks in industrial control systems are hard real-time tasks, while key
tasks of mass consumption systems often have soft real-time requirements. Currently
there are mainly four different types of scheduling algorithms: static table driven
algorithms, static priority based algorithms, dynamic priority based algorithms and
bandwidth preserving algorithms. Since there is not an all-purpose scheduling policy
applicable for every real-time system, the goal of this paper is to find a scheduling
policy for our control system that can meet its specific real-time requirements.

The following sections are organized as follows. Section 2 presents a typical task
model and the scheduling objectives. The reasons of using a hybrid policy are given
in Section 3. An extended RM algorithm that takes resource sharing and system
overhead into consideration is also given in this section. Section 4 gives a case study
and conclusion remarks are given in Section 5.

1 This work was supported by the National High Technology Research and Development

Program of China (2002AA1z2308, 2002AA118030), and the National Natural Science
Foundation of China (60473073).

Selecting a Scheduling Policy for Embedded Monitor and Control Systems 495

2 Typical Task Model and Scheduling Objectives

The system is designed to serve high-pressure pumps for boilers. The core part of the
system is abstracted into a task model, which is illustrated in Figure.1. Descriptions of
tasks are illustrated in Table.1.

Fig. 1. A Typical task model of embedded real-time industrial control systems

Table 1. Introduction to major tasks in the model

Module Full-Name Functionality RT
Specs.

Arrival
Pattern

DCPM Data Collection &
Processing Module

Process sensor data and store
parsed data into IMDB Hard Periodic

DBM Data Back-up
Module

Back-up memory data to Disks
periodically or when error occurs Hard Periodic

SCI System Configuration
Interface

Send commands to sensors and
parameters to DCPM Hard Aperiodic

DM Display Module Display memory data in a
friendly way to end users Soft Periodic

UQM User Query Module Provide users with querying
interface for memory data Soft Aperiodic

EDM Expert Diagnostic
Module

A process to make deep analysis
of in-memory data Soft Aperiodic

Considering the overall system, we can give some real-time requirements

according to the controlled devices and task characteristics. First, system lifetime is
one of the major aspects to characterize an embedded system. Our embedded
industrial control system has a long lifetime. During this phase, hardware and
software design are scarcely changed. Second, tasks in a real-time system can be
sorted into hard or soft ones according to criticality, or classified into periodic or
aperiodic ones by their arrival patterns. It can be seen from Table.1 that the system is
composed of tasks with different real-time characteristics, and this may impose more

496 Qingxu Deng, Mingsong Lv, and Ge Yu

requirements on scheduling polices. Third, the tasks in this system are logically loose-
coupling, but they are data-centrically coupled by sharing IMDB. Data sharing
introduces priority inversion problems and synchronization blocking, so some
mechanisms are required to guarantee data consistency and predictable system
behaviors.

In summary, the embedded real-time control system has a complex task set
composed of both control tasks and user applications. Data sharing plays a key role in
this system. According to foregoing work, the following scheduling objectives can be
given.
 High Predictability: In our system, all deadlines of hard real-time tasks should be

guaranteed and high responsiveness should be provided to soft real-time tasks;
predictable system behavior should also be guaranteed under transient overload.
There is always a trade-off between high predictability and flexibility, and we
choose to compromise flexibility to achieve high predictability.

 Low Scheduling Overhead: Embedded resources, such as computation capacity,
memory and power supply, are still limited in embedded systems, although
hardware technology has been greatly improved. This may impose limitations to
the design of scheduling policy, so scheduling overhead should not be ignored.

 Capability of Handling Hybrid Task Set: Typical embedded control systems
usually have hybrid tasks, which makes the system hard to handle. The scheduling
policy should have the flexibility to deal with such a kind of task sets.

 Incorporating Resource Sharing: Ideal scheduling algorithms are developed
assuming that tasks are independent of each other, and data sharing is a key
characteristic of typical control systems. Resource sharing in priority based
preemptive systems often introduces priority inversion and unpredictable blocking,
which should be avoided to achieve higher predictability.

3 Scheduling Policy Selection and the Extended RM Algorithm

Up till now, there are many scheduling algorithms that are comprehensively studied.
Our focus in this paper is priority-based preemptive algorithms, which are
implemented in most real-time systems. Priority-based algorithms can be further
classified into static or dynamic algorithms by considering whether priorities of tasks
can be changed during the running time.

3.1 Motivations and Reasons to Select a Hybrid Solution

There is no single algorithm that can satisfy all the scheduling requirements since all
the scheduling algorithms are designed for specific task sets with specific
assumptions. This is the motivation to a hybrid policy. An integration of Rate
Monotonic algorithm and Sporadic Server algorithm can meet the real-time
scheduling requirements of our system.

Selecting a Scheduling Policy for Embedded Monitor and Control Systems 497

The rate monotonic algorithm is selected from the following visions:
 High Predictability: High predictability is proved to be one of the superiorities of

RM algorithm and a deterministic schedule can be calculated off-line. The internal
mechanism guarantees predictable behavior even under transient overload.

 Low Scheduling Overhead: Compared to dynamic priority algorithms, RM has a
very low scheduling overhead since priorities are assigned a prior. This property is
often required as a key scheduling objective in embedded systems.

 Incorporation of Resource Sharing: Priority Ceiling Protocol, presented in [1], is
widely used to handle resource-sharing problems in real-time systems. This
protocol can be well incorporated into RM scheduler without too much alteration
to schedulability test.

 Engineering Simplicity: There are extensive studies and implementations of RM
algorithm in most embedded real-time operating systems. These experiences are
quite helpful to our implementation in the view of engineering simplicity.

Sporadic Server, presented in [2], is selected for the following reasons:

 High Responsiveness: Compared with Polling Server and Deferrable Server,
Sporadic Server can provide a higher responsive efficiency to sporadic tasks.

 Guaranteeing Hard Deadline: The Sporadic Server provides a uniform scheduling
solution for both hard and soft sporadic tasks and deadlines of tasks with limited
arriving frequencies can be guaranteed.

 PCP Compatible: If some conditions are met when integrating the two algorithms,
Priority Ceiling Protocol can be adopted to resolve resource sharing problems
under such a hybrid policy.
We choose this hybrid solution because, on one hand, the hybrid algorithm can

meet the requirements that the system has on both periodic and sporadic tasks; and on
the other hand, the Sporadic Server can be easily incorporated into the RM scheduler,
since the Sporadic Server can be treated as an equivalently sized periodic task with a
phase shifting. Sporadic Server can be considered as one of the extensions to RM
algorithm.

3.2 The Extended Rate Monotonic Algorithm

Rate Monotonic algorithm [3] is advanced to schedule periodic hard real-time tasks.
The key principle of this algorithm is that the priority of a task is assigned inversely to
its period. The following assumptions should be satisfied: tasks are all periodic,
deadlines are equal to periods, no dependencies among tasks, and run-time for each
task is constant. RM schedulability test is given considering the worst-case situation
when all tasks start simultaneously. We call the test FRMS in brief.

FRMS: Given a task set with n tasks, and each task is characterized by its worst-
case execution time C and period T, the task set is schedulable using RM priority
assignment if inequation (1) is satisfied.

)12(/ /1

1

n
n

i
ii nTC (1)

498 Qingxu Deng, Mingsong Lv, and Ge Yu

FRMS is a sufficient but not necessary schedulability test with low utilization
threshold. In 1989, Lehoczky and Liu Sha advanced a sufficient and necessary
schedulability test in [4]. We call it ERMS in brief.

ERMS: Given a task set with n tasks listed in priority descending order, define Li in
equation (2). The task set is schedulable if max{1 } Li 1. Here Si referes to the
scheduling points for the ith task.

tTtCL
i

j
jjSti i

/min
1

 (2)

To extend the fundamental RM schedulability test, we first make an assumption
that all tasks are independent of each other. In priority based preemptive systems, the
PCP protocol [7] is a widely used policy, which is proved to be able to handle priority
inversion, chained blocking and deadlock problems. The protocol works as follows:
Each shared resource in the system is assigned a priority of the highest task that may
access this resource. A job J starts a new critical section only if J’s priority is higher
than all priority ceilings of all the semaphores currently locked by jobs other than J.
The job J can be blocked by lower priority tasks at most once.

If Bi is defined as the longest blocked duration that task i may have in the worse
case, then the FRMS test can be revised to inequation (3) and the definition of Li in
ERMS is changed to equation (4), hence resource sharing is taken into consideration.

n

i

n

n

n

i

i n
T
B

T
B

T
C

1

/1

1

1

1

1 12,...,max (3)

tBTtCL i

i

j
jjSti i

/min
1

 (4)

The assumption that context switching overhead is zero is also impractical and
should be reconsidered. Since in our policy schedulability test is performed offline,
we only focus on runtime overhead. Runtime overhead occurs when scheduling is
activated. The implementation of the scheduling driven policy may lead to different
scheduling activations.

In [10], Katcher presented the integrated interrupt event-driven scheduling, which
is used in our system. The author also gave the building blocks of runtime overhead.
Cint represents the time to handle an interrupt; the time to execute the scheduling code
is Csched; Cstore and Cload is the time to save and load the TCB of a task; Ctrap represents
the time to handle the trap generated by normal completion of a task.

Katcher’s analysis of scheduling activations is not enough since PCP protocol is
not considered in his theory. The scheduler is activated in four situations: the release
and termination of a task, and the blocking and wakening of a task with respect to
resource sharing. The overheads are defined in equation (5), (6) and (7).

Cpreempt = Cint + Csched + Cstore + Cload (5)

Cexit = Ctrap + Cload (6)

Selecting a Scheduling Policy for Embedded Monitor and Control Systems 499

Cblock = Cwake = Csched + Cstore + Cload (7)

During system runtime, there is no deterministic method to tell exactly how many
times a low priority job may be preempted, so normal preemption overhead is added
to the execution time of the preempting job. When considering blocking-triggered
preemption, the PCP protocol guarantees that each task may experience at most once,
so the overhead can also be calculated into the execution time of the preempting task.
In the worst case, we define Ci

’ = Ci + Cpreempt + Cexit + Cblock + Cwake. If we replace C
in FRMS and ERMS with C’, then we get two more precise schedulability tests that
can take context switching overhead into consideration.

The third extension to RM algorithm is the incorporation of Sporadic Server, since
the algorithm enables the original RM scheduler to handle hard or soft sporadic tasks.
Reasons why Sporadic Server is selected is given in Section 3.1. The Sporadic Server
is intrinsically a bandwidth preserving algorithm since it preserves processor for
sporadic tasks. The success of Sporadic Server is its specific replenishing policy.
More results on Sporadic Server can be found in [2].

4 A Case Study

A case study is presented from the implementation of the system for one specific
pump. The task set in this study contains 6 tasks and parameters of each task are
illustrated in Table.2. For sporadic tasks, period means minimum inter-arrival time.
Total worst-case context switching overhead for each task is 50ms.

Table 2. Real-time parameters of six major tasks

Computation Time(s) Task Priority Hard
/Soft

Periodic
/Sporadic

Period
(s) Total Shared Res.

T1 1 Hard Periodic 2 0.4 0.05
T2 5 Hard Periodic 60 1.0 0.12
T3 2 Hard Sporadic 2 0.4 0.10
T4 3 Soft Periodic 2 0.4 0.05
T5 4 Soft Sporadic 10 0.5 0.12
T6 6 Soft Periodic 60 2.9 0.12

The 6 tasks are assigned priority from 1 to 6 with the smallest number for the

highest priority. IMDB is assigned highest priority according to PCP principles.
Sporadic tasks can be treated as equivalent-sized periodic tasks when analyzing
schedulability. A typical testing process may have four major steps.

Step 1: Add the task with the highest priority into the Scheduling Task Set;
Step 2: Test the schedulability of the task set with FRMS. If failed, execute Step 3;

if all the tasks are in the task set, return TRUE; if not, go to Step 4;
Step 3: Test the Schedulability of the task set with ERMS. If failed, return FALSE;

if all tasks are in the task set, return TRUE; if not, go to Step 4;
Step 4: Add another task with highest priority into the task set, and go to Step 2.

500 Qingxu Deng, Mingsong Lv, and Ge Yu

First assume that all soft real-time tasks do not exist, so the three hard real-time
tasks can be scheduled with FRMS since inequation (8) holds.

123
2
1.0

2
05.024.0

60
05.021

2
05.024.0 3/1 (8)

If all soft real-time tasks are added, total system utilization is improved, making
the less imprecise FRMS test yield failure. So we have to use ERMS to check the
schedulability for the second round. Detailed process will not be presented, the result
is that for all tasks from T1 to T6, the schedulable condition is satisfied at scheduling
point 2, 2, 2, 4, 8, 22, respectively.

The deadlines of the six tasks are shown to be guaranteed according to the
extended hybrid policy presented above. In some special conditions, period
transformation technique can be adopted to raise the priority of a task, resolving the
mapping of real criticality to priority. In conclusion, the RM algorithm guarantees that
all hard real-time tasks meet their deadlines and the Sporadic Server algorithm can
provide the shortest response time for soft real-time tasks.

5 Conclusion

This paper illustrates a whole process of guaranteeing the real-time requirements of
an embedded real-time industrial control system from analysis of system
characterizations to selection and extension of suitable scheduling policies.
Representative control systems have specific real-time requirements, such as high
predictability, low scheduling overhead and resource sharing. From previous work by
other people, we conclude that a hybrid of RM algorithm and Sporadic Server
algorithm with extended approaches is eligible for scheduling in our control system,
and it’s also helpful for selecting scheduling policies for similar systems.

References

1. Sha, L., Rajkumar, R., and Lehoczky, J.P.: Priority Inheritance Protocols: An Approach to
Real-Time Synchronization. IEEE Transactions on Computers, Vol.39, No.9. (1990)

2. Sprunt, B., Sha, L., and Lehoczky, J.P.: Aperiodic Task Scheduling for Hard-Real-Time
Systems. Real-Time Systems, Vol.1, No.1. (1989)17–60

3. Liu, C.L. and Layland J.W.: Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment. Journal of the ACM, Vol.20, No.1. (1973)46–61

4. Lehoczky, J.P., Sha, L., and Ding, Y.: The Rate Monotonic Scheduling Algorithm: Exact
Characterization and Average Case Behavior. Proceedings of 10th Real-time Systems
Symposium. (1989)166–171

5. Goossens, J., and Macq, C.: Performance Analysis of Various Scheduling Algorithms for
Real-Time Systems Composed of Aperiodic and Periodic Tasks. The 5th International
Conference on Information Systems, Analysis and Synthesis. (1999)

6. Jane, W.S. Liu.: Real-Time Systems. Pearson Education Press. (2002)
7. Ramamritham, K., and Stankovic, J.A.: Scheduling Algorithms and Operating Systems

Support for Real-Time Systems. Proceedings of IEEE, Vol.82, No.1. (1994)55–67

Selecting a Scheduling Policy for Embedded Monitor and Control Systems 501

8. Stankovic, J.A.: Misconceptions About Real-Time Computing: A Serious Problem for
Next-Generation Systems. IEEE Computer, Vol.21, No.10. (1988)10–19

9. Stankovic, J.A., and Ramamritham, K.: What is Predictability for Real-Time Systems?
Real-time Systems, Vol.2, No.4. (1990)247–254

10. Katcher, D. I., Arakawa, H., and Strosnider, J. K.: Engineering and analysis of fixed
priority schedulers. IEEE Transactions on Software Engineering, Vol.19, No.9. (1993)

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 502-507, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Sharing I/O in Strongly Partitioned Real-Time Systems

Ravi Shah1, Yann-Hang Lee1, and Daeyoung Kim2

1Computer Science and Engineering Dept.
Arizona State University, Tempe, AZ 85287
{ravi.shah, yhlee}@asu.edu

2School of Engineering
Information and Communications University, Daejeon, South Korea

kimd@icu.ac.kr

Abstract. Strongly partitioned real-time systems have been adopted to provide
an integrated run time environment for applications with varied criticalities.
This is achieved by guaranteeing spatial as well as temporal partitioning for the
applications. To enable accesses to shared I/O devices in such an environment,
this paper provides an effective model that the co-existence of any application
does not hinder the execution of IO operations or spatial and temporal require-
ments of other applications. The model utilizes a microkernel-based approach
to regulate the work of drive drivers and thus integrate the device-sharing
model with the microkernel.

1 Introduction

Strongly partitioned real-time system (SP-RTS) supports co-existence of multiple
execution partitions for various mission critical and time critical applications. All
these integrated applications are guaranteed to meet their timing and space require-
ments while sharing resources with other applications [1, 2]

Partitioning the system is one of the common ways to provide such a guarantee.
Partitioning aims at controlling the additional hazard created when a function shares
its processor and resources with other functions. Traditionally, partitioning has meant
separating the memory available in a system such that one partition cannot change or
affect the state of other partitions. But real-time applications have their own timing
requirements, which require broadening this common definition of partitioning to
include time as a critical component of a partition and to have two different compo-
nents [3, 4]:

 Temporal partitioning: to ensure that the service received from shared resources
by the software in one partition is not affected by the ones in other partitions.

 Spatial partitioning: to ensure that software in one partition cannot change the
software or private data of another partition nor command the private devices of
other partitions.

Existing real-time OS such as WindRiver’s vxWorks AE653 and Green Hill’s In-
tegrity-178B provide the platform to support partitioning for safety critical ARINC

Sharing I/O in Strongly Partitioned Real-Time Systems 503

Application
Tasks

User Level
Device Driver

Application
Interface

I/O Layer

Hardware
Devices

Supervisor Level
Driver Routines

I/O Partition Application Partition

Core OS
Processor

Core OS

Partition
OS

Application
1

Partition
OS

Application
1

Partition
OS

Application
1

653 applications [5]. For instance, as shown in Figure 1, vxWorks AE653 includes a
core OS based on vxWorks AE kernel which interacts directly with the computing
platform (core module) and a partition OS based on vxWorks 5.5 Wind kernel. Parti-
tioning support is provided inside the vxWorks AE kernel and a special private mes-
sage-passing interface is available between the vxWorks 5.5 kernel (running in the
partition) and the vxWorks AE kernel (running as the Core OS).

Fig. 1. vxWorks AE653 OS and Device Driver Models

This architecture involves a two level scheduling policy. A special partition layer
is provided to serve the APEX (application executive) calls which requires interaction
with the Core OS. Also, a fixed number of kernel threads are implemented to limit the
number of blocking kernel calls by a partition at any given point of time [5].

vxWorks AE653 model implements a special I/O partition to accommodate various
input/output devices. This partition is isolated from the application partitions and
implements a user level device driver. Any application partition that wants to use an
I/O device communicates to this partition using the ARINC ports. But the communi-
cation between the I/O partition the Core OS is done only in supervisor mode. This
prevents any uncertified code from impacting the Core OS or application partitions,
thus guaranteeing the spatial and temporal partitioning requirements of SP-RTS [5].

The multiple-layered kernel approach in [4, 5] is one of the most common ap-
proaches towards partitioning. It is preferred because of its clean design in terms of
satisfying spatial and temporal partitioning requirements. This seemingly simple and
elegant model seems to suffer some serious problems the moment we employ a parti-
tion to operate a shared hardware which is open to the outside world for interruption
and that requires mediation from the CPU for its proper functioning. For instance, an
invocation of IO operation can only be processed when the IO partition is scheduled.
This results in a longer latency and limits IO bandwidth. Or on the other hand, if an
IO partition is scheduled frequently, the context switch overhead may become signifi-
cant.

In this paper, we propose a device driver model that can be implemented for SP-
RTS models to allow the application partitions to share and access the devices. After
presenting the design objectives for shared I/O devices in Section 2, the architecture

504 Ravi Shah, Yann-Hang Lee, and Daeyoung Kim

design and components are illustrated in Section 3. In Section 4, we show an experi-
ment result in a simulated implementation. A short conclusion follows in Section 5.

2 Shared I/O Design Objectives

While dealing with shared I/O devices, the following issues need to be considered
and solved:

1. Authorized Access: Not all partitions in the system might require access to the
input/output devices. In this case, it is imperative that only the partitions that
need to share particular devices are allowed to share those devices.

2. Independent Functionality: Despite the presence of shared devices on the system,
the partitions should remain unaware of this fact, and should behave and perform
as if no devices were shared.

3. Spatial Partitioning: Shared devices should not become a source of breaking the
strong spatial partitioning of the system.

4. Temporal Partitioning: Any kind of time stealing of a partition from any other
device being shared by other partition should be taken care for. That is, proper
accounting of the time used by the shared devices should be done.

5. Predictable timing constraints for I/O: Despite the I/O paradigm (synchronous or
asynchronous), it is imperative that proper timing guarantees are given to the par-
titions for finishing I/O operations [6]. Also, proper mechanisms should be in
place so that the partitions can query device status.

3 Design of Shared I/O Architecture

The design of the system is based on the architecture of multiple-layer kernel such as
SPIRIT [4] and vxWork AE653 [5]. The design tries to address all the issues that are
introduced in SP-RTS due to the use of shared I/O devices in the system. Note that at
microkernel level, partitions are scheduled by a cyclic scheduler. The partitions can
have their own scheduling policy to schedule the tasks that run inside it. Following
are the major components of the architecture as shown in Figure 2.

3.1 Publish-Subscribe Architecture

The microkernel supports a “publish-subscribe architecture” similar to the one used in
[4] to help in controlling the access to the device by authorized partitions. The mi-
crokernel constructs a “publish table”, where it makes an entry for all the devices and
device names that are registered for the device. On receiving a request from the parti-
tion to subscribe to a device, a memory device is created inside the partition, and an
entry is made for this device in the subscription table.

Sharing I/O in Strongly Partitioned Real-Time Systems 505

3.2 Pseudo-device Driver

Pseudo device driver is a layer of software inside the partitions to support read-
ing/writing or any normal device driver function into memory space rather than an
actual physical device.

One memory device is added inside the partition for every shared device that the
partition has subscribed to using the “Publish-Subscribe Architecture”. The partition
is aware of only the memory devices, i.e., it assumes the memory device to be the
physical device and performs all the operations on it as if it were being done on the
physical device.

The microkernel also uses this device driver layer to read the data that partition
wants to transfer to the device and then perform the actual transfer of that data to the
device. It is also used to provide the partitions with the data that is coming from the
device for the partition. The pseudo device maintains multiple pointers inside it so as
to perform all its tasks. Two circular queues are adopted to support the communica-
tion with the microkernel. The circular queues do not allow any overwrite of data in
order to simulate the FIFO property generally present inside the devices.

Fig. 2. Shared I/O Architecture in SP-RTS

3.3 Device Queues

Inside the microkernel, device queues (one per physical device) are maintained to act
as a buffer for storing the data that is received from the device. These queues are
assumed to be large enough to accommodate all the data that can arrive from the
device before being transferred to the partition. The physical devices are configured
in interrupt driven mode in the system. Once receiving any data, the device sends an
interrupt to the CPU that is served through the device specific ISR.

Both these responsibilities are properly performed by the system using the device
queues and low overhead ISRs. ISR simply transfers data from the physical device to
the corresponding device queue. The time that it takes for the ISR to transfer the data
from device to the device queue is accounted in the time of all the partitions that are

IS

device schedule

pseudo
device

pseudo
device

Partition OS

pseudo
device

pseudo
device

Partition OS

pseudo
device

pseudo
device

Partition OS

user space

kernel space

device 1 device 3 device 2

device queue

device driver

506 Ravi Shah, Yann-Hang Lee, and Daeyoung Kim

sharing this device. Though this mechanism introduces some overhead in terms of
extra copying of the data, but it can minimize the time the ISR takes to transfer data.

3.4 Device Scheduler

It is a layer inside the microkernel that is responsible for transferring data from a
pseudo device to its corresponding physical device, and from the device queues to the
pseudo devices inside the partitions. The device scheduler is given its own time slices
on the basis of IO bandwidth and scheduling policy that is defined at the system de-
sign time. The goal of this layer is to serve the application partitions and the devices
in such a way that the partitions always get the requested IO bandwidth.

There are multiple ways in which the device scheduler can be scheduled. If the de-
vice scheduler is scheduled in partition context switch instants, then this type of
scheduling is called “interleaved scheduling”. It is desirable that the time for which
the device scheduler is scheduling is directly proportional to the total buffer size of all
the pseudo devices (corresponding to the shared physical devices) of preceding and
succeeding partitions. This will give the device scheduler enough time to transfer all
the data from the pseudo devices to the physical device, and also to transfer all the
data from the device queues to the corresponding pseudo devices.

4 Experiment

The experiment is based on vxWorks RTOS that acts as supplement for the microker-
nel present in an actual SP-RTS. The prototype implementation therefore is a simula-
tion of device sharing in SP-RTS. A cyclic scheduler is implemented as a task run-
ning on vxWorks, which schedules various partitions of the system. Also, device
scheduler and device queues are implemented on vxWorks.

Along with the pseudo device drivers, the drivers for the physical device are also
implemented. The reference implementation uses two device drivers - an IEEE 1284
parallel port device driver and a PCI based joystick device driver. The ISR routines of
the device driver are written into the device queues as mentioned in section for device
queues. While the parallel port can be configured in both read and write mode, the
joystick can be configured only in read mode.

Readings are taken by varying different parameters like the number of partitions,
number of devices, device bandwidth (i.e. the maximum amount of data that the de-
vice can transfer per unit of time). Figure 3 shows that given a fixed device scheduler
time slice (i.e. total device bandwidth of all the shared devices), per device bandwidth
decreases non-linearly with increasing number of shared devices in the system.

5 Conclusion

The proposed middleware based approach to share input/output devices can be a
practical and efficient solution in SP-RTS architecture. The system design addresses

Sharing I/O in Strongly Partitioned Real-Time Systems 507

the two most important goals of SP-RTS while sharing the I/O devices. Spatial parti-
tioning is achieved by introducing new components at pseudo-device layer and device
scheduler layer. Temporal partitioning is accomplished by properly accounting the
time taken for serving the I/O devices to the responsible partition. By considering the
total bandwidth of all the pseudo devices that are created inside the partitions, time
slice for device scheduling can be determined.

Fig. 3. Sharing of device bandwidth with multiple devices

References

1. Y. H. Lee, D. Kim, M. Younis, J. Zhou and J. McElroy, Resource scheduling in dependable
integrated modular avionics, Proceedings of IEEE International Conference on Dependable
Systems and Networks, June 2000.

2. Y. H. Lee, D. Kim, M. Younis and J. Zhou, Scheduling tool and algorithms for integrated
modular avionics systems, Proceedings of IEEE/AIAA Digital Avionics Systems Conference,
October 2000.

3. John Rushby, Partitioning in avionics architectures: requirements, mechanisms, and assur-
ance, NASA Contractor Report CR-1999-209347, June 1999.

4. Y. H. Lee, D. Kim and M. Younis, SPIRIT-microkernel for strongly partitioned real-time
systems, Proceedings of the 7th IEEE Conference on Real-Time Computing Systems and
Applications, Pages: 73 - 80, November 2000.

5. Paul Parkinson, Safety-critical software development for integrated modular avionics, Win-
dRiver White Paper, 2003.

6. Mark H. Klein and Thomas Ralya, An analysis of input/output paradigms for real-time
systems, Technical Report, CMU/SEI-90-TR-19, July 1990.

Fixed device scheduler time

0
200
400
600
800

1000
1200

1400
1600

1 2 3 4 5
Number of devices

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 508-513, 2005.
 Springer-Verlag Berlin Heidelberg 2005

The Efficient QoS Control in Distributed Real-Time
Embedded Systems

You-wei Yuan1,2, La-mei Yan1, and Qing-ping Guo2

1 Department of Computer Science and Technology, ZhuZhou Institute of Technology,
(ZhuZhou, HuNan, 412008, China)

2 School of Computer Science and Technology, Wuhan University of Technology,
(Wuhan, 430063, China)

y.yw@163.com

Abstract. Developing distributed embedded systems based on Internet and
Web technologies is a relative new trend in computer technologies. The paper
shows the tree-layer client-server model in developing web-based distributed
embedded systems. It also presents a model-driven approach for generating
quality-of-service (QoS) adaptation in Distributed Real-time Embedded (DRE)
Systems. Our control task model consists of the target task to be controlled, the
adaptation task that implements the control algorithm. We have built a proto-
type of a middleware system which verifies our control model and shows the
soundness of our approach. A detailed experimental analysis is also presented
in this paper.

Key Words. Quality of Service (QoS); Real Time; Embedded Systems; Dis-
tributed Computation

1 Introduction

Day by day, we are witnessing a considerable increase in number and range of appli-
cations which entail the use of embedded computer systems. This increase is closely
followed by the growth in complexity of applications controlled by embedded sys-
tems, often involving strict timing requirements, like in the case of safety-critical
applications. Developing distributed embedded systems based on Internet and Web
technologies is a relative new trend in computer technologies. It gives a common and
well-known interface to the client (web browser) and a standard way for communica-
tion between devices.

Currently, embedded systems become more and more important and widely applied
to everywhere around us, such as a mobile phone, a PDA, and an HDTV. [3]. In dis-
tributed real-time embedded systems, the communication time delay of remote
method invocation has to be considered in real-time constrains. The underlying
choice of transport mechanism (protocols and networking hardware) has a significant
impact on overall system performance.

There exist many heuristic algorithms to do QoS adaptation utilizing buffering ap-
proaches [1], smoothing algorithms [2], acknowledgment-based approaches [3], pri-

The Efficient QoS Control in Distributed Real-Time Embedded Systems 509

ority-based algorithms [4] and others. All these algorithms present possible system
mechanisms, protocols, policies, hence partial solutions regarding how to deal with
QoS adaptation, but they do not present a viable model and framework for QoS adap-
tation which allows to reason about QoS adaptation properties such as stability, agil-
ity and fairness, and to introduce new adaptation algorithms in an integrated and
scalable fashion.

The paper shows the new tree-layer client-server model in developing web-based
distributed embedded systems. This framework approach has also proven its cost-
effectiveness in a number of industrial distributed embedded applications (primary
substations for electricity transport, airfield lighting system), and is now being ex-
tended to incorporate inter-site distribution aspects. Power consumption has always
been a primary design constraint for most wearable devices.

The rest of this paper is organized as follows. Section 2 presents three-layer client-
server model in developing distributed embedded systems. Section 3 introduces the
design of QoS adaptation in DRE systems. Section 4 describes the experiment results.
The paper ends with some concluding remarks in section 5.

2 Three-Layer Client-Server Model in Developing Distributed
Embedded Systems

With focus on current and future applications for the embedded web a central under-
lying principle is the Ethernet and TCP/IP protocol based communication.

The client-server model is the base model in developing internet-based information
systems. In this model client processes request data from the server or there are two
modules: client – the one that requests service, and server – the one that executes the
service. Communication between the client and the server is based on the exchange of
HTML (Hyper Text Markup Language) documents. Transportation of these docu-
ments is based on the protocol HTTP (Hyper Text Transfer Protocol). With focus on
current and future applications for the embedded web a central underlying principle is
the Ethernet and TCP/IP protocol based communication.

Figure 1 presents a conceptual framework of the proposed model. The object id,
and request count of the most frequently accessed objects are in the router’s memory.
The actual objects reside in the server’s cache. This approach is also related to Koho-
nen’s elf-organizing feature map [5] technique, which facilitates mapping from higher
to lower dimensional spaces so that the relationships among the inputs are mapped
onto high reliable outputs.

The target task, utilizing the control theory, can have the following form:

]),(),(),([)()(ttwtutxftx
dt

tdx
.

(1)

]),(),([)(ttvtxhtz . (2)

510 You-wei Yuan, La-mei Yan, and Qing-ping Guo

Fig. 1. A Conceptual Framework of our model

With the above definition, the target task is said to be at equilibrium when:

]),(),(),([0 ttwtutxfx .
(3)

where x denotes the vector of task states, u is the vector of controllable input parame-
ters, z represents the vector of observed output parameters of the task, w is the uncon-
trollable variations in the task, and v denotes the observation errors.

The above stated definitions are generic and may be non-linear, time-varying, and
too complex to derive a suitable control algorithm. Hence, in order to speed up and
simplify the control, we will approximate the task control path by piecewise linear
functions and work with target task model as follows:

)1()1()1()(kwkukxkx . (4)

)()(kHxky . (5)

)()()(kvkykz . (6)

The Efficient QoS Control in Distributed Real-Time Embedded Systems 511

3 The Design of QoS Adaptation in DRE Systems

Figure 2 shows QoS adaptation in Distributed Real-time Embedded Systems. The
Lowest layer shows an abstract picture of a heterogeneous computing platform con-
sisting of multiple devices connected over wire-line/wire-less communication links.
The second layer shows the Architecture description of such a platform, and resource
constraint description of the application requirements (such as power budget, real-
time constraints etc.). The compiler (to be developed) takes the application functional
specification, the ADL and RDL generate the services, and middleware configuration
shown in the second highest layer, and their deployment information across the plat-
form. [6]

Fig. 2. QoS Adaptation In Distributed Real-time Embedded Systems

We design a hybrid control framework, consisting of a linear PID controller and a

fuzzy controller. It is effective for maintaining the stability of the critical QoS pa-
rameter. This framework presents a feasible solution for QoS adaptation in distrib-
uted middleware systems.

Key features in this adaptation layer include (1) support for prioritized scheduling
by partitioning requests for different QoS requirement into different threads and ser-
vicing these threads through different endpoints, (2) support for initializing endpoint

512 You-wei Yuan, La-mei Yan, and Qing-ping Guo

QoS properties, such as bandwidth reservation and flow pacing, and (3) support for
portable scheduling control. Our concrete task control model for QoS adaptations
must withstand not only minor fluctuations in shared resource availability, but also
large changes.

4 Experimental Results

In this section, we present the results of our work. We discuss the performance of our
algorithm for clustering. We compare performance of our algorithm with that of the
K-Means clustering algorithm [1]. The tests are conducted using a Gateway PC with
two 1.3GHZ P4 CPUs running Microsoft Windows 2000 and an Ultra- SPARC with
four 300MHz UltraSparcs running SunOS 5.7. We compile the test on NT using
Microsoft Visual Studio with Service Pack 3 and on Solaris using egcs version
2.91.60, but using full optimization. There are several things that make this a complex
and challenging problem (i.e., the real-time requirements, resource constraints, and
the distributed nature). Given these complex requirements, a QoS-enabled middle-
ware solution has been proposed for this application [4]. Due to the highly dynamic
nature of the application scenario, the adaptation of the QoS properties is mandatory.
In this application, the goal of QoS adaptation is to minimize the latency on the video
transmission. There are several ways of reducing the transmission rate: a) reduce the
frame rate by dropping frames, b) reduce the image quality per frame, or c) reduce the
frame size. In the example of this section, we consider dropping the frame rate only.

 Figure. 3 shows: with no adaptation, almost all of the frames sent while the system
is under load are lost. With a partial reservation and frame filtering, the middleware
drops less important intermediate frames, but successfully delivers all full content
frames (i.e., I-frames). With a full reservation, all frames are delivered successfully.

Fig. 3. Predictability of Image Delivery using Network Reservation

The Efficient QoS Control in Distributed Real-Time Embedded Systems 513

5 Conclusion

This paper presents an approach based on Model-Integrated Computing for simulat-
ing and generating QoS adaptation software for Distributed Real-time Embedded
systems. As our work becomes more completely integrated with common middleware,
which is complemented with appropriate resource management binding and schedul-
ing services and policies, it enables a new generation of flexible DRE applications.
The key focus of the approach is on raising the level of abstraction in representing
QoS adaptation policies, and providing a control-centric design for the representation
and analysis of the adaptation software. Using a model-based representation and
employing generators to create low-level artifacts from the models, we have been
successful in raising the level of abstraction, and providing better tool support for
analyzing the adaptation software. At the same time, our approach results in increased
productivity since we shorten the design, test, and iterate cycle by providing early
simulation and analysis capabilities, and facilitate change maintenance as minimal
changes in the models can make large and consistent changes in the low-level (CDL)
specifications.

Acknowledgements

The work is supported by NSFC (Grant No: 60173046). And it is also supported by
the science foundation of Hunan province ministry of finance and education.
(No.04C717)

References

1. M. Shor, K. Li, and J. Walpole, “Application of Control Theory to Modeling and Analysis of
Computer Systems,” in Proceedings of Japan-USA-Vietnam Workshop on Research and
Education in Systems, 2000

2. G. Cao, W. Feng, and M. Singhal, “Online VBR Video Traffic Smoothing,” in Proceedings
of 8th IEEE International Conference on Computer Communications and Networks, 1999,
pp. 502–507

3. Z. Chen, S. Tan, R. Campbell, and Y. Li, “Real Time Video and Audio in the World Wide
Web,” in Proceedings of Fourth International World Wide Web Conference, 1995

4. H. Chu and K. Nahrstedt, “CPU Service Classes for Multimedia Applications,” in Proceed-
ings of IEEE International Conference on Multimedia Computing and Systems, 1999

5. T. Kohonen, “Self-Organization and Associative Memory”, 3rd ed. Berlin: Springer-
Verlag, 1989

6. Radu Cornea1, Nikil. Dutt1, Rajesh Gupta2, Ingolf Krueger2, Alex Nicolau1, Doug
Schmidt3, Sandeep Shukla4: FORGE: A Framework for Optimization of Distributed Em-
bedded Systems Software. http://www.cs.wustl.edu/~schmidt/PDF/ipdps03.pdf

An Efficient Verification Method for

Microprocessors Based on the Virtual Machine

Jianfeng An, Xiaoya Fan, Shengbing Zhang, and Danghui Wang

Northwestern Polytechnical University, China

Abstract. This paper presents an efficient verification method for mi-
croprocessors based on virtual machine. Under memory and I/O device
models provided by the virtual machine, our simulation tool can not
only simulate test programs but also operating systems. This simula-
tion environment is close to the real environment of microprocessors, so
it is sufficient for functional verification of microprocessors before tape
out. At the same time, our simulation tool can automatically compare
the simulation results using the virtual machine as reference model and
find the error positions. This method takes full advantage of the virtual
machine and greatly improves speed and efficiency of the verification
procedure. This method has been successfully applied in the verification
of an embedded microprocessor Amex86 designed in our laboratory for
six months by five persons.

1 Introduction

As the development of high performance microprocessors, the computer architec-
ture becomes much more complex. One of the most difficult problems designers
face is how to verify the correctness of the designs. Using corner cases to test de-
signs is a mostly manual process, where completion is hard to judge. Experience
shows that the errors that are caught late in the design, many post-silicon, are
interactions between different components in very improbable corner case situa-
tions [2]. Therefore, we must find suitable methods to ensure the correctness of
a design.

The verification methods can be divided into two kinds: formal methods
or simulation methods. For complex digital circuits, formal methods cannot be
easily used because of the large state space. Therefore, simulation methods are
often used in the engineering area [1]. In this paper, we use the method based on
simulation. Many researchers do much work on this area. Some existent simula-
tion tools include SimpleScalar [3], ASIM [4] and RSIM [5], etc. However, these
simulation tools focus on the computer architecture research. They can only
run the benchmark programs such as SPEC95/2000. This is sufficient for the
performance evaluation, but insufficient for the microprocessor verification. For
the microprocessor verification, the simulation tools must simulate as many pro-
grams in the real operational environment as possible, including the operating
systems [6].

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 514–521, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Efficient Verification Method for Microprocessors 515

Therefore, we must set up a simulation environment, which is close to the
real environment of microprocessors. In this paper, we present a method based
on virtual machine. The virtual machine can not only provide memory and I/O
device models for simulating the operating systems, but also reference models
for target design. The simulation tool can automatically compare simulation
results using the virtual machine and find error positions. This method takes
full advantage of the virtual machine and greatly improves speed and efficiency
of the verification procedure. It has been successfully applied in the verification
of an embedded microprocessor Amex86 in our laboratory.

Amex86 is an embedded microprocessor designed by Northwestern Polytech-
nical University. Its instruction sets are compatible with Intel 486 DX2 micro-
processor [7]. In Amex86, there are more than 200 instructions. And every in-
struction’s operand can have different choices: registers, immediate or memory;
8 bits, 16 bits or 32 bits operand size. If the operand is in memory, the ad-
dress mode can also have different choices: direct mode, register indirect mode
or others; 16 bits or 32 bits address size. Amex86 support three work modes: real
mode, protected mode and virtual 8086 mode. Some instructions have different
behavior under different mode. For the memory management, Amex86 supports
segment and paging, which is managed by operating systems. Amex86 also sup-
ports internal exceptions and external interrupts. All of above functions should
be verified carefully.

According to the function of Amex86, we divide the verification into two
parts: instructions verification and system verification. The former emphasizes
the verification of every instruction’s function under different operands or dif-
ferent modes. The later emphasizes the verification of the whole architecture’s
function under operating systems, including memory management, exceptions
and interrupts, etc. We use the verification method based on the virtual machine
Simics [8] to accelerate the whole procedure and complete the whole verification
for six months by five persons.

In the following part, Section 2 introduces the Amex86 verification based on
the virtual machine Simics. Section 3 analyzes the verification coverage based
on coverage rules. Section 4 draws a conclusion and points out the future work.

2 The Amex86 Verification Based on the Virtual Machine
Simics

The key in the simulation verification is generation of test benches and check of
the simulation results.

For the microprocessor verification, the test bench is equivalent with test
instructions. Many researchers do much work to automatically generate test
instructions. However, the instruction sets of Amex86 are very complex. The
differences of instruction functions, instruction lengths and instruction codes is
enormous. The auto generation of test instructions is very difficult.

According to the characteristics of Amex86’s instruction sets, we can divide
them into arithmetic and non-arithmetic instructions. For the former ones, we

516 Jianfeng An et al.

must verify both the arithmetic result and EFLAGS, which is interrelated with
the operands and executed sequentially. We use random generation methods to
create possible operands to test. For the latter, non-instructions are not interre-
lated with operands and not executed sequentially. Manual generations of test
benches are necessary.

2.1 Random Generation of Arithmetic Instructions Based on
Templates

Random generation of arithmetic instructions is based on templates. Templates
contain the information of instruction format and possible operands. For exam-
ple, part of the MOV instruction’s template is as following:

//MOV
//Register to Register/Memory
1000000 w mod reg r/m
//Immed to register (Short format)
1011 w reg immed

Every template starts with a new line (// implies a remark line). Templates
can use numbers to present an instruction’s code. Templates can also use signs
to present a variable operand. In the upper example, w means 0 or 1 and reg
means any number between 000 and 111 in binary.

The instruction generator will identify the variable part in the template and
generate a random value. All possible values could be generated as long as the
simulation time is long enough.

2.2 Manual Generation of Non-arithmetic Instructions

The non-arithmetic instructions, such as the control transfer instructions and
operating system instructions, cannot be generated automatically, because these
instructions need special execution environment and particular execution se-
quences. However, these instructions are not interrelated with the values of the
operands. So we can generate all the test instructions and write the correspond-
ing test benches.

Both arithmetic instructions and non-arithmetic instructions are compiled
into standard EXE format in the MASM 611 compiler for the subsequent simu-
lation and verification.

2.3 Auto Check of Simulation Results

Because the test benches are very long, we must find some methods to check
the simulation result automatically. The best way is to compare Amex86 with a
functional model, such as Simics [8], Bochs [12], etc. We select Simics because
Simics provides plenty of API functions and flexible interfaces. We use socket

An Efficient Verification Method for Microprocessors 517

Fig. 1. Automatically check simulation results with Simics

as the communication method between the simulation tool ModelSim and the
virtual machine Simics, as shown in Fig 1.

As a whole, the simulation environment is composed of the simulation tool
and the virtual machine. The simulation tool can simulate the Amex86 VHDL
codes. The virtual machine can provide the memory and I/O models and refer-
ence models. The whole simulation procedure is as following:

– 1.Put the EXE-format test program into DOS operating system installed in
the Simics.

– 2.Start Simics and Listen on the socket port 21.
– 3.Start ModelSim and connect on the socket port 21 with Simics.
– 4.Input simulation parameters, such as simulation start address, end address

and compare sizes etc.
– 5.Run Simics to the start address.
– 6.Synchronize ModelSim with Simics, including Amex86 inner registers and

Amex86 outer memory.
– 7.Let ModelSim run instructions specified by the compare sizes.
– 8.Let Simics also run instructions specified by the compare sizes.
– 9.Compare the simulation results between ModelSim and Simics and write

the result into the log file.
– 10.If there are severe errors (for example, EIP is different), goto 6.
– 11.If there are trivial errors (for example, EAX is different), force the correct

content in the ModelSim.

518 Jianfeng An et al.

– 12.If simulation arrives at the end address, simulation will complete. Other-
wise, goto 7.

The user can easily find errors in the log file and resume the error point
to observe the error conditions. A screen snapshot captured in the simulation
is shown in Fig 2. The Simics console in the top left corner can observe all
states in the virtual machine. The Simics output window in the down left corner
can observe the screen output. The ModelSim console in the top right corner
can observe the log file and find the time when errors happen. The ModelSim
waveform window in the down right corner can show the states in ModelSim.
The user can analyze the error causation with these information.

Fig. 2. A simulation snap using ModelSim with Simics

The simulation speed and corresponding simulation environment are shown
in Figure 3 and Table 1. We can see the relation between the simulation speed
and the compare size is nearly linear. At the earlier state in the verification, we
should use compare size 1 to compare every instruction’s execution result. After
most errors have been removed, we can increase the compare size to increase the
simulation speed.

An Efficient Verification Method for Microprocessors 519

Fig. 3. The simulation speed comparing with different instruction sizes

Table 1. The simulation environment

Item Configuration

PC Intel Pentium 4, Windows 2000 Professional, 1 G DDR
Simics 2.0.8
ModelSim 5.7e

3 The Amex86 Verification Coverage Analyze Based on
Coverage Rules

The chip scale is becoming larger and larger, so simulation of all possible inputs is
impossible and coverage analyze based on coverage rules is needed. For Amex86,
we use coverage analyze based on coverage rules to check if the verification is
complete.

According to the characteristics of Amex86, every instruction is decoded into
one or several microinstructions. So Amex86 can be regarded as a combination of
microinstructions and execution units. The coverage analyze should also include
microinstructions and execution units. ModelSim [9] can provide detail coverage
about the HDL, such as line coverage and condition coverage etc. So we can use
ModelSim to provide functional coverage of execution units.

However, ModelSim cannot count the execute time of every microinstruction.
We add some statistical code in the Amex86 test bench to collect this informa-
tion. The result is written into a text file which is formatted as following:

520 Jianfeng An et al.

0000:Y:1-2-3
0001:N:5-6-7-4001-4002-4003-8
... ...

The number indicates the microinstruction’s address, and Y or N indicates the
microinstruction is tested or not.

Using this method, we can get the coverage of the microinstructions and
execute units. We can add additional test benches according to the coverage
analyze result until both microinstructions coverage and lines coverage are 100%.

4 Conclusions and Future Work

Through the method in the paper, we finish all the verification work for six
months by five persons. As a result, we design a main board for the Amex86
microprocessor, whose interface is compatible with the PC104 system. We put
Amex86 and its mainland into an Xilinx Virtex2 xc2v8000 device. And we can
run DOS operating system steadily on the FPGA platform. Therefore, the veri-
fication result for Amex86 based on the virtual machine is successful. After the
final synthesis and layout, the Amex86 microprocessor will be taped out using
SMIC 0.18 um in this year.

This method is easily used for verification of other microprocessors’ design,
such as PowerPC, ARM, etc. We will continue to use it on another microproces-
sor, Longtium R2, designed in our laboratory, whose instruction sets are com-
patible with PowerPC 750. And We plan to use the Synopsys Vera tool to collect
the functional coverage and guide the verification procedure. This will make the
verification work more efficient.

5 Acknowledgement

We thank Shangang Zhang for discussions on the ideas in the paper. This work
is supported by the National Defense Pre-Research Project of the ”Tenth Five-
Year-Plan” of China under Grant No. 41308010307. We also thank the Virtutech
AB for Simics.

References

1. Cui Guangzuo etc.: System level simulation, emulation and debug method for
processors -a new method based HW /SW. Computer Research and Development,
China (2001)

2. Richard C. Ho, C. Han Yang, Mark A. Horowitz, and David L. Dill: Architecture
Validation for Processors. In the Proceedings of the 22nd International Symposium
on Computer Architecture, Santa Margherita Ligure, Italy (1995)

3. D. Burger and T. Austin: The SimpleScalar Tool Set, Version 2.0. University of
Wisconsin Computer Sciences Technical Report 1342 (1997)

An Efficient Verification Method for Microprocessors 521

4. Joel Emer,Pritpal Ahuja,Eric Borch,Artur Klauser,Chi-Keung,Luk Srilatha,Manne
Shubhendu S.,Mukherjee,Harish Patil,Steven Wallace,Nathan Binkert,Ann Arbor
Roger Espasa Toni Juan: Asim: A Performance Model Framework. IEEE Computer
(2002)

5. V. Pai, P. Ranganathan, and S. Adve: RSIM Reference Manual Version 1.0. Tech-
nical Report 9705, Department of Electrical and Computer Engineering, Rice Uni-
versity (1997)

6. Jian shen: Effective techniques for processor validation and test, PhD thesis. Uni-
versity of TEXAS at AUSTION (1999)

7. Intel: Embedded Intel 486 processor family developer’s manual.
http://www.intel.com (1997)

8. Simics: http://www.simics.net/
9. Model Technology: ModelSim Foreign Language Interface.

http://www.model.com/
10. Altera: Quartus II Device Handbook. http://www.altera.com/
11. Anthony J.Massa: The debug method and skill using ROM monitors.

http://www.eetchina.com/art 8800312705 617681,617693.htm (2003)
12. Bochs: http://bochs.sourceforge.net/
13. Carl J. Mauer, Mark D. Hill and David A. Wood: Full-System Timing-First Sim-

ulation. The 2002 ACM Sigmetrics Conference on Measurement and Modeling of
Computer Systems (2002)

14. Joon-Sco Yim,Chang-Jae Park, Woo-Seung Yang: Verification Methodology of
Compatible Microprocessors. The proceedings of 34th Design Automation Con-
ference (1997)

15. Junqiang Hu, Jinsheng Li, Peilin Hong: The FPGA verification based ModelSim
FLI interface. Application of electronic technique Vol.28 No.7, China (2002)

16. John Morris: Reconfigurable Logic: A Saviour for Experimental Computer Archi-
tecture Research. The 8th Asia-Pacific Computer Systems Architecture Conference
(2003)

17. Christopher Giese etc.: Protected mode demo code.
http://www.execpc.com/ geezer/os/ (1998)

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 522-527, 2005.
 Springer-Verlag Berlin Heidelberg 2005

EFSM-based Testing Strategy for APIs Test of
Embedded OS

SongXia Hao, XiChang Zhong, and Yun Wang

 Hopen Software Engineering Co.,Ltd.
No.4 Southern 4th St, ZhongGuanCun, P.O.Box 2717 Haidian District,

Beijing 100080, P.R. China
{sxhao,ywang}@hopen.com.cn

xczhong@sec.ac.cn

Abstract. In this paper, we present a two-phase approach to generate test data
for the EFSM model of an embedded operating system. We first build the
EFSM model of the system. The model can then be used to automatically
generate test data for testing of APIs. We also point out certain issues that need
further study.

1 Introduction

With advanced computer technology, systems are getting larger to fulfill more
complicated tasks, but at the same time, they are also becoming less reliable. While
many software test techniques are eminently sensible and extremely useful, they often
have no real theoretical basis. This has encouraged the view that software testing is an
imprecise process that is more of an art than a science [1]. The most promising
approach is using both formal methods and software testing. In recent years a new
consensus has developed that formal methods and testing are seen as complementary.

Because of the constraints on the amount of time and effort that can be spent in
testing, the automation of test derivation becomes a very important issue. In this
paper, we also present a new algorithm to generate the test data automatically from
our model.

The rest of the paper is organized as follows. In Section 2, basic concepts and
notions are introduced, and the EFSM model is presented. Section 3 discusses the
feasible path problem, and describes the algorithm for automatic test data generation.
We conclude in Section 4 by discussing possible future topics.

2 Formalization of Hopen APIs

Because of the complexity of systems, it is often proposed to use the formal
techniques to support the automation of the testing. Among the formal description
techniques, a shared drawback is the inadequacy to take into account systems of

EFSM-based Testing Strategy for APIs Test of Embedded OS 523

industrial size, where data are widely used. Thereafter, research studies have been
based on the models extended with data and related concepts such as parameters,
variables and operation on data. In this paper, we choose the EFSM (Extended FSM),
a very powerful model for verification and test derivation [2].

2.1 Basic Concepts

We first define all the objects of an EFSM, and introduce the necessary notations.
Definition 2.1. An extended finite state machine (EFSM) M is a 4-tuple

M = (I, O, S, T) . (1)

where I, O, S, and T are finite sets of input symbols, output symbols, states, and
transitions between states from S respectively, such that each transition t T is a 6-
tuple (s, x, P, op, y, s), where

 s, s S are the initial(current) and final(next) states of the transition,
respectively;

 x I is input, I is the set of all possible inputs, and more formally I is the set of
all input vectors, Dxi is the domain of input variable xi;

 y O is output, O is the set of all possible output vectors y = (d1, d2,…,dm) such
that di Dyo where Dyo is the domain of output variable yo;

 P, op are functions, defined over input vectors, namely,
P: Dxi {True, False} is a predicate;
op: Dxi Dyo is an output vector function.

We present some conventions to simplify the notations for transitions. Specifically,
we normally use (s—x,P/op, y s) to denote a transition t T. If, in t, P is a True
constant, P can be dropped from the transition. At the same time, the output parameter
function can only be absent when output y has no output parameters at all.

2.2 EFSM Model

Hopen OS [3] is an RTOS running applied in many applications. We will use it as an
example to discuss our approach. Due to the space, we use the event module for
illustration, which is shown in Fig. 1, though the system is modeled as a collection of
EFSMs. Events in Hopen OS represent one synchronization mechanism. Tasks
waiting for events move to the ready state if any requested event is received. Events
can only be cleared by the tasks to which they are assigned.

In Fig.1, our working example has 4 states and 37 transitions. The input is the 5
API names of the event module, and the output is the return value of the function
(retval). The retval has one parameter errno (error number provided by the function).
S = {s0,s1,s2,s3}, where s0 is the initial state, s1 is an event with no task waiting, s2 is
an event with waiting task, s3 is a destroyed event with waiting task. The input set
includes all the API functions [4] of event module, where I = {CreateEvent,
DestroyEvent, OpenEvent, WaitEvent, SetEvent} (we use CE, DE, OE, WE, SE for
short). Transitions with the input CE are represented as t11,t12,…,t18, DE as t21,…,t26,
and so on as the sequence in set I. One may notice that t61 is denoted as a dashed line

524 SongXia Hao, XiChang Zhong, and Yun Wang

in Fig.1, which means that all the event calls finish and return to the initial state. The
descriptions of the transitions are listed in Appendix A.

Fig.1. EFSM model of Hopen

3 Test Generation

Testing consists of a number of execution scenarios of a system implementation
against a selected set of test cases, called a test suite. In this section, we will describe
an algorithm to automatically generate test data [5] for the traversal of a given path in
the model in section 2.2.

3.1 Reachability Analysis

In EFSM testing, not all the generated paths are feasible. For some subsequences of
the paths may not be executable because the transition enabling predicates (also called
constraints) along the path cannot be satisfied with any inputs. Reachability analysis
could eliminate the problem, which will result in the reachable tree of the model.

The reachable tree of an EFSM is a tree showing the behavior of the machine
starting from all possible initial states under all possible input sequences. For every
input sequence, the tree contains a path starting from the root, and every node is
annotated with the corresponding current (and/or initial) transition.

The reachable tree is also a directed graph, and thus graph theoretic concepts and
algorithms can be used in the analysis of EFSM’s. For example, we may want to visit
the nodes (transitions), record the order of the visit, and explore the structure of the
graph such as its connectivity properties. This can be done by a depth-first search
(DFS) or breadth-first search (BFS).

To make the analysis, we first introduce some definitions.
Definition 3.1 A (specific) path [5] is a sequence of nodes p = <p1, p2,…, pn>,

where pn is the last node of path p. Whenever the execution of P(x) traverses a path p,
we say that x traverses p. A path is (absolutely) feasible if there exists an input x S
that traverses the path.

EFSM-based Testing Strategy for APIs Test of Embedded OS 525

The EFSM in Fig.1 has 55 paths. Based on the above definition, path (t14,t35),
(t15,t17),and the paths begin with (t15,t36) are infeasible. Fig.2. shows the reachable tree.

Fig. 2. Reachable Tree of Fig.1

In this diagram, nodes represent the transitions in the EFSM. The black solid circle
is the initial node. We combine some nodes to make reduction, and represent them by
a grey solid circle. They are T1={t11,t12,t13,t21,t31,t32,t33,t41,t51}; T2=
{t16,t24,t43,t44};T3={t18,t46,t53,t54,t55,t56};T4={t22,t34,t42,t52};T5={t47,t57};T6={t48,t49}.

3.2 Test Generation Algorithm

Typically we wish to produce a set of input sequences among which satisfy some test
criterion. To satisfy a criterion, we often generate a set of paths from the EFSM first,
and then generate test data for each path.

When testing an EFSM, the extended data portion has to be tested also to
determine the behaviors of the implementation. That means both control and data
flow techniques should be combined in the EFSM testing. From this opinion, the
traditional methods for testing FSM are no longer adequate. We now give a detailed
algorithm for generating the test data for execution of a given path in the reachable
tree.

 It is an iterative algorithm. In each iteration, we:
Step1: Finding all the feasible paths in the reachable tree.
Step2: If the transition sequence of one path is the sub-path of another, remove this

path. Each selected path corresponds to an explicit test purpose. Then, group the paths
by test purpose.

Step3: To form an independent and executable test case, it is necessary to append
some statements (e.g. the judgment of test verdict). All the test cases make up the test
suite.

Some transitions in Fig.2 can be partitioned by their data attribute. For example, t33
and t53 include two cases when event handle={-1,32}, while t44, t54 include three cases

526 SongXia Hao, XiChang Zhong, and Yun Wang

when event handle={0,1,2}. Applying the algorithm discussed above, 59 test cases
are generated. According to their actions on event, we classify them into 5 groups (the
first five lists in Table 1), and the others are in the group Other.

Table 1. Test Suite of Event Module

Group Creation Destroy Opening Waiting Setting Other
Number
of Cases 8 7 8 19 15 2

To illustrate the algorithm, we select the path {t0,t14,t17} in Fig.2 for demonstration.

It is a feasible path, so go to step 2. The test purpose of this path is to verify the error
handling when creating an existed event. In step 3, add the verdict judgment.

The test case generated from the path {t0,t14,t36} is shown below.
1) Call CreateEvent with a specific key parameter, if fail, go to 6);
2) Call OpenEvent with the same key value with 1), if fail, go to 6);
3) Call DestroyEvent to destroy the event created in 1);
4) Output the verdict PASS and return;
5) Output the verdict FAIL and return.
The algorithm is actually the DFS (Depth-first search) of the reachable tree. So the

space our algorithm needs is only b*m nodes, where b is the branch factor of the
reachable tree, and m is the maximal depth. The search time complexity is O(b^m).

4 Conclusion

In our two-phase approach, we first build the EFSM model of the system, and then
use the model to automatically generate test data for testing of APIs. Although we use
Hopen OS as an example, our approach is efficient and provides a practical solution
to generate test data for APIs test in any embedded OS. Further research is needed to
elaborate testing strategies combining the algorithm with various coverage criteria for
specifications in the form of other existing formal description techniques.

Acknowledgements

The authors thank Ms. Yue Gao for carefully reading the manuscript and providing
insightful and constructive comments.

References

1. Jonathan P. Bowen, Kirill Bogdanov, eds. IEEE Computer Society Press, (2002) 91-101.
2. Petrenko A., Boroday S., and Groz R. Confirming configurations in EFSM. Proceeding of

FORTE XII (1999).
3. Xi-Chang Zhong, Ni Zhang, Embedded Software and Hopen System, BUAA press (2004).

EFSM-based Testing Strategy for APIs Test of Embedded OS 527

4. Hopen 3.0 C library and API Manual, http://www.hopen.com.cn.
5. J. Edvardsson. A survey on automatic test data generation. ECSEL,(October 1999) 21-28..
6. B. Korel, Automated Software Test Data Generation, IEEE Transactions on Software

Engineering, Vol.16, No. 8, (1990) 870-879.

Appendix A: Transition Description Table of Fig. 1.

Name Description
t11,t21,t31,
t41,t51

(s0—x, invalid arguments /errno = EINVAL, -1 s1), x =
{CE,DE,OE,WE,SE}

t12 (s0—CE, no enough memory/errno = ENOMEM, -1 s0)
t13,t32 (s0—x, no file handle/errno = ENOMEM, -1 s0), x = {CE, OE }
t14,t18 (S—CE, valid arguments, handle s1) ,S={B,E}
t15 (s0—CE, valid arguments, handle s1)
t16 (s1—CE, too much ipc objects created/errno = EMFILE, -1 s1)
t17 (s1—CE, event existed/errno = EEXIST, -1 s1)
t22,t52 (s3—SE, event destroyed /errno = EIO, -1 s3), x = {DE,SE }
t23 (s0—DE, not event handle/errno = ENOTTY, -1 s0)
t24,t43,t53 (s1—x, invalid file handle/errno = EBADF, -1 S), x = {DE,WE,SE },

S={B,B,E}
t25 (s1—DE, valid arguments, 0 s3)
t26 (s2—DE, destroyed , NULL s3)
t33 (s0—OE, event not exist/errno = ENOTTY, -1 s0)
t34 (s3—OE, valid arguments/errno = ENOTTY, -1 s3)
t35 (s1—OE, event without name /errno = EINVAL, -1 s1)
t36 (s1—OE, valid arguments, handle s0)
t42 (s3—OE, valid arguments/errno = EBADF, -1 s3)
t44,t54 (s1—x, not event handle/errno = ENOTTY, -1 S), x = {WE,SE },S={B,E}
t45 (s2—WE, timeout 0, NULL s1)
t46 (s1—WE, time=0 /errno = EAGAIN, -1 s1)
t47 (s1—WE, time out/errno = ETIME, -1 s2)
t48 (s2—WE, timeout <0,NULL s2)
t49 (s2—WE, with other waiting task ,NULL s2)
t55 (s1—SE, event=0, 0 s1)
t56,t57 (S—SE, event 0 ,0 s1), S={E,W}
t61 (s3—all x I , all event calls return, NULL s0)

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 528-535, 2005.
 Springer-Verlag Berlin Heidelberg 2005

EmGen: An Automatic Test-Program Generation Tool
for Embedded IP Cores

Haihua Shen, Yunji Chen, and Jing Huang

Institute of Computing Technology
 Chinese Academy of Sciences

Beijing, China
{shenhh, cyj, huangjing}@ict.ac.cn

Abstract: Core-based system-on-chip (SoC) design is quickly becoming a new
paradigm in electronic system design due to the reusability of IP cores. How-
ever, the validation of IP cores is the most time consuming task in the design
flow. This paper presents EmGen, an automatic test-program generation tool
designed for embedded microprocessor cores. EmGen provides an configurable
formal specification model with heuristic knowledge, which can generate test
programs according to different configuration of microprocessors’ architecture,
a test generation scheme based on heuristic algorithms, which can efficiently
provide instructions in test programs, and validation testbenches, which support
simulation with generated test programs automatically and check the equiva-
lence of microprocessors and the specified instruction reference model. EmGen
is currently in use at ICT for the verification of embedded microprocessor
cores. Experiments results show that EmGen can improve verification process
and cut down skilled manpower obviously.

1 Introduction

Today, microprocessor vendors are suddenly clamoring to take the lead in offering
reusable IP cores ranged from North Bridge to 32-bit microprocessor cores — a trend
that promises to shorten the time to market and fill the design productivity gap due to
development of deep sub-micron technologies. Compared with general multimillion-
gate processors, embedded microprocessor cores pay more attention to low-cost and
other attributes such as flexibility and reconfigurability. Traditional design verifica-
tion comprises a large portion of the effort in designing a processor [1]. Simulation-
based verification tries to uncover errors of design by detecting circuits’ faulty behav-
ior when deterministic or pseudo-random simulation vectors are applied. Many prac-
tices involve in technologies to improve test generation and coverage analysis
[2][3][4]. Some papers are more concerned with comparison among those advanced
techniques within existing strategies of test generation. It indicates that using random
test bench to perform the directed testing is strongly recommended [5]. The primary
motivation of our work is to take advanced test generation technologies into practice
to adapt to the feature of embedded microprocessor cores’ verification. Although it
presents a set of new techniques to realize recommendation trends, the main contribu-

EmGen: An Automatic Test-Program Generation Tool for Embedded IP Cores 529

tion of our work is not in theory, but in describing how to translate this theory into
practice in a practical way, a task that is far from trivial.

This paper presents an automatic test generation tool named EmGen, which is able
to induce test programs according to design configuration for simplifying the process
of verification. EmGen is based on a previously developed configurable formal speci-
fication model with heuristic knowledge that can specify request from highly directed
tests to completely random ones according to the requirement of different microproc-
essor cores’ configuration and coverage metrics, a reference instruction set simulator,
which can provide accurate reference results for DUT verification in executable
framework, a test generation scheme with heuristic algorithms, which can efficiently
provide appropriate instructions based on the configurable formal specification
model, and validation testbenches, which support simulation with generated test pro-
grams automatically and check the equivalence of microprocessor cores and their
reference model [6]. EmGen’s uniqueness, when compared to general-purpose verifi-
cation tools in stimuli generation [7] [8], lies in the fact that both the generation
schemes and the validation testbenches it provides are oriented at the characteristics
of flexible and reconfigurable embedded microprocessors by high-level test program
generation. It has been taken into practice in the Institute of Computing Technology
of the Chinese Academy of Sciences for the verification of a 32-bit embedded micro-
processor core.

The remainder of this paper is as follows. In Section 2 & 3, we briefly describe the
configurable formal specification model and the heuristic test generation algorithms
used in EmGen. Then we present the validation environments and the framework of
EmGen in Section 4. Finally we present experimental results in Section 5 and give
some conclusions in Sections 6.

2 Configurable Formal Specification Model

Given an RT-level description of a microprocessor core, simulation-based verification
requires test programs and a simulator to simulate its execution. The goal we design
EmGen is to generate test programs automatically and effectively according to the
specified generation rules that describe the requirement of the configurable microar-
chitecture of embedded microprocessors and the verification plan precisely.

Test generation rules are hard to specify correctly, and yet are often critical and
beneficial that their specifications are correct, complete and unambiguous. Formal
specifications, based on using multiple constraints to collectively define the behavior
of test generation, promise to meet all requirements. Our formal specification is sum-
marized to four style rules.
The “adjustability” rule requires the instructions to be generated fully adapting to
different microarchitecture configuration of embedded microprocessor core.

Configurable microprocessor core is an emerging technology that takes the high
performance of many different asics or application specific standard products (assp)
into an application tailored embedded microprocessor core [9]. General options of
embedded microprocessor core configuration can be the size and organization of
cache & TLB, the usage of floating point units and multimedia units, the optional bus

530 Haihua Shen, Yunji Chen, and Jing Huang

interfaces of microprocessor core, the pipeline partition according to the requirement
of frequency and so on. According to the adjustability rule, the specification should
initialize all parameters in relation to the configuration of microprocessor, as well as
parameters of test program length and random seeds.

Constraints on microarchitecture configuration of embedded core are written in the
following forms:
. Config parameters

TLB 1
FPU 0
MMX 1
ICACHE 2
DCACHE 2

. End of config

.Pipeline stages

ALU_WB_STAGE 1
TLB_STAGE 1
MUL_WB_STAGE 1
RENAME_STAGE 0
FMUL_STAGE 3

. End of pipeline stages

The “random” rule requires the instructions with or without arrangements to be
generated randomly with configurable ratio. Based on the random rule, instruction
specifications should be written with appropriate ratio.
The “flexibility” rule requires the instructions to be generated in configurable styles
from pseudorandom groups with different seeds to totally directed sequence with
strict constraints.

Separated by operands, allowed instructions are divided into four groups. I type
includes instructions with only two src operands and dst operand in registers. M type
includes instructions that access memory resources. J type & B type are all instruc-
tions whose target is to change program counters. The difference between them is that
instructions in B type have branch conditions and those in J type have not. Function
I/M/J/B (instruction var) is defined to find if the instruction var is in I/M/J/B type.
The constraints should be written according to the following reasoning:

prec(I M J B) Rsrc1 Rsrc2 Rdst
prec(I M J B) (Rbase ((Rsrc2 Rdst) (Rsrc2 Rdst))) (Mstr Mend)
prec(I M J B) Ttarget
prec(I M J B) Rsrc1 Rsrc2 Toffset
The prec construct allows the operands of an instruction with expressed precondi-

tion to be limited by the expression of constraining logic.
The “divisibility” rule requires each constraint to constrain only the behavior of one
instruction component. Equivalently, because the constraining part is isolated from
each other, the rule requires the consequent to contain only one or a scope of values
for one field.

The four styles above are powerful enough to specify the requirement of genera-
tion from random to totally direction, see [6] for more detailed information on the
model used here.

Although abiding by the style rules may seem restrictive, it promises many bene-
fits. For example, the specification is easier to maintain. Constraints can be added or
removed and independently modified. It is also believed that it is easier to write and
debug. Since most existing languages are already written as a list of rules, the transla-
tion to this type of specification requires less effort and results in fewer opportunities
for errors.

EmGen: An Automatic Test-Program Generation Tool for Embedded IP Cores 531

3 Test Generation Process

For a given specification model, EmGen’s generation process can be divided into two
layers: traversing the internal specification statement tree and generating the instruc-
tions on the basis of specification. It is easy to do the statement tree travel in a hierar-
chical manner. But generating the instructions is more difficult because the generation
process interleaved with the execution of Reference Instruction Set Simulator must
maintain the intermediate processor states dynamically. The intermediate processor
states embedded in all kinds of general registers, control registers, statement registers
and memories are always limited by realistic resources in practice. There are several
factors in contradiction with each other that may bring on difficulties in generation
process, such as the limitation of realistic memory addresses with the supposed large
size of idealistic virtual memory addresses. To solve these problems, we present two
algorithms named the dynamic boundary check (DBC) algorithm and the scan TLB
(ST) algorithm. The DBC algorithm handles the random branches targets to achieve
expected quantities and quality of generation according to verification plan. Then the
ST algorithm is used to generate enough efficient instructions under the limitation of
memory address space in validation environments.

3.1 The Dynamic Boundary Check (DBC) Algorithm

The main idea of DBC algorithm is to change the direction of instruction flows
whenever they meet a boundary, carefully select the branch targets to avoid the
boundary and delete the dead branch whose target is breaking the rules or terminate
the generation process if it does not belong to the random freely group. The DBC
algorithm is implemented by following steps.
Step 1: Generate a new instruction according to the constraints of configurable speci-

fication. Judge if the instruction is a branch or jump. If the instruction is a
branch, then go to Step2. Else go to Step3.

Step2: Search if there is an appropriate target pc not in pc stack following all the
constraints in specification and not breaking the boundary in pc stack. If the
correct target pc cannot be found, then turn to Step4, otherwise, Step5.

Step3: Check the boundary in pc stack. If the instruction meets the boundary in pc
stack, go to Step6; else transfer the instruction to RISS and go back to Step1.

Step4: Check if the instructions belongs to random freely group. If it is random
freely, then cancel this instruction and turn back to Step1 to generate a new
instruction instead; else print alert and terminate the generation process.

Step5: Select an appropriate target pc for the instruction and transfer the instruction to
RISS. Then go on the generation process in Step1.

Step6: If the instruction is in a sequence, terminate the generation process and pop up
an alert. Else insert a directly jump instruction behind the instruction to avoid
the boundary and go back to Step1.

A case of instruction flows changed by the DBC algorithm is shown in Fig. 1.

532 Haihua Shen, Yunji Chen, and Jing Huang

Fig. 1 A case of instruction flows changed by DBC algorithm

The results of experiments show that the DBC algorithm can improve the genera-
tion process obviously (see Fig. 3 in section 5).

3.2 The Scan TLB (ST) Algorithm

It is important for EmGen to generate and control all the exceptions and interrupts
tightly according to verification plans. In all kind of exceptions, TLB miss happens
frequently because of the limitation of TLB pages. To reduce the complexity of test-
bench, the maxim number and size of TLB pages are always predefined. So it is very
important to generate instructions in the limitation of TLB to avoid unexpected TLB
miss. The ST algorithm is presented to solve this problem.

Main idea of ST is dynamically initializing the TLB whenever an instruction with
a pc in new page or a memory access with a new page address happened. It is neces-
sary to keep a TLB stack and push the TLB page to TLB stack whenever a new TLB
page is distributed. When all the TLB entries are distributed, new instructions pro-
gram counter and memory access is limited to the old blank TLB. The ST algorithm
is described as following:
Step1: Initialize a TLB page according to the predefined first pc in the configure file.
Step2: When generating a new instruction, search the pc in TLB stack. If the instruc-

tion is on a page distributed, do nothing to TLB stack. Otherwise insert the
TLB entry to the stack. When TLB stack filled, go to Step 5.

Step3: Check if the new instruction is a branch or jump. If the instruction generated in
Step2 is a branch or jump, then check if the page that contains the branch tar-
get is in TLB stack. If in the stack, do nothing. Otherwise check if the TLB
stack filled. If filled, regenerate the same instruction with different target by
several times (Retry times can be predefined or changed dynamically in pro-
gress according to generation plan). If there is an appropriate target whose
page entry is already in TLB stack, then do nothing. Else go to step 5. If the
TLB stack is not filled, insert the page that contains the instruction target into
TLB stack.

Step4: Go back to Step1.
Step5: Terminate the generation process because of the TLB miss.

EmGen: An Automatic Test-Program Generation Tool for Embedded IP Cores 533

The ST algorithm acts as supplementary for the DBC algorithm to improve genera-
tion process in EmGen. Experiment results show that the required number of instruc-
tions can be generated easily according to the configurable specification by means of
DBC and ST algorithms (see Figure 3 in Section 5).

4 The Sketch of Validation

EmGen’s modeling framework contains several components: an instruction library, a
configurable formal specification model with a parser, a test generator, a reference
instruction set simulator (RISS), a simulator with the validation environment, an RT-
level design under test (DUT), and a result compare logic. The overall architecture is
shown in Fig.2. All microprocessor instructions are described in an instruction li-
brary. The configurable formal specification model includes the configurable formal
specification described above and a parser, which can parse the specification to inter-
nal data structures. Test generator selects instructions from library according to the
configurable formal specification, which can be optimized by the corresponding cov-
erage metrics. Besides, a validation environment, which supports simulation with
generated test programs and checks the equivalence of microprocessor cores and their
reference model automatically, is also provided by EmGen. By means of the valida-
tion environment, EmGen can judge whether the results of the test runs are correct or
not.

Fig. 2. The sketch of EmGen

5 Experimental Results

To demonstrate EmGen on a meaningful design, we chose a 32-bit embedded RISC
microprocessor core based on MIPS instruction set with about 0.48 million gates of
logic as DUT for verification. The optional configurations of the microprocessor core
are 2-Way Set Associative I-cache & D-cache, 4-Way Set Associative I-cache & D-
cache, no Cache & TLB, the floating point units and multimedia units. Simulations

Configurable Specification Model

Parser

Test Generator RISS

Virtual Memory & Reg

Validation Environment

Real Memory & Reg

DUT

Results Compare
Logic

Bugs?!

Instruction Library

534 Haihua Shen, Yunji Chen, and Jing Huang

were run on Intel Pentium 4 2.8GHz HyperThreading system with 2G of main mem-
ory.
Verification results: Before presented approach is taken into practice, the DUT has
been verified for more than two months. Stimuli include popular benchmarks (Whetd,
Dhrystone, Paranoia), real operation systems (Linux) and many manual test pro-
grams. Using the random test programs provided by the methodology, two previously
unreported bugs have been found in the DUT. The process of finding bugs is now
nearly automated and much easier since result compare logic can give direct location
of errors.
Performance results: Performance issues, such as speed and memory usage, do not
pose to be problems because of the hardware improvement. So we are free to focus
on generating interesting simulation inputs. It has been mentioned above that effects
of generation process is influenced by resources limitation. Predefine an address
space limitation available in test program generation to be 64x8Kbytes. Our experi-
ments show that the maximum number of instructions generated by DBC&ST algo-
rithms is an order of magnitude larger than it was without DBC&ST algorithms (see
Fig. 3).

Fig. 3 a) Ability of random test generator b) Ability of random test generator

 without DBC&ST Algorithm with DBC&ST Algorithm

Coverage results After running more than 55,000,000 instructions generated, the
average code coverage of the design reaches 73.8% of line coverage, 68.9% of condi-
tion coverage, 59.78% toggle coverage, which is hard to be improved by increasing
more random instructions. It is obviously that the likelihood of generating more effec-
tive events so unintentionally is low, though the EmGen is capable of generating such
events. To improve the coverage of simulation, the design should be simulated with
more expert experiences, and so configuring such constrained corner cases supported
by configurable formal specification model to determine biases is extremely fruitful;
most of the “holes” can be covered with these biasing.

EmGen: An Automatic Test-Program Generation Tool for Embedded IP Cores 535

6 Conclusions

In this paper, we describe EmGen, an automatic test-program generation tool de-
signed for configurable embedded microprocessor cores. EmGen’s modeling platform
includes an configurable formal specification, which can describe the requirement of
microprocessor configuration and verification plan completely and correctly, a heuris-
tic test program generator with DBC and ST algorithms, which enable the generation
of test programs across the full spectrum, from completely random through testing-
knowledge biased random, to highly directed, a reference instruction set simulator,
which can provide reference results for all test cases, and a validation environment,
which check the equivalence of simulations and reports the bugs automatically. Em-
Gen has been taken into practice for the verification of a 32-bit configurable embed-
ded microprocessor core. Experiment results have proven its flexibility, applicability
and good performance.

References

1. D. Campenhout, T. Mudge, J. Hayes, “High-Level Test Generation for Design Verification
of Pipelined Microprocessors”, In proceeding of the 36th ACM/IEEE Design Automation
Conference (DAC), (1999) 184-188

2. S.Fine, A. Ziv, “Coverage Directed Test Generation for Functional Verification Using
Bayesian Networks”, In proceeding of the 40th ACM/IEEE Design Automation Conference
(DAC), (2003) 286–291

3. R. Emek, et al. “X-Gen: A Random Test-Case Generator for Systems and Socs”, IEEE Inter-
national High Level Design Validation and Test Workshop, Cannes(2002)

4. O. Lachish, E. Marcus, et al. “ Hole Analysis for Functional Coverage Data”, In proceeding
of the 39th ACM/IEEE Design Automation Conference (DAC), (2002) 807-812

5. M. Bartley, D.Galpin, T.Blackmore. “ A Comparison of Three Verification Techniques:
Directed Testing, Pseudo-Random Testing and Property Checking”, In proceedings of the
39th ACM/IEEE Design Automation Conference (DAC), (2002) 819-823

6. Haihua Shen, et al. “Adaptive Test Program Generation for Embedded Microprocessor
Core”, In proceedings of the 1st International Conference on Embedded Software and Sys-
tem (ICESS), (2004) 472-479

7. Synopsys, Inc. “Constrained-Random Test Generation and Functional Coverage with Vera”,
http://www.synopsys.com/products/vera/vera60_wp.pdf, (2003)

8. Verisity Design, Inc. “Specman Elite”, http://www.verisity.com/products/specman.html,
(2004)

9. Jim Lipman, “Configurable SoCs Give You Options”,
http://www.techonline.com/commnity/related_content/11384, (2000)

Formal Verification of a Ubiquitous Hardware

Component

Lu Yan

Turku Centre for Computer Science (TUCS) and
Department of Computer Science, Åbo Akademi University,

FIN-20520 Turku, Finland
Lu.Yan@abo.fi

Abstract. This paper is a case study of the verification of a seven-
segment LED display decoder circuit design, in which two popular veri-
fication tools, HOL and PVS, are compared and evaluated.

1 What Is Formal Hardware Verification

We consider a formal hardware verification problem to consist of formally es-
tablishing that an implementation satisfies a specification. [1] The term imple-
mentation (Imp) refers to the hardware design that is to be verified. This entity
can correspond to a design description at any level of the hardware abstrac-
tion hierarchy, not just the final physical layout (as is traditionally regarded in
some areas). The term specification (Spec) refers to the property with respect to
which correctness is to be determined. It can be expressed in a variety of ways -
as a behavioral description, as an abstracted structural description, as a timing
requirement etc. [2]

2 The Ubiquitous Hardware Component

We illustrate our experiences with formal verification in ubiquitous hardware
design via a comparative case study of the verification of the circuit design of a
ubiquitous hardware component: seven-segment LED display decoder.

A seven-segment LED display is comprised of seven light emitting diodes
(LED). Input signals are applied to the input port of the seven-segment decoder,
and the decoder translates them into ON/OFF status of the seven LEDs. Then,
selected combinations of the LEDs are illuminated to display numeric digits and
other symbols as shown in Figure 1.

The primary function of the decoder is to turn on/off corresponding LEDs
based on inputs. Let W, X, Y, Z represent the input port of the decoder, then
we get sixteen possible combinations of the four input signals, which means any
digit (0 - 9) and some letters (A - F) can be displayed on the seven-segment LED
display. Let a, b, c, d, e, f, g represent the output port of the decoder, and let on
be 1 and off be 0, then we can create a truth table like Table 1 for describing
the intended behavior of the decoder.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 536–541, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Formal Verification of a Ubiquitous Hardware Component 537

Table 1. Truth table for the switching function

Display Input (W X Y Z) Output (a b c d e f g)

0 0000 1111110
1 0001 0110000
2 0010 1101101
3 0011 1111001
4 0100 0110011
5 0101 1011011
6 0110 1011111
7 0111 1110000
8 1000 1111111
9 1001 1111011
A 1010 1110111
B 1011 0011111
C 1100 1001110
D 1101 0111101
E 1110 1001111
F 1111 1000111

Intuitively, the abstraction of seven-segment decoder is a four-input seven-
output switching function. One possible approach is to build up the circuit di-
rectly from the specification, but here we consider another approach based on
partition-and-merge algorithm.

First we divide the four-input seven-output switching function into seven
four-input one-output normal functions, then implement each function sepa-
rately. When all functions are ready, we put together all parts and get the final
implementation. In this way, the complexity of the design task is greatly reduced.
The drawback is probably some redundancy, but this can be refined in the final
merging stage.

We shall go into more details of the implementation of one part as an example.
The representation function is the abstraction of the intended behavior of LED
a, which takes four input signals W, X, Y, Z and generate one output signal a
correspondingly, as shown in Table 2.

With the initial implementation, we can refine it with a Karnaugh map. The
process is illustrated in Figure 2. Although this refinement result is good enough,
we should also consider more practical issues like technology, cost, etc. Here we
choose to make the design mainly with NAND gates:

a = Y Z · X Z · W Y · X Y · W Z · W X Z · W X Y

Then it is time to translate the refinement result into schematic design. The
diagram is straight forward, as shown in Figure 3. The final step is to design
the real circuit based on the schematic design. Here we choose the NAND gate
model and the proper CMOS tool as the atomic element to build up the whole

538 Lu Yan

Table 2. Truth table of 4-input function

Input (WXY Z) Output (a)

0000 1
0001 0
0010 1
0011 1
0100 0
0101 1
0110 1
0111 1
1000 1
1001 1
1010 1
1011 0
1100 1
1101 0
1110 1
1111 1

design. The result is shown in Figure 4. Now the design task of the first part is
completed. With the same method, we can design the other six parts.

3 A Comparison of HOL and PVS

Generally, although HOL and PVS are similar to each other and shares a lot
of common features, partly because they are all based on higher order logic
and for supporting formal methods applications with proof, there are still some
differences. In this section we wish to discuss in some detail our own, more
personal, experiences with regards to the case study:

– The meta-language of HOL is ML; hence HOL type system is similar to the
type system of ML, which form the basis of the higher order logic theory.
PVS is written in Lisp and implements classical typed higher order logic
with an extension of predicate subtypes. PVS has many built-in types and
uses type constructors to build complex types.

– The specification language of HOL is a ML-style one, which uses the ML
datatype term to represent the HOL logic; theories are created in ML func-
tions by new definition.

val NOT_DEF =
new_definition("NOT_DEF",

(--‘NOT a x = (x = ~a)‘--));

Take a look into the case study, we can see that the specification consists of
the hardware components specification, the target hardware device specifi-
cation composed with above components’ specification, (and the correctness
relationship to be proved by set goal, which looks like a part of the proof).

Formal Verification of a Ubiquitous Hardware Component 539

abcdefg

W X Y Z

a

b

c

d

e

f
g

7 Seg LED

Seven-segment Decoder

R

Fig. 1. Hardware Component

W

X

Y

Z

a4-Input
Function

WX
YZ

1

1

1

1

1

11

1

1

1

11

Fig. 2. Karnaugh map for 4-input function

X

Z

W

Y

a

Fig. 3. Schematic Design

540 Lu Yan

W

X

Y

Z

Y

Y

X

Y

W

X

Z

W

a

Fig. 4. Circuit Design

set_goal([],(--‘!w x y z a.
LED_A_IMP w x y z a ==> LED_A_DEF w x y z a‘--));

The specification language of PVS is rich, containing many different type
constructors and predicate subtypes. Unlike HOL, the syntax is more fixed;
many language constructs, such as IF and CASES are built-in to the lan-
guage. A specification is usually divided in several theories and theories can
import other theories. Although from the case study, we can find out that
the specification is organized similarly, there are two obvious differences:

• Variables have to be declared before using (there is no default datatype
mechanism for undefined variables).

% input and output
W, X, Y, Z, a: VAR bool

• The correctness relationship to be proved is within THEORY.

logic_gates: THEORY

...

implementation_correctness: THEOREM
imp(W, X, Y, Z, a) IMPLIES spec(W, X, Y, Z, a)

END logic_gates

Formal Verification of a Ubiquitous Hardware Component 541

– HOL supports both forward and backward proving, but it emphasizes on
backward proving by supplying many useful tactics for it. A tactic transforms
the proof goal into several subgoals. HOL has a large collection of tactics as
well as many proving tools. In the process of proving, we need to load such
tools from libraries by load before proving because they don’t automatically
“stand forward” when applicable.

load "bossLib";
load "simpLib";
load "mesonLib";

A thorough look of HOL libraries beforehand will help us to get familiar
with some of powerful proving tools.
PVS has many tools in the core system which can be automatically invoked.
We are quite impressed in the process of proving; such tools are built-in to
the system and are ready to use by invoking grind etc.

implementation_correctness :

|-------
{1} FORALL (W, X, Y, Z, a: bool):

imp(W, X, Y, Z, a) IMPLIES spec(W, X, Y, Z, a)

Rule? (grind)

Another difference is that after supplying a tactic, the system repeatedly
apply it to the current goal until no changes in the current state. A PVS
tactic is like a REPEAT HOL tactic in this way.

e(REPEAT GEN_TAC);

– The most famous difference between HOL and PVS is that the former is a
LCF-style prover, which has better security, user extensibility and also ways
to import and export proofs to other provers.

Acknowledgement

The author is deeply grateful to Joakim von Wright for his kindly support and
assistance.

References

1. C. Kern and M. Greenstreet. Formal Verification in Hardware Design: A Survey.
ACM Transactions on Design Automation of Electronic Systems, Vol. 4, April
1999, pp. 123-193.

2. A. Gupta. Formal Hardware Verification Methods: A Survey. Formal Methods in
System Design, Vol. 1, pp. 151-238, 1992.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 542-548, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Model Optimization Techniques in a Verification
Platform for Classified Properties*

Ming Zhu, Jinian Bian, and Weimin Wu

Department of Computer and Science, Tsinghua University, Beijing, 100084, China
zhum99@mails.tsinghua.edu.cn
{bianjn, wuwn}@tsinghua.edu.cn

Abstract. In system functional verification, collaborative method is an effec-
tive technique. Co-SAM verification platform employs three verification meth-
ods, static analysis, logic simulation and model checking, to implement verifi-
cation process. With the collaborative platform, system properties are classified
and verified. A whole model for a system inclines to ineffectiveness and states
explosion during verification. Model refinement is indispensable. This paper
presents special optimization techniques for verification model refinement, i.e.
property grouping, signals reordering, and model hierarchizing. Experimental
results demonstrate the validity of these optimization techniques in system
functional verification.

1 Introduction

With the incessant increase of IC design, system functions verification become the
main bottleneck in most design flows and consumes up to 70% of the time required
for a system design [1]. Usually, a project needs to be staffed with three verification
engineers for a design engineer [2]. The overall idea of verification is to find as many
bugs as possible as in earlier design stage and get to an experience-based confidence
level. However, large scale and complexity of systems hinder the possibility.

Current design verification strategies span a wide spectrum that ranges from brute-
force manner, such as simulation, or random test generation techniques to formal
verification methods, such as equivalence checking and model checking [3].

Traditional event-driven simulation, mastered by verification engineers, is effec-
tive for medium-scale systems, and suited for verifying units. As gates count in-
creases to several millions, the number of simulation cycles explodes by orders of
magnitude. The gap between simulation cycles and increasing gates count is shown in
Fig.1 [2]. Besides complexity, another disadvantage of simulation-based verification
is that test benches only cover a limited subset of the entire states. Even if expected
functions are verified by artificial test benches and unexpected bugs by random gen-
erated ones, some fatal bugs may be found later for incompleteness of simulation. An

* This research was supported by the National Natural Science Foundation of China 60236020,

60273011 and Hi-Tech Research & Development (863) Program of China 2003AA115110.

Model Optimization Techniques in a Verification Platform for Classified Properties 543

attractive alternative to simulation in verification is formal approach [3] which stati-
cally verifies a design without using test benches. Model checking [3] is one of im-
portant formal methods for automatically verifying finite state systems. Compared
with simulation, the superiority of model checking is full automatic and with useful
counterexample as by-product. On the other hand, the problem of model checking is
states explosion that constantly occurs when a system has many wide-data.

Many improved strategies have been proposed in simulation or formal verification
for covering the shortage and employing the advantages of different approaches.
Developed by Ganai et al.[4], SIVA employs the combination of ATPG and BDDs to
generate input vectors, and significant improvement in state space coverage is
reached. An extended FSM model for RTL designs proposed by Huang et al. [5] can
be automatically extracted from codes and formally analyzed for the vector genera-
tion.

Neither simulation nor model checking can cope with very large and complex sys-
tem alone because of inherence disadvantage. The natural idea is to combine the two
techniques into a unified framework. Many hybrid methods are proposed for various
applications. Hazelhurst et al. [6] proposes a hybrid technology combining many
formal methods to reduce the cost of verifying designs with complex initialization.
Presented by Ho et al. [7], Ketchum integrates symbolic simulation with SAT-based
BMC and provides the ability for 4500 latches and 170K gates.

 Simulation Cycles

100T

100B

100M

1M 10M 100M
Gates Count

 2007

 2001

 1995

Ports

Subgraph 1

Source

Signals

Sink

Subgraph 2
Source

Sink

+ *

Source

+ * =

Sink

cond

cond

(a) (b)

Fig. 1. Simulation cycles vs. gates count Fig. 2. CDFG structure and data flow

Co-SAM [8], our collaborative verification platform combines simulation and
BDD-based model checking on a model from CDFG. Special model optimizations are
adopted. The remainder of this paper proceeds as follows: Section 2 depicts the veri-
fication platform; section 3 discusses the optimization techniques for the platform;
properties verification results and conclusion are presented in Section 4 and 5.

2 Co-SAM Verification Platform

The emphasis of existing work focuses on verification model creation and searching
algorithms. Our research aims to classified property verification and special model
refinements on CDFG (Control Data Flow Graph) structure.

544 Ming Zhu, Jinian Bian, and Weimin Wu

2.1 CDFG Structure

In our verification platform, Co-SAM (Co-verification of Simulation, Analysis,
Model checking), CDFG structure bridges the gap between simulation and formal
verification. CDFG depicts the behavior of a target system naturally and intuitively
through CFG and DFG subgraphs. CFG represents conditional branching, iterations,
and modules, and DFG describes operations and data dependencies. Each subgraph
contains a source and a sink node (as Fig.2 a shown). Vertices and edges in subgraph
record the dependency of data and control respectively. All referenced ports and
signals are attached to the subgraph (see Fig.2 b); hence it is easy to recognize
whether a subgraph is influenced by the signals in a property. The division of CFG
and DFG provides a remarkable advantage for data operations in simulation and
FSMs creation in model checking. Furthermore, the system hierarchy can also be
remained in CDFG. A critical model for property verification in Co-SAM platform is
refined from CDFG.

2.2 Property Classifying Principles

An assertion is a specification, which states what a design should be satisfied with or
not. An execution of a system is formalized as an infinite sequence of states, and any
set of such sequences is a property. Property checking checks a system to ensure its
properties satisfiability. Properties are usually expressed with logical formalism, such
as CTL language and OVL assertions. For multiple engines co-verification, properties
should express not only data operations for simulation but also temporal logic for
formal method.

Simulation can deal with data operations effectively, especially in spite of data
width that is fatal for model checking. Model checking is attractive and promising in
verifying FSMs. The exhaustive exploration in all possible states space overcomes the
well-known code and event coverage limitations of simulation. But it is suitable only
for medium-scale systems with specified interfaces clearly.

Inheriting OVL and CTL, improved descriptions of properties are defined in Co-
SAM system; leveraging static analysis, simulation and model checking, properties
are classified to employ their good qualities; these properties are divided into three
classes as following rules: analysis properties deal with the condition translation,
simulation properties manage data processing, and model checking properties dispose
temporal logic. System properties can be embedded into processes or parallelized
with them. Although properties are classified, it does not mean that one property can
only be verified with a certain method. The supplement among different verification
engines is necessary so that the bugs can be found as many as possible.

2.3 Collaborative Verification Constitution

Some conclusions can be drawn according to above analysis: simulation method is
good at modules and data operations, time-consuming in large designs and test-
benches generation; model checking is highly automatic and unique in temporal logic,

Model Optimization Techniques in a Verification Platform for Classified Properties 545

but consumptive hugely in states space, especially for wide-data operations. An effec-
tive verification platform should employ their good qualities.

Our collaborative verification scheme is shown as Fig.3. First the properties are
classified automatically for static analysis, module simulation and model checking.
Then system properties are preprocessed and CDFG model is generated which pro-
vides more effective operations and facilitated structure. Next, several refinement
techniques on the model are adopted. At last, static analysis, simulation, and model
checking are performed on the refined model.

 VHDL System with Properties

CDFG Model

Static
Analysis

Simulating
Verification

Model
Checking

FSM
 Multi-Branch
 Operation

Data Modules

Temporal
Modules

Initial ValueInitial Value

Refinement

Fig. 3. Functional verification flow

With the help of hierarchical structure of CDFG, it is easy to trace a multi-branch
signal and partition the whole design into modules, to find the value conflicts, and to
check the branch conditions. Simulation process can provide some initial values for
model checking and static analysis. More detailed information about the collaborative
platform is introduced in [8].

3 Optimization Techniques in Model Refinement

The CDFG from system directly involves some redundant information that will in-
crease the size of model, so refining and optimizing operations are indispensable.

3.1 Properties Grouping and Signals Reordering

For a large design, it is almost impossible to create a whole model; therefore a refined
sub-model is competitive and practical. In general, a system module is not relative to
all inputs and outputs. Simultaneously, each input signal only impacts a cone-shaped
region, and each output signal is controlled by partial inputs and state signals, as
shown in Fig.4. Usually a property’s checking will not act on the whole system, and
the referred signals are limited, named property’s localization. For instance, in an 8-
bit counter, high 4-bit value can be ignored when a property only involves low 4-bit.

546 Ming Zhu, Jinian Bian, and Weimin Wu

Prior to verification work and according to property’s localization, grouping the
properties that refer the closed set of signals into several and creating independent
models is a practical way to diminish model size. The signals that do not exist in
current group of properties and are not referred in corresponding modules can be
removed temporarily from the model. A sub-model has fewer states for verification
than the original one. The result in Table 1 shows the comparison between original
internal results and ones after model refinement, properties grouping.

Table 1. Effect of properties grouping

Nodes count Bytes count Circuits
Name

Sigs
Num Original Group1 Group2 Original Group1 Group2

B01 10 340 330 325 74848 73664 73360
Count16 33 196 73 65 73320 68808 68296
Ab128 386 26188 25296 25479 594152 504056 533048
Ab160 482 42708 38788 38741 984104 732024 726136

In Table 1, the properties are grouped into two sub-groups according to their char-
acters. The first two columns are the test benches name and signals number in a de-
sign. Other columns list the internal nodes and bytes cost by the corresponding model.
After the grouping operation, the signals that are not referred to will be removed
temporarily, and the internal nodes and bytes count during verification are both re-
duced for one group. Although the sum of two groups exceeds the original one, this
still provides a practice way to deal with larger systems.

The properties grouping effect depends on the signals relation among properties.
For Count16, two groups are separated well and the nodes count is decreased obvi-
ously, whereas properties in B01 are much closed and the count changes little.

 I1

I2

…

In

S1

Sn

O1

O2

Sx

Sy

Inputs
Signals

State
Signals

Port
Outputs

State
Outputs

 Algorithm module_signals (property) {
 sigs_list L ; marked_sigs M ;

L get_sigs(property);
 for each v L do {
 if v M then {

sigs_list V transitionF(v) U outputF(v);
 for each w V do {

if w L then L L U {w};
M M U {w};

 } } }
 return L; }

Fig. 4. Variable local characteristic Fig. 5. Module signals extracting algorithm

The initial signals order is critical for BDD scale in model checking. Although
many algorithms provide the ability to reorder variables, a good initial order will save
the cost of reordering. Before model checking, the signal orders arranged with heuris-
tic information, not with their defined sites, provide a relatively satisfied one for BDD
creation in model checking.

Model Optimization Techniques in a Verification Platform for Classified Properties 547

After signals reordering, the internal model and time cost are both diminished as

Table 2 shown. The variables are reordered according to their appearance and action,
and they are closed to the aim orders for BDD generation. Thus the process of signals
recording in model checking costs less time than before as the Ratio column shows.

Table 2. Effect of signals reordering

Nodes count Bytes count Reorder time cost Circuits
Name

Sigs
Num Before After Before After Before After Ratio

B01 10 340 286 74848 71344 0.00 0.00s /
Count16 33 196 125 73320 47940 0.16s 0.04s 25%
Ab128 386 26188 10541 594152 267832 31.87s 6.69s 21%

Fig.5 shows the algorithm that finds out the indispensable signals in a sub-model
for properties grouping and signals reordering.

3.2 Model Hierarchizing and Refining

In model checking, each module is formalized as a FSM, and all the modules in a
system compose tremendous product-FSMs. A hierarchical simplification for model
refinement is adopted in our platform, and the contents which are not referred to by
current properties group will be encapsulated and hidden until they are called by
subsequent properties. Then the system FSMs is remarkably decreased. To accelerate
the updating process for FSMs, variables-substituting refinements are performed, and
to reduce the amount of search effort, states space pruning techniques are also
adopted.

The blocks that have close relations will be encapsulated into a module. In table 3,
last three columns show the effect of model hierarchizing. Nodes count is reduced
markedly: internal nodes count is reduced to about 70% than before. It is also a valu-
able assistant to solve large-scale systems. These optimization techniques are em-
ployed corporately in the verification platform.

Table 3. Effect of model hierarchizing

Nodes count Circuits
Name

Sigs
Num

Potential
states

Reachable
States Before After Ratio

B01 10 1024 432 340 257 76%
Count16 33 4.295e+09 4.295e+09 196 131 67%
Ab128 386 3.940e+115 2.463e+114 26188 18347 70%

4 Properties Verification Results

The functional verification scheme is performed on Traffic Light Controller (TLC)
which is designed for traffic light controller in an intersection between a highway and

548 Ming Zhu, Jinian Bian, and Weimin Wu

a farm road, and includes controller and timer processes. The properties verification
results are listed in Table 4.

The verification result True means the design is satisfied with the property, and
False means the contrary. The verification type means the engine which is selected to
verify the property. Three methods can not only work separately, but also overlap
each other. Such as the properties, No.2 for TLC, can be verified with simulation and
static analysis respectively. It enhances the ability to find as many bugs as possible.

Table 4. TLC benchmark verification

Properties Description Verification Type Result
assert_range(number, 0, 10) Simulation True
assert_ifcond(number>10, T_out_short= true) Simulation False
assert_ifcond(number>10, T_out_short= true) Static Analysis False
assert_EG(counter= 8 and T_out_long= true) Model Checking False
assert_AGpAF(car_farmroad, farmroad=green) Model Checking True

5 Conclusion

In embedded system verification, simulation and emulation are used widely, but the
ability is not quite enough. Promising formal verification is energetic, whereas the
shortcoming of space explosion restricts its application widely.

In this paper, we propose a novel paradigm that combines good qualities of simula-
tion in data operation and model checking in temporal logic. In the new scheme, with
CDFG as the footstone, properties are classified and verified with corresponding
verification engines. Some optimization techniques are adopted for model refining,
and the verification scale and efficiency are both improved. The experimental results
demonstrate their effectiveness.

References

1. TransEDA, Foundation Models - System Level Verification IP. http://www.transeda.com
2. Saeed Coates. Assertive Verification: A Ten-Minute Primer. http://www.EEDesign.com
3. E.M. Clarke, J.O.Grumberg, and D.A. Peled. Model checking. MIT Press, Mass (1999)
4. Malay Ganai, Adnan Aziz, and A. Kuehlman. Enhancing Simulation with BDDs and ATPG.

In: Proceedings of 36th DAC, New Orleans, LA, June (1999), pp. 385-390.
5. R.C-Y Huang, K-T.Cheng. A New Extended Finite State Machine (EFSM) Model for RTL

Design Verification. In Proc. of IEEE IHLDV and Test Workshop (1998)
6. S.Hazelhurst, O.Weissberg, G.Kamhi, etc. A Hybrid Verification Approach: Getting Deep

into the Design. In Proc. of 39th DAC (2002) 111-166
7. Pei-Hsin Ho, T.R.Shiple, K.Harer, etc. Smart Simulation Using Collaborative Formal and

Simulation Engines. In Proc. of ICCAD (2000) 120-126
8. Ming Zhu, Jinian Bian, Weimin Wu. A Novel Collaborative Scheme of Simulation and

Model Checking for Property Verification. In Proc. Of CSCWD (2004)

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 549-556, 2005.
 Springer-Verlag Berlin Heidelberg 2005

 Using Model-Based Test Program Generator for
Simulation Validation

Youhui Zhang, Dongsheng Wang, Jinglei Wang, and Weimin Zheng

Dept. of Computer Science, Tsinghua Univ.
100084 Beijing, P.R.China

zyh02@tsinghua.edu.cn

Abstract: The continuous advances in microelectronics design are creating a
significant challenge to design validation in general. Tackling pipelined micro-
processors is remarkably more demanding. This paper presents a methodology
to automatically produce a test program for simulation-based validation of mi-
croprocessors maximizing the given verification constraints. The approach inte-
grates an accurate c-simulator to trace internal states, including memory access
patterns, cache states, pipeline states and so on, of the target processor to gener-
ate test vectors with higher efficiency. The test program generator is integrated
into a co-verification environment, which is used to verify an embedded proces-
sor with a 7-statge pipeline developed by our team and gained remarkable ef-
fects.

1 Introduction

It is widely recognized that functional verification emerges as the bottleneck of the
CPU design development cycle. The cost of the late discovery of the recently found
Pentium FDIV flaw (around $475,000,000) demonstrates the implications of having a
design that does not totally conform to its architectural specification [1]. It is therefore
not surprising that, for a typical microprocessor design project, up to half of the over-
all resources spent, are devoted to its verification [2, 3].

Although many techniques have been proposed in the past (e.g., static checks, for-
mal verification [4] [5], mutation testing [6]), none has gained enough popularity to
compete with the current practice of validation by simulation. Designers typically re-
sort to extensive simulation of each design unit, and of the complete system, in order
to gain confidence over its correctness.

Many metrics have been proposed to evaluate the thoroughness of a given set of
input stimuli, often adopted from the software testing domain [7], ranging from
statement or branch coverage, to state coverage (for finite state machine controllers).
Many variants have been developed, mainly to cater for observability [8] and for the
inherent parallelism of hardware descriptions [9], which are not taken into account by
standard metrics.

But the right trade-off between designer’s time and validation accuracy is often dif-
ficult to find, and this often results in under-verified systems. A top-down system

550 Youhui Zhang et al.

level design methodology implies two requirements on a test-bench generation meth-
odology:

 It is mandatory to validate the system as early as possible;
 Validation vectors should be reusable, i.e., the same test bench should be used dur-

ing design validation at every level of abstraction.
This paper suggests a methodology for the functional verification of microproces-

sors, and explains how one model-based method is employed to construct the internal
state machines of the target processor to generate test vectors with higher efficiency.
In addition, some features are introduced, including instruction trees, support of jump
instructions and so on. Based on the methodology, a hardware/software co-
verification environment is implemented that the system was validated in the architec-
ture design phase and testing vectors could be reusable. Therefore, it reduces signifi-
cantly the functional verification period of the THUMP107 CPU, which is a MIPS
4KC like embedded processor with highest frequency of 500MHz.

Different from those methods that evaluate the testing coverage when vectors are
executed, our implementation can evaluate vectors when they are being generated.
That is, as soon as every vector is generated, it will be executed by an accurate CPU
c-simulator and the internal states of the target processor can be traced clearly. Then
the generation policy will be tuned to produce the next vector with higher coverage.
Because the running speed of c-simulator is much higher than the RTL-level simula-
tion, our implementation owns higher performance as well as satisfactory coverage.

Some additional features are implemented as follows.
1. Owing to a friendly GUI, users can set rich constraint conditions to guide the gen-

eration. For example, users can specify the type of instructions to be produced, the
address range of memory access or whether the transition of some internal states is
tested or not.

2. The test program generator is integrated into a co-verification environment where
testing traces generated by the RTL-level simulation can be compared with those
from the c-simulator directly to locate bugs if existed.
The remainder of the paper is organized as follows. Section 2 presents the architec-

ture of our test bench generator, especially the c-simulator. Section 3 introduces the
generation approach, including the organization of the instruction tree, the FSM of the
target CPU and some other mechanisms. The co-verification environment is described
briefly in Section 4 and some conclusions are drawn in the last section.

2 Architecture

2.1 System Frame

The architecture of our test program generation is presented in Fig. 1. GUI is used to
specify the generation constraints, including target instruction types, the address range
of memory accesses, whether the transition of some internal states is tested, etc.

Instruction tree is a set of the templates of target instructions. For one certain type,
the constraints of its operands are stable, so the specification of different instructions
is defined in the tree used to create testing vectors with different valid operands.

Using Model-Based Test Program Generator for Simulation Validation 551

C-simulator is the major component of our generator. It is employed to perform the
generated instructions to trace the transition of internal states, which are maintained
by FSM and Resource modules.

Some major components of the target CPU, including the memory, register files
and caches, are maintained by Resource module. It means that their current states and
history logs are recorded, which can be used to allocate the proper resource to fulfill
the request from Generator. The effect of FSM is similar, that is, the internal states of
memory access patterns, cache states, and pipeline states are maintained.

Generator is the coordinator of the whole system. At first, it accepts users’ con-
straints and accesses Instruction tree to generate the first instruction randomly. Then,
the instruction is performed by c-simulator that modifies the states of FSM and Re-
source properly. According to the latest states, Generator can repeat the former steps
to produce instructions satisfying constraints. For example, if the next instruction is
required to be RAW data dependent with its preceding one, FSM and Resource are
checked to find the register written by the preceding instruction and then the tree will
be visited to generate a proper one to fulfill the requirement.

Fig. 1. The framework of the test program generator

2.2 C-Simulator

As ASIC designs explode in size and complexity, the traditional RTL to layout design
and verification flow prove inadequate for these multi-million gate systems. We are
moving towards extending this flow by concentrating our design and verification ef-
forts before the RTL to layout flow comes into the picture. Therefore, one cycle-
accurate processor simulator written in C++ language, THUMPSim, was imple-
mented when our research team began to design a MIPS 4KC like embedded proces-
sor.

This simulator is an accurate C-model of our CPU, which implements the micro-
architecture of the processor and some basic peripherals. The driven engine of
THUMPSim is specially designed for processors, in which an event-driven signal up-
date algorithm is achieved to simulate all hardware activities in every cycle.

THUMPSim contains the following parts.
1. All internal signals
2. All major functional components of the processor, including ALU, MMU, BIU and

so on.

G U I

I n s t r u c t i o n
T r e e

F S M G e n e r a t o r

C - s i m u l a t o r

R e s o u r c e

T e s t i n g
v e c t o r s

A l l o c a t i o n
R e q .

R e s u l t sG u i d e s
F e e d b a c k

552 Youhui Zhang et al.

3. The register files and cache.
4. All pipeline stages

Because THUMPSim accurately simulates the target processor, the transition of its
internal states driven by input instructions is as same as the design target. This feature
is used to guide the production of testing vectors to best satisfy the given constraints,
which will be described in the next section.

3 Test Bench Generation

3.1 Instruction Trees

Fig. 2. The tree of ADDI

Instructions are modeled as trees at the semantic level of the processor architecture.
Generation of instruction instances is done by traversing the instruction tree. The tree
of one instruction includes its type and a semantic procedure at the root, its operand
array and possible exceptions as internal nodes. Under the array node, the detailed in-
formation of all operands is listed. ADDI has three operands as described in Fig.2.
The constraints of each of these three, including the operand type and the Max./Min.
values are presented as leaves. In our definition, there are three different operand
types——immediate, register and jump target.

The node of possible exceptions is useful when Generator requires producing an
instruction with some exception. For ADDI, its possible exception is overflow.

If one ADDI instruction is to be produced, the tree in Fig. 2 will be traversed. For
the first and second operands, the type is register and then their value range is from 0
to 31. Similarly, the value of the third lies in the range from 2 ^15 to –(2^15 – 1).

The approach employed here gives enough power to generate useful and revealing
test programs whilst keeping the complexity of the generator and the model reason-
able. Moreover, the time needed for generation is kept within acceptable limits.

In addition, every instruction is attached a table to trace its testing coverage. The
rows standard meaningful corner cases of the source operands and the columns list
some interesting results. For example, the table of ALU instructions can be presented
as Table 1.

T y p e
(A L U)

S e m a n t i c
(A D D I)

O p e r a
n d

A r r a y

O p . 1 O p . 2 O p . 3

T y p
e

M a x . M i n . T y p
e

M a x . M i n .
T y p

e
M a x . M i n .

E x c e
p t i o n

s

Using Model-Based Test Program Generator for Simulation Validation 553

Table 1. The coverage table for ALU instructions

 Results
values Zero Overflow Random Value

-1 True True True
0 True True True
1 True True True
Max. True True True
Min, True True True

Random value True True True

When one combination is generated, the corresponding field will be set TRUE. So,

the coverage of one instruction can be traced accurately.

3.2 Internal State Machines

FSM and Resource trace several kinds of internal states of the design processor.

3.2.1 Register States
There are 32 registers in our generator and each contains a data structure including the
following fields.

 Its content
 The last instruction that accesses this register
 The register is accessed as a source operand or the destination
 The register is employed as a base address register or not
The reason to record field 2 and 3 is that they will be used to generate data depend-

ence between instructions.
In addition, not all registers can be used as the base address register because it is

possible that the memory address computed from any register and the immediate
value does not lie in the range specified by given constraints. So, field 4 is employed
to reduce the number of candidates.

Then, Resource module can handle the register allocation request based on the
above structures. If it fails to find a proper one, some predefined instruction sequence
can be inserted to solve the problem. For example, if no register can be used as the
proper base address, one instruction sequence will be added automatically to load a
right value into some register.

3.2.2 Cache States
Only D-Cache states are described because I-cache is read-only and its states can be
handled as a sub-set of D-Cache.

One cache line contains the following fields: the tag, a 32-bit integer, four 32-bit
data and the valid bits. All states of one line are described as follows and the FSM of
D-Cache is described in Fig.3.
1. Start: The initial state and all cache lines are invalid.
2. Miss: The line is invalid but the preceding access to D-Cache hits.
3. Miss_miss: The line is invalid and the preceding access does miss.

554 Youhui Zhang et al.

4. Miss_hit: The line is valid but the preceding access does miss.
5. Hit_hit: The line is valid and the preceding access does hit.

When Generator requests producing a data hit instruction, it will locate all avail-
able cache lines based on valid bits and then get the set of valid destination addresses,
which will be employed to select a proper base address register to generate valid
load/store instructions. Both the selection of one valid cache line and the immediate
value of the generated instruction may be random, so different load/store cases can be
covered. If it is a data miss request, the similar operation will be executed except that
all located lines are invalid.

Fig. 3. FSM of D-Cache

3.2.3 States Between Pipeline Phases
Data dependence between instructions should be tested thoroughly because it is criti-
cal to validate the control logic of the target design, which is accomplished by the fi-
nite state machine described in this section.

Table 2. States between Pipeline Phases

State Meaning
State_Null The initial state
State_Ex_Mem The latest instruction causes data dependence between EXE and MEM stages.
State_Ex_Aln The latest instruction causes data dependence between EXE and ALN stages.
State_Ex_Wb The latest instruction causes data dependence between EXE and WB stages.
State_ExMem_ExAln The latest instruction causes two kinds of data dependence: EXE and MEM

stages, EXE and ALN stages.
State_ExMem_ExWb The latest instruction causes two kinds of data dependence: EXE and MEM

stages, EXE and WB stages.
State_ExAln_ExWb The latest instruction causes two kinds of data dependence: EXE and ALN

stages, EXE and WB stages.

There are seven pipeline phases, IF, DE, RF, EXE, MEM, ALN and WB, in our

CPU, and the possible data dependence between instructions is listed as follows.
 EXE and MEM
 EXE and ALN
 EXE and WB
Therefore, there are seven states in the FSM presented in Table 2 and transitions of

these states are listed in Table 3.

s t a r t

m i s s M i s s _ h i t

H i t _ h i tM i s s _ m i s
s

C a c h e _ m i s
s

C a c h e _ h i t

C a c h e _ h i t

C a c h e _ h i t

C a c h e _ h i
t

C a c h e _ m i s
s

C a c h e _ m i s
s

C a c h e _ m i s
s

Using Model-Based Test Program Generator for Simulation Validation 555

Table 3. The transition of states

Constrains The next State
Ex_Mem (It means to generate an instruction that will causes

data dependence between EXE and MEM stages. And the fol-
lowing constrains have the similar requirement.)

State_Ex_Mem

Ex_Aln State_Ex_Aln
Ex_Wb State_Ex_Wb
Ex_Mem and Ex_Aln State_ExMem_ExAln
Ex_Mem and Ex_Wb State_ExMem_ExWb
Ex_Aln and Ex_Wb State_ExAln_ExWb
Fail (It means that the constraint cannot be satisfied.) The state is unchanged.

Any transition will be recorded in our generator, so it is easy to generate instruction

sequence to introduce all possible data dependence.

3.3 Generation of Jump Instructions

There are three kinds of jump instructions in MIPS ISA, i.e., conditional jump, un-
conditional jump and unconditional register jump. To avoid an endless loop, different
methods are designed for different backward jump instructions.

A new mechanism, resource-locked, is introduced for conditional jump instruc-
tions. That is, none of the instructions between the jump and the target will modify the
jump condition except that a special one will be used to adjust the condition to control
the number of loops. Another mechanism is designed for unconditional backward
jump instructions, which inserts a conditional jump before the unconditional one to
ensure that the loop will end in limited times. For unconditional register jumps, if the
register content is less than PC, it can be regarded as a normal unconditional jump.

4 Co-verification Environment

We implemented a co-verification environment that contains the test program genera-
tor and the c-simulator, and its workflow is described in Fig.4.

Fig. 4. The workflow of co-verification

At first, a user launches the environment, sets the constraints of test programs, and
then the generator is started. When testing vectors are produced, both of c-simulator
and the design simulator of the target CPU in different levels perform them, so testing
traces generated can be compared directly to locate bugs if existing.

556 Youhui Zhang et al.

By the way, other vectors, including testing applications and OS, suitable for the c-
simulator can also be executed directly by the design simulator in the co-verification
environment.

5 Conclusion

This paper presented an approach to automatically test bench generation intended for
simulation-based validation of systems. The approach exploits an accurate c-simulator
to trace internal states, including memory access patterns, cache states, pipeline states
and so on, of the target processor. That is to say, as soon as every vector is generated,
it will be executed by the c-simulator and the generation policy will be tuned to pro-
duce the next vector with higher coverage. In contrast with the traditional methods
that evaluate the testing coverage after generation, this method is more efficient.

In addition, we implemented a co-verification environment that contains the test
program generator and the c-simulator. When testing vectors are produced under the
environment, both of the c-simulator and the design simulator of the target CPU in
different levels perform them. So testing traces generated can be compared directly to
locate bugs if existed, which simplifies the verification process.

Reference

1. H.P. Sharangpani, M.L. Barton, “Statistical Analysis of Floating Point Flaw in the Pentium
Processor”, Intel Corporation, 1994.

2. F. Casaubieilh et al., “Functional Verification Methodology of Chameleon Processor”, 33rd
Design Automation Conference, Las Vegas, June 1996, pp. 421-426.

3. A. Aharon, D. Goodman, M. Levinger, Y. Lichtenstein, Y. Malka, C. Metzger, M. Molcho,
and G. Shurek, “Test Program Generation for Functional Verification of PowerPC Proces-
sors in IBM”, 32nd Design Automation Conference, San Francisco, June 1995, pp. 279-285.

4. K. McMillan, Symbolic Model Checking, Kluwer, 1993.
5. R.P.Kurshan, computer-Aided Verification of Coordinating Processes: The Automatic-

Theoretic Approach, Princeton Series in Computer Science,1995.
6. G.Al-Hayek, C.Robach: From design Validation to Hardware Testing: A Unified Approach,

JETTA: The Journal of Electronic Testing, Kluwer, No.14, 1999, pp. 133-140.
7. B. Beizer, Software Testing Techniques, Van Nostrand Rheinold, New York, 1990.
8. S. Devadas, A. Ghosh, K. Keutzer: An Observability-Based Code Coverage Metric for

Functional Verification. Proc. ICCAD’96.
9. P.A. Thaker, V.D. Agrawal, M.E. Zaghloul: Validation Vector Grade: A new Coverage Met-

ric for Validation and Test, VTS’99: IEEE VLSI Test Symposium, 1999, pp. 182-188.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 557-562, 2005.
 Springer-Verlag Berlin Heidelberg 2005

A New WCET Estimation Algorithm Based on
Instruction Cache and Prefetching Combined Model

Guowei Wu and Lin Yao

Software College of Dalian University of Technology, Dalian 116023, China
{wgwdut, linyao}@dlut.edu.cn

Abstract. It is necessary to compute the execution time upper bound of
embedded hard real-time program under the worst condition in embedded
system design, which decides how hardware and software to partition and how
to schedule process. Modern microprocessor which uses instruction cache
memory and instruction pre-fetching increases the difficulty to compute the
upper bound accurately. A new estimation method of embedded software
performance based on instruction cache and pre-fetching model is proposed,
which uses control flow graph and cache conflict graph and combine instruction
pre-fetching into instruction cache analysis. It makes the execution time upper
bound estimation under worst condition more accurate.

1 Introduction

It is an important task to predict the worst-case execution time (WCET) of a program
in hard real-time systems. WCET analysis must be performed in order to guarantee
that they will always meet the deadline of hard real-time system.

Until now, the analysis and estimation WCET is based on cache model. Liu and
Lee [1] note that searching through all feasible program paths exhaustively is a
sufficient condition for determining the exact worst case cache behavior. If there is a
conditional statement inside a while loop for a program, this will become an
intractable problem, unfortunately this happens frequently. Lim [2] expands timing
schema methodology to incorporate instruction cache analysis, he also encounters the
similar problem. To deal with this intractable problem, by proposing different
pessimistic heuristics, the above researchers trade off instruction cache prediction
accuracy for computational complexity. Robert [4] handles instruction cache
performance analysis by using graph-coloring techniques. However, this approach has
limited success even for small programs. All the above methods encounter
computational complexity because they try to determine the exact sequence of
instruction cache hits and misses. Different pessimistic methods are thus proposed to
cope with this complexity [3], and they result in loose estimated WCET. Li [5]
observes that the estimated WCET is only affected by the number of cache hits and
cache misses. The actual sequence of hits and misses has no effect on the estimated
WCET, so Li proposes an ILP estimation method which ignores other information
and low computation complexity. Most of research work focuses on cache analysis
during WCET estimation and ignores other properties of modern CPU, such as

558 Guowei Wu and Lin Yao

pipeline and instruction pre-fetching which increase the difficulty to compute the
WCET and have important effect on WCET estimation precision. In this paper, we
propose a new WCET estimation method which combines instruction pre-fetching
into instruction cache analysis based on the work of Li [5].

In the following section, we describe the proposed estimation method, and in
section 3, we evaluate the performance of the proposed method and give the
experiment results, the conclusions and future work are presented in section 4.

2 Instruction Cache and Prefetching Combined WCET
Estimation Algorithm

For analysis convenience, we define a new type of atomic structure, the line-block or
simply l-block. An l-block is defined as a contiguous sequence of instructions within
the same basic block that is mapped to the same line in the instruction cache. Thus all
instructions within an l-block will always have the same cache hit/miss counts, and
the same total execution counts [5]. Inside the basic block Bi, the l-block is denoted as
Bij, the cache hit and the cache miss counts of l-block Bij are denoted as xi,j

hit and xi,j
miss

respectively. The total execution time can be computed by summing the product of
instruction counts by their corresponding instruction execution times. If there are N
basic blocks, the total execution time (cost function) is given by:

N

i

n

j

miss
ji

miss
ji

hit
ji

hit
ji

i

xcxcT ,,,, (1)

Since l-block Bij is inside the basic block Bi, its execution count is equal to xi, thus
xi=xi,j

hit+ xi,j
miss , here, ci,j

hit and ci,j
miss are the hit cost and the miss cost of the l-block

Bij respectively
The possible values of xi are constrained by the possible values of the program

variables and the program structure. The problem of finding the estimated WCET of a
program will become an ILP problem if we can represent these constraints as linear
inequalities.

The linear constraints of a program consist of two parts: program structural
constraints and program functionality constraints. Program structural constraints are
derived from the program’s control flow graph (CFG), program functionality
constraints are provided by the user to specify loop bounds and other path
information.

For different programs, in order to analyze and give the constraints, all the
constraints are passed to the ILP solver with the goal of maximizing cost function (1).
The ILP solver will return the estimated WCET. We can incorporate instruction cache
memory and pre-fetching analysis into cache model by modifying the cost function
(1) and by adding a set of linear cache constraints and pre-fetching effect factor.

For any two l-blocks that are mapped to the same cache line, they conflict with
each other if the execution of one l-block displaces the cache content of the other.
Otherwise, they are called non-conflicting l-blocks. This leads to examine the control
flow of the l-blocks mapped to that particular cache line by defining a cache conflict
graph. Figure 1 is a cache conflict graph, it contains a start node s and an end node e.

A New WCET Estimation Algorithm 559

If there exists a path in the CFG from basic block Bk to basic block Bm without
passing through the basic blocks of any other l-blocks of the same cache line, a
directed edge is drawn from node Bkl to node Bmn. For each edge from node Bkl to
node Bmn we assign a variable p(k.l , m.n) to count the number of times that the
control passes through that edge. We use Bij and Buv for general description. At each
node Bij, the sum of control flow going into the node must be equal to the sum of
control flow leaving the node, and it must also be equal to the execution count of l-
block Bij. Therefore, two constraints are constructed at each node Bij:

vuvui vujipjivupx
..

.,..,. (2)

where u,v may also include the start node s and the end node e. Therefore, the
contents of l-block Bij are still in the cache. Every time the control follows the edge
(Bij Bij) to reach node Bij, it will result in a cache hit. Thus, there will be at least p(i.j ,
i.j) cache hits for l-block Bij. In addition, if both edges (Bij ,e) and (s, Bij) exist, then
the contents of Bij may already be in cache at the beginning of program execution as
its content may be left by the previous program execution. Thus, variable p(s , i.j)
may also be counted as a cache hit. Hence,

jijipjispxjijip hit
ji .,..,.,. , (3)

s

e

lkB . nmB .

lksP .,
nmsP .,

nmnmP .,.

esP ,

elkP ,.

lklkP .,.

nmlkP .,.

lknmP .,.

Fig. 1. Cache Conflict Graph

Otherwise, if any of edges (s , Bij) and (Bij , e) does not exist, then

jijipxhit
ji .,., (4)

Equations (2) through (4) are the possible cache constraints which don’t include
instruction pre-fetching effect. Next, we analyze a program to illustrate how to add
the instruction pre-fetching effect into the cache model.

Figure 2 is the program flow graph, supposing that the program starts from B2
basic block. B6.3 and B7.1 is non-conflicting 1-block, and they conflict with B5.1. B5.1 is
pre-fetched by B2.1 We modify the cache conflict graph: add the 1-block which
includes instruction perfecting into the same cache set , in this example, it is B2.1.

560 Guowei Wu and Lin Yao

1.2
2

BB

3B

4B

1.5
5

BB
3.6

6
BB

1.7
7

BB

8B
9B

10B

1.5B

1.2B

3.6B 1.7B

Fig. 2. Program Flow Graph

Pre-fetching node can be distinguished by attached property with other nodes, the

new added node edge can be drawn according to the old method in cache conflict
graph. For the pre-fetching node, when we judge the hit/miss property of its joined
edge, we need to consider its pre-fetching data. In this example, B5.1 is pre-fetched by
B2.1 and B5.1 conflicts with B6.3, thus mark the B2.1 to B5.1 edge as hit, B2.1 to B6.3 edge
as miss. Thus, we can constrain the cache hit scope of 1-block as:

1.5,1.21.5,1.51.5 ppxhit (5)

Other instruction pre-fetching constraints information can be given according to
this analysis way. Equations (2) through (5) are the possible cache constraints for
bounding the cache hit/miss counts. These constraints, together with the functionality
constraints and the structural constraints, are passed to the ILP solver with the goal of
maximizing the cost function (1). Because of the instruction cache and instruction
pre-fetching information are given, a tighter estimated WCET will be returned.

3 Experimental Results

To verify the proposed method, we use cache analysis tool Cinderella to estimate
WCET of programs and evaluate the proposed method. Cinderella reads the subject
program’s executable code and constructs the CFG and the CCG, the user is asked to
provide loop bounds and additional constraints information. The constraints are
solved by the public domain ILP solver which uses the branch and bound procedure

A New WCET Estimation Algorithm 561

to solve the ILP problem. Target platform is Motorola MMC2107 development board
which contains a 40MHz Motorola MMC2107 processor, 128KB of main memory
and several I/O peripherals. The M2107 processor contains an on-chip 8KB direct-
mapped instruction cache organized as 32-16-byte lines.

Table 1. WCET estimation experimental result

Function
Measured
WECT

Proposed
method Li’s method

FFT 1.25*106 1.23*106 1.18*106

DES 2.42*105 2.40*105 2.38*105

Stats 1.65*104 1.62*104 1.59*104

DCT 1.15*105 1.12*105 1.1*105

For comparison convenience, we select the set of benchmark programs from [1] for

our evaluation. The measured WCET in [1] is used as the actual WCET. We assume
that the measured WCET of a program is very close to its actual WCET. We analyze
every benchmark program and give constraints, then pass these constraints to ILP
solver. Table 1 is the experimental results, where time unit is clock period counts, it
shows that the proposed method gives a more accurate WCET estimation than Li’s
method. Combining instruction pre-fetching into instruction cache analysis can
improve estimation precision, and the results prove that the model we give is right and
feasible. We also compare computation complexity between the proposed method and
other methods, Table 2 is comparison results, where time unit is second. It shows that
the proposed method low the computation complexity.

Table 2. Computation complexity comparison result

Function Liu’s method
Proposed
method Li’s method

FFT 15 0.08 0.075

DES 8 0.05 0.06

Stats 5 0.03 0.04

DCT 10 0.06 0.05

4 Conclusion

The properties of modern CPU, such as pipeline and instruction pre-fetching, have
important effect on WCET estimation precision. Ignoring these properties during
WCET estimation will result in loose WCET estimation. In this paper, we present a
new method to find a tight bound on the worst case execution time of real time

562 Guowei Wu and Lin Yao

embedded software. This approach combines instruction pre-fetching into instruction
cache analysis. According to different programs, different program structural
constraints and program functionality constraints which include cache and instruction
pre-fetching factors are passed to the ILP solver with the goal of maximizing cost
function. The ILP solver then returns a more accurate estimated WCET. Experimental
results show that the estimated WCET is much closer to the measured WCET than
that without instruction pre-fetching analysis. Experimental results also show that the
proposed method lowers the computation complexity compared with other existed
methods. Our next research work will focus on combining data cache and TLB cache
analysis into instruction cache analysis, thus the WCET estimation result will get
much more accurate.

References

1. Liu,J.C.,Lee,H.J.:Deterministic Upperbounds of Worst-case Execution Times of Cached
Programs. In: Proceeding of the 15th IEEE Read-Time Systems Symposium,Vol.30,New
York(1998)182-191.

2. Lim,S.S.,Young,H.B.,Gu,T.J.:An Accurate Worst Case Timing Analysis Technique for RISC
Processors. In: Proceeding of the 15th IEEE Real-Time Systems Symposium,Vol.30,New
York(1998)97-108.

3. Alan,C.S.:Reasoning about Time in Higher-level Language Software. IEEE Transactions on
Software Engineering,Vol.15,No.7,pp.875-889,July 1999.

4. Robert, A.: Bounding Worst-case Instruction Cache Performance. In: Proceeding of the 15th
IEEE Real-Time Systems Symposium,Vol.30, New York(1998)172-181.

5. Li,Y.S.,Malik,S.,Wolfe,A.: Cache Modeling for Real-Time Software Beyond Direct Mapped
Instruction Caches. In: Proceeding of the 17th IEEE Real-Time Systems Symposium,
Vol.35, New York(2002)35-42.

.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 563-569, 2005.
 Springer-Verlag Berlin Heidelberg 2005

A Component-Based Model Integrated Framework for
Embedded Software

Wenzhi Chen, Cheng Xie, Jiaoying Shi

College of Computer Science, Zhejiang University, Hangzhou 312207, P.R.China
wzchen@cad.zju.edu.cn,

arthurxie@vip.sina.com, jyshi@cad.zju.edu.cn

Abstract. The development of distributed, concurrent software in embedded
systems is becoming increasingly complex and error-prone. Model-based
integration of reusable components is advocated as the method of choice. To
this end, we propose a framework to support component-based model
integration, hierarchical functionality composition, and reconfiguration of
systems with continuous and discrete dynamics. In this framework, components
are designed and used as building blocks for integration, each of which is
modeled with abstract ports, reactions, and communication schemes. It uses
hierarchical composition to hide the implementation details of components, and
keeps the components at the same level of hierarchy interacting under a well-
defined model of computation. Code generation takes the design decisions
down to the final running system. Within this framework, embedded software
can be constructed by selecting and then connecting components in a
functionality repository, specifying models and transforming them to
executable codes.

1 Introduction

The model-based approach has proven to be effective for fast and low-cost design and
simulation of embedded systems, such as automotive systems. However, due to the
lack of a common framework, the benefits of model-based approach are limited by
the manual process of extracting information in one model for reuse in another.
Furthermore, the current practice in embedded software development relies heavily on
ad-hoc implementation to meet the various constraints of the underlying platform.
Although component-based software development and integration are known to be
efficient for software reusability, such an approach is neither well-defined nor well-
understood in the embedded system domain.

 This work was supported in part by the Hi-Tech Research and Development Program of

China (863 Program) under Component-based Embedded Operating System and Developing
Environment (No.2004AA1Z2050), and Embedded Software Platform for Ethernet Switch
(No. 2003AA1Z2160); In part by the Science and Technology Program of Zhejiang province
under Novel Distributed and Real-time Embedded Software Platform (No. 2004C21059).

564 Wenzhi Chen, Cheng Xie, and Jiaoying Shi

Embedded systems are intrinsically heterogeneous. It consists of various device
drivers and various control algorithms, which usually exist as software components.
The physical processes to be controlled are usually continuous but the algorithms are
implemented using discrete software components. There are hybrid models that match
different parts of a system, for example, continuous time(CT) models for ordinary
differential equations, finite state machine(FSM) models for plant operations, discrete
event(DE) models for network communication, and synchronous data flow(SDF)
models for signal processing. Although each individual model is relatively well-
understood, it is difficult and complex to implement the integration of heterogeneous
models.

An effective solution is to construct a common component-based framework and
use it for model integration. In this paper, we present a framework that supports the
component-based model integration and implementation process. The framework
provides a component repository and hierarchical models, and can be used to specify
software structure, distributed functionality, and system constraints. Function
definitions of a component are separated from non-functional aspects, especially
timing and resource constraints. Components can be structurally integrated via their
communication ports, through which the state transitions of the system can trigger
reactions. The functionality of a component can be implemented using a different
model and enables reconfiguration after structural composition. The framework
provides a clean way to integrate different models by hierarchically composing
heterogeneous components. This hierarchical composition allows one to manage the
complexity of a design by information hiding and component reuse. The framework
has been applied to the Pcanel operating system that we developed at Zhejiang
University for cybernetic transport system. The model integration framework allows
seamless composition of vehicle applications with distributed real-time functionality
to enforce desired efficiency and safety.

2 Component Repository

A component-based embedded software design is modeled as a set of software
components and their interactions. Components are pre-defined software modules and
treated as building blocks in integration. The integrated embedded software can be
viewed as a collection of communicating reusable components.

The component repository contains the core software components for reusability
and integrated descriptions about hardware and bus systems. The characteristics of the
software components are also stored in the repository, e.g. test case, code size and
worst case execution time. Interfaces must be part of the repository. In distributed
embedded systems, the communication among software components can take place
by data buses or internally on the processor.

The interfaces of the software components are defined globally. A formal notion of
component interface provides a way to describe the interaction between components,
and to verify the compatibility between components automatically. The theory of
timed interfaces [1] is used to specify both the timing of the inputs a component
expect from the environment, and the timing of the outputs it can produce. The

A Component-Based Model Integrated Framework for Embedded Software 565

formalism of resource interfaces [4] is used to specify component interfaces that
expose component requirements on limited resources.

The component structure defines the required information for components to
cooperate with others in a system. Execution profiles define the execution
environment or infrastructure of a component. Examples include scheduling policies,
real-time constraints and resource demands. A component can be customized for use
in different environments by selecting different execution profiles. Components have
a collection of abstract input/output ports. Ports are shared states that allow
components to communicate with each other via tokens. The number of ports needed
for a component can be determined and customized by the system integrator.
Different types of ports with different execution profiles can be selected to achieve
different performance requirements.

Reactions define the functionality of the component that can be invoked outside the
component. In our model, reactions are represented as a set of triggers with actions.
Triggers are guards of some meaningful system states, such as time, signals, and
events. A component with other forms of reactions, such as function calls, can be
integrated into the system by mapping each of them to a unique trigger. Using triggers
enables actions to be scheduled and ordered adaptively in distributed and concurrent
system, and enables components from different vendors to be integrated into the
system without the source code modification. With such a component model, the
system can be designed by connecting cooperating components through their ports,
and the system execution can be done by having external state transitions like timer
interrupts or sensors trigger a sequence of reactions in components.

The semantics of reaction is designed to separate function definitions from state
transition specifications, and support reconfiguration. Reactions of a component are
specified in a table form [7]. When a trigger is activated at runtime, actions are
invoked according to the state table. The table enables the control logic to be reused,
and enables remote or runtime reconfiguration. The state table can be treated simply
as data and passed around the system. This compactness of table is useful for
embedded systems with limited resources and distributed environments, such as in-
vehicle control systems. Figure 1 shows a component-based design for continuous
time(CT) model and the component structure of corresponding implementation.

Fig. 1. Component-based design and implementation

Component connection network(CCN) combines the software components with
each other. The framework supports hierarchical composition to keep the systemic
view. The communication among components is carried out on token basis. The token
flows are scheduled within models. In a hybrid system, hierarchical heterogeneous
models cooperatively direct the token flows. Based on the CCN, token flow network
is constructed to analysis and verify concurrent and real-time functionality of
complete embedded software.

566 Wenzhi Chen, Cheng Xie, and Jiaoying Shi

The complete software can not independently from the hardware. The execution of
software depends on the underlying processor architecture, memory mapping, data
bus, or device register. For reuse of components, hardware platform descriptions are
also stored in the repository.

3 Distributed Functionality

More and more embedded systems consist of a network of electronic control units
(ECU) connected via a bus. As the platform architecture shown in Fig. 2, each ECU
consists of the controller, an operating system, a dedicated communication layer, and
one or many application reactions. The functionality of a component is modeled as
component structure. The functionality of a system is modeled as component
connection network. The communication among components is modeled as token
flow network. The distribution of functionality among ECUs is transparent in a high-
level systemic view. The communication between reactions of spatially separated
ECUs is wrapped by the communication layer. The integrated system model may span
hybrid bus systems, such as Controller Area Network and Local Interconnect
Network.

Fig. 2. Platform architecture

The composition model defines how software can be integrated with given
components. Since each reusable component is implemented with a set of reactions
that uniquely define its functionality, components can be selected based on the match
of their reactions and design specifications. The integration of reusable components
can be viewed as linking the components with their reactions.

A composite is an integration of reusable components. The model of the composite
links the components with their reactions, allowing for the observation and
manipulation of the runtime states and behaviors internal of components.
Furthermore, to facilitate modularity, a composite itself, together with the components
within its model, can be treated as a integrated component at a higher level of
hierarchy, which means that a composite can be encapsulated to a component. The
member component behaviors determine the reactions and states of the integrated
component. When applied formal models, the composite maintains assurance of
diversified non-functional aspect, such as timing and deadlock.

A Component-Based Model Integrated Framework for Embedded Software 567

Models are independent of implementation of components. Thus, Reusable
components in integrated software are organized hierarchically to support integration
with different models. A complete system configuration is a set of hierarchical
compositions of models and reusable components.

4 Code Generation

The integrated software obtained from the composition model cannot be executed
directly on a platform since the composition model only deals with distributed
functionality. Code generation approach is a migration path from design-time models
to runtime models. A typical code generation process assumes a flat operating system
support and generates a stand-alone program that is then compiled into an application.
Our framework provides a runtime system natively supporting executable models and
distributed deployment. It greatly helps code generation and improves the quality of
final software. The runtime system can utilize hardware support (such as SMP) and
communication systems (such as CAN). In addition, there are certain assumptions,
like resource reservation and timing predictability, can only be achieved by OS-level
runtime systems, but not easily by stand-along programs.

To obtain and deploy complete software, components have to be transformed to
reactions, which are basic schedulable units of the runtime infrastructure. A reaction
is synthesized by code generator from a sequence of actions associated with an
external trigger, which represents physical process such as interrupt, signal, and event.
The code generator generates a runtime implementation that consists of a network of
computing blocks communicating through a publisher-subscriber service.

A synthesized reaction has access rights on internal states of all components that
own the actions. Such access rights are constructed during reaction initialization to
avoid concurrent data competition. On arrival of a trigger, the reaction executes the
pre-compiled actions in static order. The reaction is not reentrant, that in each round
of a reaction execution, exactly one trigger is processed.

All reactions execute with statically assigned priorities in the runtime model. A
reaction with high priority preempts lower-priority reactions. Actions within a
reaction are executed at the same priority assigned to the reaction itself. The
execution sequence of actions modeled at design-time to achieve functionality is
preserved at runtime. Compared to other models requiring dynamic priority
assignment [5], our implementation has low runtime overhead, lesser complexity and
better support for massive concurrency.

5 Related Work

Since most embedded systems deal with safety-critical applications, model-based
design and formal analysis are highly desired and widely used in software
development. Ren et al developed an approach based on the Actor model for
distributed real-time systems [6]. An Integrated Object-Oriented Environment is
proposed for Real-Time Industrial Automation Systems [2]. Stewart et al used port-

568 Wenzhi Chen, Cheng Xie, and Jiaoying Shi

based objects to support dynamic reconfigurable real-time software [3]. All of these
frameworks agree on modeling the components as autonomous self-contained
software modules and using event mechanisms to describe the connection of
components. However, Most of the previous research in the literature has focused on
component model, while largely ignoring the heterogeneous properties of software for
hybrid systems. Systematically integrating heterogeneous components is crucial to
design complex embedded systems. It is difficult for engineers to reconfigure and
analyze components and their integration. Lack of context and environment
descriptions may further introduce mismatching problems of architecture and
interface inconsistency. Out framework is inspired by practical applications like
automotive control applications which are model heterogeneity. The component-
based model integrated framework we proposed is designed for re-usability of
components with model heterogeneity.

6 Conclusion

In this paper, we presented a component-based model integrated framework for
embedded software. A reusable component in our framework is modeled with
communication ports, triggers, and reactions for separate functionality specification
and reconfiguration. Component repository contains components for reusability and
integrated descriptions for executing environment adaptation. Distributed
functionality within hybrid models is designed by hierarchical composition of
components. Code generator transforms the design to implementation by OS-level
runtime support. Such a framework enables multi-granularity and vendor-neutral
component integration, as well as functionality reconfiguration. Our future work will
focus on the timing and resource analysis for integrated components. The framework
presented in this paper makes it possible to separate the timing and resource analyses
from the functional integration.

References

1. Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Marielle Stoelinga.
Resource interfaces. Proceedings of the Third International Conference on Embedded
Software (EMSOFT), Lecture Notes in Computer Science, Springer-Verlag, 2003.

2. Becker, L. B., Gergeleit, M., Nett, E., Pereira, ., C. E., An Integrated Environment for the
Complete Development Cycle of an Object-Oriented Distributed Real-Time System, 2nd
IEEE International Symposium on Object-oriented Real-time distributed Computing
(ISORC'99), Saint-Malo, France, pp. 165-171, May 1999.

3. D. Stewart and P. Khosla, "The chimera methodology: Designing dynamically
reconfigurable and reusable real-time software using port-based objects," International
Journal of Software Engineering and Knowledge Engineering, vol. 6, no. 2, pp. 249-277,
1996.

4. L. de Alfaro, T.A. Henzinger, and M.I.A. Stoelinga. Timed interfaces. In Embedded
Software, Lect. Notes in Comp. Sci. 2491, pages 108-122. Springer, 2002.

A Component-Based Model Integrated Framework for Embedded Software 569

5. M. Saksena, P. Karvelas, and Y. Wang. Automatic synthesis of multi-tasking
implementations from real-time objectoriented models. International Symposium on Object-
Oriented Real-Time Distributed Computing, March 2000.

6. S. Ren and G. Agah, "A modular approach for programming distributed real-time systems,"
in Lectures on Embedded Systems: Eur. Educational Forum School on Embedded Systems
(LNCS 1494), Veldhovan, The Netherlands, Nov. 1996, pp. 171-207.

7. T. Villa, T. Kam, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Synthesis of FSMs:
Logic Optimization. Kluwer Academic Publishers, 1997.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 570-575, 2005.
 Springer-Verlag Berlin Heidelberg 2005

A Cooperative Web Framework of Jini into OSGi-based
Open Home Gateway

Zhang-Long Chen1, Wie Liu1, Shi-Liang Tu1, and Wie Du2

1Department of Computer Science and Engineering, Fudan University, Shanghai
{chenzl, wliu, sltu}@fudan.edu.cn

2College of Management, University of Shanghai for Science and Technology, Shanghai

Abstract. The administration of heterogeneous networks with many embedded
equipments and mobile devices is a hard and time-consuming task. Today’s
methods only provide static configuration files and make the addition and
removal of devices a manual chore. The Open Services Gateway Initiative
(OSGi) specification defines a service-oriented framework for use in residential
gateways. OSGi framework acts as a gateway from the Internet to consumer
devices attached to the residence’s home-area network. And Jini is an
infrastructure for spontaneous and ad hoc service networks. It allows users to
find services which consumer devices provide without prior knowledge of their
network environments. The paper presents a cooperative web framework for the
integration of Jini into OSGi open home gateway which can provide much
easier, more intelligent and powerful home network control service. It can
federate home-area network devices and services in secure ways by Internet.
This paper puts forward relative design and reference implementation.

1 Introduction

There is a rapidly growing market for intelligent mobile devices and embedded
equipments. Devices such as Personal Digital Assistant (PDA), mobile phones and
embedded equipments at home are getting cheaper, smaller and more powerful. The
uses of mobile embedded devices is moving geographically, connecting the device
often to different local networks in order to finish different tasks and maybe providing
different services and control interfaces to users by Internet1.

OSGi is making developers and enterprises realize the potential of the consumer
equipments market such as virtual intelligent home and intelligent home health care
[1]. The OSGi specification defines a service platform [2] that includes a minimal
component like model and a small framework for managing the components,
including a packaging and delivery format. The Jini technology is also a service-
oriented approach to realize spontaneous networking. It addresses the challenges of
spontaneous distributed systems such as robustness, self-healing, administration-
freeness and heterogeneity. But how to provide the impromptu and federative

This work is supported by China “863” high technology research software project fund

(2003AA1Z1120).

A Cooperative Web Framework of Jini into OSGi-based Open Home Gateway 571

management of the embedded and mobile devices in heterogeneous network
environments is a problem.

To alleviate the lack of flexibility and transparency of reconfiguration for the user
when changing the network environment, the paper proposes a cooperative web
framework for the integration of Jini into OSGi open home gateway. And it presents
related design and reference implementation. In the rest of paper, it analyses the OSGi
architecture, Jini technology and the cooperative web framework. Section 2 describes
the characteristics and drawbacks of OSGi technology. Section 3 puts forward the
cooperative web framework for the integration of Jini into OSGi open home gateway
and Section 4 is related analysis and reference implementation. Section 5 is
conclusions and future work.

2 The Characteristics and Drawbacks of Current OSGi
Technology

The key aspects of the OSGi mission are multiple service, wide-area networks, local
networks and devices. The central component of the OSGi specification is the service
gateway that acts as the platform for many communication-based services. The
service gateway can enable, consolidate and manage voice, data, internet and
multimedia communications from the home, office and other locations. The OSGi
framework creates a host environment for managing bundles and services, while a
bundle is the physical unit of deployment in OSGi and a logical concept used by the
framework for organizing its internal state. A bundle is a Java JAR file that contains a
manifest and some combination of Java class files, native code, and any associated
resources. An installed bundle in the framework is uniquely identifiable by either its
bundle identifier, a number assigned dynamically by the framework when the bundle
is installed, or by its location.

The trend of the electronic market is taking aided by the concomitant development
of mobile embedded devices, and it suggests a major change from the way electronic
commerce is done today. The increased use of PDA and laptops has shown a new
horizon of proliferation in the electronic market, since e-commerce and e-home
services and transactions processing facilities need to be accessed from a wireless or
wired device. Discovering services dynamically will become increasingly important
in the heterogeneous networks. Some examples of resource discovery protocols,
which allow the devices to find each other and perhaps to talk each other, are also
available in the market. OSGi aims to define and promote open specifications for the
delivery of multiple services over wide-area networks to local networks and devices.
The current specification of OSGi is 3.0. But it doesn’t present rational solutions to
the impromptu and federative management of the embedded equipments and mobile
devices in heterogeneous network environments. Today, however, the change of
network surroundings is linked to a number of reconfiguration tasks to be done
manually. There is an obvious gap of transparency between the need to change the
network environments on the one hand and the methods to support this change in a
transparent and convenient manner for the user on the other hand.

572 Zhang-Long Chen et al.

3 A Cooperative Web Framework of Jini into OSGi Open Home
Gateway

3.1 Software Solution: The Integration of Jini into OSGi Open Home Gateway

In the normal Jini scenario, when both a client and service are within a LAN (local-
area network), the client downloads a “proxy object” which it can use to control the
service. Initially it hopes to be able to keep up to use this Jini architecture to control
Jini services over the Internet using applets by allowing the applet to download a
service’s proxy object and directly contact the service’s machine. However, when the
client is outside the LAN this same interaction raises problems. At first, the client
would need to install the core Jini files. Moreover, the use of multicast to discover the
lookup service cannot be used. This however can be solved by Jini’s unicast lookup
ability where the client specifies a known IP address of a lookup service.
Unfortunately there are more severe problems. Even if the client knows the IP address
of the machine running the lookup service and uses Jini’s unicast facilities to try to
contact it, it is unlikely to get through if that machine is behind a firewall. If the
firewall is configured to permit it to access to that relative port on the lookup service
machine, then the client will be able to access it and download the proxy object. Even
if having to open ports for every machine it runs a service on the communication
between the proxy object and the service back-end. RMI will be often used.

One solution to this problem is to try to tunnel RMI over HTTP. This need
encapsulate the client RMI call in an HTTP POST request and unpack it on the server
side. But there is extensive negative experience with this on the RMI users mailing
list. This issue has been raised previously as the Jini attempts to access Jini services
over the Internet. Moreover, at the time of writing, the RMI over HTTP solution is
referenced as not working. Even if this solution becomes feasible, the client would
have to install the core Jini files in advance. This method to these this problem is to
add an extra level of indirection to the standard Jini architecture.

3.2 Reflection – A Generic Jini Client

For a Jini client, once the lookup service has been found, it can be searched for
services that implement a specific interface. Therefore, if the client is to search for a
specific type of service, it must be aware of that service’s interface at compile time. A
client can however search for all services available implementing any interface by
passing null as a parameter in the methods that search the lookup service. In cases
where the client is automated, this is not a problem because it doesn’t make sense for
programmatic clients to call a service they know nothing about. However if there is
human interaction with the client, it may be possible to provide the user with enough
information about the service at run time so that user can sensibly call the service.
Although the client doesn’t know any information about the service, it aims to extract
enough information about it at run-time and provide this to the user so that user can
make judgment on whether or not it makes sense to access the service. Java’s
“Reflection” abilities permit it to discover the type of an object, the interfaces it

A Cooperative Web Framework of Jini into OSGi-based Open Home Gateway 573

implements, and the methods those interfaces define when it gets the object at run
time. These capabilities can be used to augment the web link architecture.

The first stage supplies all discovered services, their class names and a description
of each service. The user then chooses a specific service. This selection is passed to
the second stage, which provides a list of all the interfaces supported by the selected
service. The user then selects a specific interface. This selection is passed to the third
stage, which can offer a list of all the methods provided by that interface. The user
selects a method to invoke. The method is called on the service and the final stage
shows the result.

3.3 Requirements and Solution of the Cooperative Web Framework Security

Currently the specification of OSGi comprises many service, such as remote
management reference and Http service. And every idiographic service may have
security requirements and specification. So the OSGi specification doesn’t present
any implementation about security. However, the security problems that are bound to
be present in any large-scale deployment of Jini are not adequately addressed by
either the current revisions of Jini technology or the underlying Java security
solutions. Therefore it analyzes the security requirements of OSGi and Jini in
different environments. Security threats and high level security goals are identified,
and the implementation of these high level goals using lower level security
mechanisms is described. Based on the identified requirements, the architecture for
the cooperative web framework of OSGi and Jini security is proposed. The
architecture is based on the trust management approach, and uses Simple Public Key
Infrastructure (SPKI) certificates for authorization.

Traditionally, security has been grounded on identity authentication and locally
stored access control list (ACL). This has been the case even in distributed systems.
However, that approach has a number of shortages, for example, the problem of
protecting the operations that are needed for managing access control list remotely. In
Blaze et al. argue that “the use of identity-based public key systems in conjunction
with ACL is inadequate solutions to distributed system-security problems.” Examples
of trust management systems include the Policy-Maker, which originally introduced
the term trust management [4], its continuations KeyNote and KeyNote2 [5], and in
some respects, SPKI [6] and its applications, including TeSSA.

The relationships form two loops. The service wants to verify that the user is
authorized to use this particular service, and the user hopes to validate that the client
is talking to the accurate service. Secure system signs any piece of data using the
proxy’s key. Secondly, the proxy can request some permission to be delegated from
the user to the proxy’s public key This delegation is expressed as a SPKI certificate
and the certificate is given to the proxy. The security manager can offer one service
for the client applications. Given a proxy instance, a client application can ask for the
public key of the corresponding service. The application can implement an
authentication user interface, which could use, for example, name certificates given
by the proxy for authentication.

574 Zhang-Long Chen et al.

4 Related Implementation

4.1 A SOAP Jini Client/Web Bridge

SOAP is an XML based distributed programming specification. Implementations of
this specification are available in many languages. Since Jini services and clients are
built in the Java programming language, an implementation of SOAP in Java is
necessary in order to uncover the Jini services as SOAP services that can be accessed
by SOAP clients over the Internet. Apache-SOAP is one such implementation and can
be downloaded from the Apache web site. Apache SOAP can be used as a client-side
library to invoke SOAP services available remotely, or as a server-side tool to expose
SOAP services. The configuration of the client and server are both documented with
the Apache-SOAP download. From the server’s point of view, among other things, it
needs a web application server that supports servlets and JSPs (Java Server Pages).
And the OSGi specification comprises Http service, Servelet service etc.

In order to act as a Jini client and contact any Jini services on the LAN, the OSGi
servlet engine must be modified. Once we set up the servlet engine configured for
Apache-SOAP, we can register a Jini client as a SOAP service. The process of
registering a SOAP service is well documented in the Apache-SOAP download.

The SOAP message can then be created and the specific method it attempts to
invoke can be passed to it. Using SOAP, and the modified Jini web link architecture
as the means of invoking Jini services avoids the problems of firewalls and of needing
to install the core Jini technology files on the client. However in order to invoke Jini
services via SOAP over the Internet, the Internet client (or SOAP client) must still
install the SOAP implementation files as well as an XML parser. Moreover, the
SOAP client is invoked using a command line interface rather than via a browser.
Finally, the speed of a SOAP client-server interaction is quite slow. This is due to the
fact that XML has to be parsed both on the client and on the server machines.

4.2 A Servlet Jini Client/Web Bridge

The advantages of using a series of Java servlets as the Jini “client/web link” are
apparent. Firstly, the speed advantage of servlets over SOAP is gotten, not only
because of the necessity of parsing XML at both the SOAP client and server, but also
because of the multi-thread capabilities of servlets. Furthermore, the obvious
advantage of servlets over SOAP in this situation is that the Internet client can be a
simple HTML page thus not needing any distribution or installation of client side
files. Finally, using servlets allows easy and clean use of Java’s reflection capabilities
to develop a generic Jini client that can control all Jini services without any advanced
knowledge of them. While these capabilities can be used with a SOAP
implementation in Java, the clean well defined model for processing data transfer
between servlets simplifies this process. As in the previous SOAP service scenario,
OSGi-based gateway is located on the client/web bridge machine in the web link
architecture.

A Cooperative Web Framework of Jini into OSGi-based Open Home Gateway 575

4.3 Implementing a Generic Jini Client by Reflection

As described previously, Java’s “Reflection” capabilities allow it to discover the type
of an object, the interfaces it implements, and the methods those interfaces have when
system gets the object at run time. These abilities can be used to augment the web link
architecture to create a generic Jini client. This Jini client should be able to access all
Jini services, even ones that are created after the client has been written.

The four-stage addition to the web bridging architecture used to create the generic
client is described in above. These four stages can be implemented by providing four
servlets which can pass the user’s choice at each stage to the next servlet. In the first
stage of the generic client, the user selects which service he/she would like to access.
This selection is passed onto the second servlet. The second servlet then displays the
interfaces implemented by the selected class. The user then selects an interface and
that selection is passed to the third servlet. This servlet shows all the methods defined
by the selected interface.

5 Conclusions and Future Work

The OSGi services gateway enables the connectivity and management of several
devices, including set-top boxes, routers, alarm systems, cable modems, energy
management systems, consumer electronics, PCs, and the residential gateway. And
Jini is a valuable technology for the integration of embedded and mobile devices into
heterogeneous networks, at least for stateless services or services which don’t depend
on long term network connections such as telnet or ftp. But how to integrate this
promising technology for providing reliable services is a stringent problem. The paper
puts forward a cooperative web framework which makes Jini and OSGi architecture
work cooperatively. And it presents the security requirements of the cooperative
framework and offers possible solution. In the future it is planning to define a
standard API for secure services. And it needs to evaluate the performance of the
cooperative framework and secure services capability.

References

1. Open Services Gateway Initiative, http://www.osgi.org, 2003
2. Open Services Gateway Initiative, “OSGI Service Platform,” Release 3, 2003.
3. Sun Microsystems, “Jini Specifications
4. Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management. In

Proceedings of the 1996 IEEE Symposium on Security and Privacy, pages 164–173,
California, May 1996.

5. Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D. Keromytis. The KeyNote
trust-management system version 2. RFC 2704, IETF, September 1999.

6. Carl Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian Thomas, and Tatu Ylönen.
SPKI certificate theory. RFC 2693, IETF, September 1999.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 576-581, 2005.
 Springer-Verlag Berlin Heidelberg 2005

A Structure Modeling Method for Multi-task Embedded
Software Design

Jiamei Cai, Tieming Chen, and Liying Zhu

College of Software, Zhejiang University of Technology,
310014, Hangzhou, China

{cjm, tmchen}@zjut.edu.cn

Abstract. Development of multi-task embedded software involves very
complex modeling process. Based on the data flow diagram (DFD) method, a
structure modeling method for multi-task embedded system design is present in
this paper. This structure modeling approach mainly depends on the task-based
DFD method. As a concrete instance, the development of a project on IMS
detector design is discussed using above method. It is true that DFD-based
structure model is an effective solution for some real time embedded system
design.

1 Introduction

It’s very useful to establish a reasonable software structure at the beginning of the
design for multi-task embedded system. So far, there exist some methods for
presenting embedded real time system, which include Language Presentation and
Mathematical Analysis, Flow Diagram, Structure Diagram, Finite State Machine, and
Data Flow Diagram, etc. Among all above methods, Data Flow Diagram is the only
one that can express the system structure characteristics and has the ability of
describing parallel procedure, and is most suitable to embedded software structure
design. Therefore, it’s feasible to use task-based DFD as the analysis tool for real-
time multi-task embedded system development.

We do system requirement analysis and functionality modules definition at first,
then draw the DFD according to the dada flow analysis of functionality modules, with
the purpose to obtain the task DFD under restricted conditions. The asynchronism of
system functionalities and transformation of DFD are then analyzed to make sure
which part is parallel or sequential in procedure. All tasks are specified in order to
achieve the task-based DFD finally.

We denote circle angle rectangles as tasks, oriented edges as data flows and events
between tasks, and such task-based DFD can just properly identify various tasks’
either dependent or restricted relationships based on data transmit. Fig.1 is an
illustration of DFD with event constraint where A and B are the subtasks of task C.

From the illustration we know that attributions and actions of tasks are well
enveloped, and tasks communicate with others or external environments only through
data input, data output, event input and event output. Such DFD under event
constraints here can model the embedded software system structure well.

A Structure Modeling Method for Multi-task Embedded Software Design 577

Fig.1. Illustration of DFD under Event Constraint

2 Task Constructions and Task-Based DFD Modeling

In real-time operation system, task is the smallest unit competing for system resource
and is independently running in parallel. The task’s outstanding feature is holding the
private data container, for example, the defined stack during a task being initiated
preserves task execution trace. So constructing system application tasks in correct
way is critical for system coordination and simplification, as well as affects system
performance, real time level and system throughput, etc.

In order to build system basic task DFD model, tasks are first constructed from
considering several system aspects: I/O functionality, internal functionality, task
cohesion, and task priority [1,3].

2.1 I/O Task Construction

In general, the transformation performance relies not only on the running efficiency
but also on I/O device, so tasks about I/O can be independently constructed. The
construction rule is that only system tasks related to I/O devices are constructed and
further implemented in code, with the performance only limited to I/O devices
throughput not to CPU.

2.2 Internal Task Construction

Internal functionality is the internal event functionality, which controls, coordinates or
processes other system functionalities. Internal functionalities can be assigned into
various tasks after internal tasks construction. According to control type, internal

578 Jiamei Cai, Tieming Chen, and Liying Zhu

functionalities may be constructed as periodic tasks, asynchronous tasks, control tasks
and user interface tasks, etc.

2.3 Task Cohesion and Coupling

From the view of software engineering, task cohesion can simplify system module
structure and reduce system expenditure. Anyway, excessive cohesions may result in
hard management of task priority, blocking and other real time parameters. In
addition, the data communication amount should be as concise as possible to avoid
control cohesion. If control cohesion occurs, some corresponding measures should be
taken to keep synchronization or exclusion, and to avoid bound resource collusions.

2.4 Task Priority

Prior task constructs based on priority division, which can balance CPU occupied
time. If there exists functionality that needs large computing resource, it should be set
to lower priority in order to be alternated momentarily by higher priority tasks. Thus
the higher priority tasks, which occupy CPU less time, can always be kept on running
while the above computing tasks seem to only consume idle CPU time.

2.5 Structure Modeling Design Procedure

First of all, basic tasks DFD is constructed, then it is optimized through tasks
partition, simplification, mergence, etc. based on the relationship between data input
and output, event input and output, as well as some constrain conditions. Successively
new tasks DFD is combined. We can then obtain the final number of tasks due to the
new tasks DFD, and start system concrete design depending on task modules.

3 Development of IMS Detector Embedded Software

3.1 System Principles in Brief

IMS (Ion Mobility Spectrometry) is an electronic detector device, which can identify
whether some chemical ingredients contained in the given liquid through measuring
distance-given mobility time of the ion in the given electromagnetic fields under the
circumstance of given temperature and gas pressure. The distance mobility rate is
distinguished based on the fact that different substances have different structure
features, so the mobility time is also unique [2]. In the hardware structure of IMS,
IMC (Ion Mobility Tube) is the most important component which structure is
illustrated as Fig.2.

A Structure Modeling Method for Multi-task Embedded Software Design 579

3.2 Software Functionality Modules

According to the working principal of IMS, we conclude the software running
procedure as following. Once the system starts, various tubes should be heated up to a
given fixed temperature. And the ion signals are continuously gathered to appear on
LCD screen as EID. During the system running, the motor, pump and valve should all
be controlled in proper manner while the control analyzing tube is heated up to a
given temperate. Finally, all useful information such as detect status, EID, detect
result, etc. will be shown on screen respectively.

We then define six key functionality modules: Real time data gathering module
Tdg, real time control module Tc, display module Td, key-press process module Tk,
analyzing module Ta and database module Tdb.

We can obtain the basic tasks DFD from above analysis, also we can establish the
constrain relationship between data and events of tasks as shown in Fig.3

3.3 Tasks Partition

Basic tasks DFD construction is the initial step for functionality modules partition.
More detailed and reasonable tasks partition should be taken for simplifying complex
relationship between tasks. Here we introduce the next steps of tasks partition for IMS
software based on partition rules in section 2.

 Due to the different sampling periods, we decompose data gathering task into two
independent tasks: Channel data gathering task Tmc and Ion signal gathering task
Tion, with two input event ht g , two output data dm ion respectively,
also the output event e for Tion. Note that ion is stored in non-cache region.

 Task Td and Ta use ion while ion is not in cache but its sampling period is very
short. So it’s necessary for Tion to decompose a new task called ion signal data
transmitting task Tmv, and move ion from non-cache to cache.

580 Jiamei Cai, Tieming Chen, and Liying Zhu

 Task Td involves lots of functionalities and is really complicated, so it may be
partitioned into the main task Tm and interface task Tui. Furthermore, Tui is not
bounded with low priority, so it forks a new task called Tal, whose priority is
higher than Tui, to correspond to warning task

 Control task and channel data gathering task have the same time period, so we
can incorporate them into a new task Tmcc based on the time cohesion rule.

 Because the database task connects to PC through the serial port, we consider it
as an independent task according to I/O task construction rule.

Fig.3. Basic Task DFD

Once a new fractionized tasks set been created after above partitions, a new tasks

DFD model outcomes which is shown as Fig.4.

4 Conclusion

Single-task environment development method has not suited for the embedded system
because such software needs not only the processing ability for large real-time data,
but also the function for controlling multi-object parameters, which are always non-
linear, distributed and time-varied. So we propose the multi-task real-time OS, which
makes the system respond all external requests and control all real-time tasks in time,
for embedded system designing.

A structure modeling method based on Tasks DFD is very suitable to such
embedded system development. As a proving instance in this paper, we present the
analysis and design procedure for an RTOS based IMS embedded system

A Structure Modeling Method for Multi-task Embedded Software Design 581

development using our method. It is true that task-based DFD modeling is definitely
an efficient solution for real-time embedded system development.

Fig.4. New Tasks DFD

References

1. Klein E., RTOS Design: How is Your Application Affected, Embedded Systems Conference
Papers, ESC West 2000 San Francisco.

2. Xu Shuwu, Zheng Jian, Bi Zhiyi and Chen Yangzhou, Ion mobility spectrometry and its
applications, Physics, 2003 32 8 539-542.

3. Wang Chunmin, Liu Zhenhua, and Guo Yunfei,Task Decomposition of Application Design
in Real-time Operating System, Computer Engineering,2000 26 7 190-192.

Chaos-Model Based Framework for Embedded

Software Development�

Huifeng Wu1, Jing Ying1, Xian Chen2, Minghui Wu34, and Changyun Li1

1 College of Computer Science, Zhejiang University, HangZhou, 310027, China
{whf,lcy01}@zju.edu.cn,yingj@hangzhouit.gov.cn

2 Department of Computing Science, University of Alberta,
Edmonton, T6G 2E8, Canada
xianchen@cs.ualberta.ca

3 Department of Computing, The Hong Kong Polytechnic University,
Hong Kong, China

csmhwu@comp.polyu.edu.hk
4 Department of Computer Science and Engineering,

Zhejiang University City College, Hangzhou, 310015, China

Abstract. The main issue of today’s software development process is
how to relate the schedule and coding of the software project. The chaos
model of software development gave a theoretical description for it. This
paper introduces the chaos model into the research of software architec-
ture and brings forward a new software development framework CBFSD,
which divides the process of software development into three levels: tasks
level, codes level and components level. The construction of components
level’s architecture is the core of the whole framework. In this framework,
we use the chaos strategy: ”Resolve the most important issue first.” The
strategy makes it more appropriate to design and develop complicated
software systems.

1 Introduction

After fifty years’ development, today’s software engineering confronts with more
and more complicated software system and the organization of software devel-
opment becomes more and more intricate. In the past, programming method-
ologies pay more attention to how to resolve technical problems than how to
resolve users’ problems or meet deadlines. Each aspect of software development
is studied in isolation, instead of how to put them together. Lots of development
models, such as waterfall model, spiral model and so on, only discuss issues of
management level rather than how to write one line of code or fix one bug.
These models have some shortages: because we must not only understand the
flow of a project and how to write each line of code in the software development
process, it is more important to understand how one line of code relates to the
whole project and then establish a set of integrated software development system

� Supported by Fok Ying Tung Education Foundation(No.94030)

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 582–588, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Chaos-Model Based Framework for Embedded Software Development 583

[1,2]. All these facts lead to L.B.S. Raccoon brought forward the chaos model
[3,4] based on some preceding software development models [1,5,6,7,2]. It gave a
theoretic description for the relation of software architecture and coding.

In chaos model a complicated software project is made up of many fractals.
The relationships among these fractals aren’t clear. The development process of
a project can be regarded as micro-process in bottom-level, complexity gap in
middle-level and macro-process in top-level. In these three levels, the complexity
gap [8] is most complicated and it bridges the goal of macro-process to the
solution of micro-process. The size of complexity gap is determined by the scale
of issue, tools and the architecture of project. To design and cope with complexity
gap is developer’s main tasks. ”Resolve the most important issue first” is the
chaos model’s development strategy [9].

This paper introduces the idea of chaos model into software architecture
and brings forward a chaos-model based framework for software development
(CBFSD), and gives a detail description for components level’s architecture,
then establishes a development strategy and environment for it.

2 A Three-Layer Framework Based on Chaos Model

Generally it is a linear process to resolve a problem, which has a clear structure.
Traditional software development models divide a development process into task
definition, technical development and system integration linearly. The character-
istic of it is that the relationships between subtasks are linear and clear. On the
contrary, to cope with a complicated problem is more difficult, which turns out
to be a chaotic process. The relationships between subtasks are not linear, since
they have fuzzy and complicated relationships. So CBFSD divides the software
development process into three levels:

1. Tasks Level. In this level the focus is the finished programs or products.
The requirements will be divided into some specific tasks, and it takes the
responsibility of organizing and scheduling these tasks. In this level, the tasks
can be distinguished and dispatched strictly.

2. Codes Level. In this level programmers care about what technology can
support their coding and the code’s function. The function is based on the
program tools, methods and a specific advanced language, and the codes
realize the function.

3. Components Level. This level copes with chaos model’s complexity gap.
Complexity gap is ”everything between the macro-process and the micro-
process” [8]. In CBSFD, tasks level deals with the macro-process and codes
level deals with the micro-process. Components level is in the middle of them
and bridges the gap of tasks level and codes level. The components level has
complicated structure, and it may include several subcomponents levels. The
number of subcomponents levels is determined by the system’s complexity.
The components level embodies the components’ plug-in architecture. The
components level relies on the tasks level and codes level in the entire soft-
ware development process. It is unstable and will have to change when the
goal of tasks level or the technology of codes level changes.

584 Huifeng Wu et al.

The three-level structure of CBFSD describes the software’s development
process from different point of view. Adjacent levels influence each other very
strongly, while distant levels influence each other very weakly.

Dealing with the complexity gap is the core task of chaos model. In CBFSD,
components level covers the whole complexity gap, and the tasks switch from
coping with the complexity gap to cope with the components, their relationships
and alterations.

3 The Architecture of Components Level

In CBFSD, tasks level and codes level can be described by existent tools and
approaches. For example, the tasks level can be defined by natural language or
formal language, and the codes can be written by advanced languages. But it
is more difficult to handle the components level, because developers must define
and apply appropriate approaches to cope with the complexity gap in chaos
model. So it is necessary to give a detail definition for the components level’s
architecture.

Component is the replaceable, reusable and independent unit, and it com-
municates with other components by a series of interface parameters. It can be
expressed as a five-tuple:

(Task-Model, Property-Model, Sublevel-Set, Related-Set, Control-Interface)
Task-Model describes what tasks the component can accomplish. It can be a

single task or a set of tasks.
Property-Model describes the components’ properties, such as components’

behavior and existence mode. It includes exterior properties and interior proper-
ties. The exterior properties determine how the component communicates with
other components, and the interior properties determine the component’s inher-
ent properties.

Sublevel-Set describes the component’s position in components level. The
division of sublevels isn’t strict, and a component may belong to a single sublevel
or several sublevels. So we express component’s position with the concept of set,
which may includes only a single sublevel or several interrelated sublevels.

Related-Set is a set of interrelated components.
Control-Interface describes the component’s control interface. It is the way

how different components communicate with each other.
Component Plug-In describes the components’ affiliation in components level.

It can be described by a six-tuple:
(P-Component, S-Component-Set, Plug-In-Regulation, Sublevel-Set, Related-

Set, Control-Interface)
P-Component describes the father component and it is exclusive.
S-Component-Set describes the set of son components.
Plug-In-Regulation describes the rules of plug-in. Components plug-in can

be described as a component tree according to the rules. The rule’s BNF can be
described as follows:

Chaos-Model Based Framework for Embedded Software Development 585

< P − Component >::=< S − Component − Set > (1)
< S − Component − Set >::=< S − Component > |

< S − Component − Set > and < S − Component > (2)

Sublevel-Set describes the position of component plug-in in components level.
It is similar with the component that the component plug-in may belong to
several sublevels.

Related-Set describes a set of interrelated component plug-ins.
Control-Interface describes the interface of component plug-in. It is the way

of different component plug-ins communicate with each other.
Component alteration describes one alteration of components, the summation

of all the alterations constitutes the evolvement process of components level, and
it can be described as a three-tuple:

(Original-Component, Altered-Component, Alteration-Regulation)
Original-Component is the component before alteration.
Altered-Component is the component after alteration.
Alteration-Regulation is the rules of alteration.
Components alteration can take place in any phase of software development

process. Obviously, the evolvement of components level must be simplified in
order to master and summarize the rule of components’ alteration-regulation for
different kinds of components. Figure 1 shows a typical structure of components
level.

���������	��
�

���������	��
�

���������	��

Fig. 1. A Typical Structure of Components Level

4 Development Strategy and Environment

CBFSD adopts chaos strategy, which is embodied in the components level mainly.
The principle of chaos strategy is that the component has high priority will be
developed first, and then the component with low priority.

Priority Level indicates the importance of component in software develop-
ment process. The priority level is not rigid and quantitative, while it is a rank
and general concept. It means that there may have some components have the
same priority level. Which one of them will be developed first is determined by
the state of development process and developers. Once a component has been

586 Huifeng Wu et al.

finished, a component alteration will take place, and then the components level’s
priority level phase will change accordingly.

Priority Level Phase (PLP) is made up of all the components’ priority level
in components level. Suppose there are k components, Ci(i = 1, 2, ..., k), in
components level, and their priority level are Pi, then the PLP is:

SPLP =
k⋃

i=1

Pi (3)

The frequent change of PLP is the characteristic of a complexity system. It
will help developer to master the process of software development to look into
the PLP and simplify its structure.

Succeeding component is a component that will be developed after the given
component is finished. The succeeding component of Ci is Csi.

Component Development Section is a series of components. Suppose ki ∈ N ,
Cki+1=Cski

, then a component development section is Ck1 , Ck2 ,. . . , Ckn . And we
call it as a development section of Ck. The development process of components
level is made up of many interrelated development sections.

In order to establish the PLP, it is necessary to set the priority of every
component. Priority is a very subtle concept and will change according to con-
text. So the priority of every component should be reset at every moment when a
component finished. Usually the component has high priority should be reusable,
big, urgent, robust and have explicit requirement.

Reusable means whether there is a reusable component satisfying our re-
quirement or the component will be reused by other modules in the software
system.

Big means the component can make major progress for the entire project.
Urgent emphasizes timeliness and response to critical concerns and threats

to hold up the project.
Robust means the component increasing of simplicity and flexibility of the

entire project.
Explicit requirement means the component that has fine requirement speci-

fication and needs not to be modified any more.
If a component has all these properties at the same time, it should be de-

veloped first and has the highest priority. If a particular component lacks one
or more these priorities, then its priority is lower than other components with
more properties.

5 Application and Estimation

We have applied the CBFSD in some software development processes and real-
ized a multi-agent software environment that embodies chaos strategy primarily.

In a multi-agent software system, the design process of every agent can be
regarded as a linear process. The collaborative work of multi-agent can form
a structure according to actual requirement. The design process is a chaotic

Chaos-Model Based Framework for Embedded Software Development 587

process. Figure 2 indicates the architecture of multi-agent software design based
on CBFSD. Every ellipse in pane is the components level’s design process of
multi-agent software.

�������	
 ������

����
��	��

���	�	����	

��	����	

��������

���	�	�	��

�	�
��������

�	

��������	

������	 �������������

������	������	�	�	��

������	 ����	������

!��	�����	�	��

����
��	�������	��
��	��

�	�	������	�	�	��

"�
��
�����	�	�	��

������	 ����������

#��

�
��
�
�
�
��
	�
	�
	�
�

�
��	�	��

�
��	�	�	��

�
�
�
��
�
	
�
��

�
�
�
�
�
��

Fig. 2. Architecture of Multi-agent Software Design based on CBFSD

There are several ways afforded to developers to design and configure multi-
agent software system, the detail is as follows:

1. Taking the activity of design and division as main route. The system’s goal
should be established first by developers. It means which activities should
be finished and how the activities can be divided into subactivities. At the
same time, the properties of these activities are configured. Then developers
should determine which subactivities belong to every agent, and define the
skills or intents of every agent to carry out the activities. At the same time,
developers define and divide intent rules. These agents constitute a federation
at last.

2. Taking the abilities of agent as main route. First make sure what skills and
intents the agent holds. According to the skills and intents, ascertain which
activities it can carry out. Then associate these skills and intents with the
activities, afterwards, divide the activities into subactivities and configure
their properties. These agents constitute a federation at last.

3. Taking the agent federation as main route. First, developers make sure the
organization structure of agent, which means determining which agent fed-

588 Huifeng Wu et al.

erations the whole system is made up of; which members and familiars every
agent holds and the agent’s ability (which activities the agent can carry out,
and which skills and intents the agent holds and what properties every skill
and intent possesses).

The figure indicates that the ultimate goal of every design approach is the
same, and only design mode and sequence are different from each other. But
there is no formula for us to use. The developers can lower priority level and
then use the above approaches alternatively according to actual requirement in
the design process. With this pattern, we improve the interaction between the
system and developers. Developers can improve the design with their ideas in
the design process to make the design process more effective and flexible.

6 Conclusions

The application of chaos model in software engineering is a brand-new research
field. The chaos model focuses on three important aspects, which are chaotic
organization, complexity gap and chaotic strategy and environment. It is an
effective method to deal with complicated and large-scale software system. In
this article, we bring forward CBFSD based on chaos model, and establish an
elementary foundation for the research in this field. We have done some work on
it, which points out the direction for our subsequent research.

The further goal of CBFSD is to improve the development environment’s
usability and extensibility, and makes it suitable for the software development.

References

1. Berard., E.V.: Essays on Object-Oriented Software Engineering. Prentice Hall, New
Jersey (1993)

2. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy., F.: Object-Oriented Modeling
and Design. Prentice Hall, New Jersey (1991)

3. Raccoon., L.B.S.: The chaos model and the chaos life cycle. ACM SIGSOFT
Software Engineering Notes 20 (1995) 55–66

4. Raccoon., L.B.S.: Fifty years of progress in software engineering. ACM SIGSOFT
Software Engineering Notes 22 (1997) 88–103

5. Boehm., B.W.: A spiral model of software development and enhancement. IEEE
Computer 21 (1988) 61–72

6. Boehm., B.W.: Using the win win spiral model: A case study. IEEE Computer 31
(1998) 33–44

7. Royce., W.W.: Managing the development of large software systems: Concepts and
techniques. In: 1970 WESCON Technical Papers, Western Electronic Show and
Convention, Los Angeles (1970) A/1–1–A/1–9

8. Raccoon., L.B.S.: The complexity gap. ACM SIGSOFT Software Engineering Notes
20 (1995) 37–44

9. Raccoon., L.B.S.: The chaos strategy. ACM SIGSOFT Software Engineering Notes
20 (1995) 40–47

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 589-594, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Hierarchical Integration of Runtime Models

Cheng Xie1, Wenzhi Chen1, Jiaoying Shi1, Lü Ye2

1 College of Computer Science, Zhejiang University, Hangzhou 310027, P.R.China.
arthurxie@vip.sina.com,

 wzchen@cad.zju.edu.cn, jyshi@cad.zju.edu.cn
2 Department of Computer Science and Electronics Engineering, ZheJiang University of

Science and Technology, Hangzhou 310012, P.R.China.
yelue2004@yahoo.com.cn

Abstract. The complexity of embedded applications is growing rapidly.
Mainstream software technology is facing serious challenges for leaving out
non-functional aspects of embedded systems. To achieve this goal, we have
defined a component-based modeling and assembly infrastructure, Pcanel, that
supports hierarchical integration of concurrent, runtime models. A key principal
in Pcanel is its netlist, namely component connection network. Pcanel
advocates netlist as global view of a systemic design, where the basic building
block is component. The functionality of embedded system is modeled as
netlist. The communication among components is modeled as token flow. The
distribution of functionality on netlist is transparent from the runtime models,
which makes communication refinement easier. When applied formal models to
components, the resulting runtime netlist maintains assurance of diversified
non-functional aspects, such as timing and deadlock. The infrastructure
advances the synergy between design-time models and runtime models.

1 Introduction

The complexity of embedded applications is growing rapidly. Mainstream technology
of embedded software development is facing serious challenges. While reliability
standards for embedded software remain very high, many new requirements of
embedded software are desirable, such as rapid deployment and update, much more
dynamic reconfiguration, low-power mobile computing, multimedia signal
processing, etc. Prevailing abstractions of computational systems leave out these non-
functional aspects of embedded systems, so that the methods used for general purpose
software require considerable adaptation for embedded software. To achieve this goal,
we have defined a component-based modeling and assembly infrastructure, Pcanel,
which supports hierarchical integration of concurrent runtime models for component-

 This work was supported in part by the Hi-Tech Research and Development Program of

China (863 Program) under Component-based Embedded Operating System and Developing
Environment (No.2004AA1Z2050), and Embedded Software Platform for Ethernet Switch
(No. 2003AA1Z2160); In part by the Science and Technology Program of Zhejiang province
under Novel Distributed and Real-time Embedded Software Platform (No. 2004C21059).

590 Cheng Xie et al.

based embedded system construction. Pcanel emphasizes modeling, not any more
interface definition, functional customization and hardware management.

Pcanel structures the development process into two hierarchies. The top hierarchy
represents the abstract design of a system in terms of functionality, leaving out
specific implementation details, such as hardware configuration, middleware and fault
tolerance. The bottom hierarchy refines the design by realizing non-functional aspects
in a structural and systematic way. For example, abstract components can be mapped
to operating system processes, connections between components are supported by
distributed middleware, and specific implementations are selected from component
repository for requirements of fault-tolerance and real-time. The essential design
problems are solved by modeling and analysis before final implementation. During
recursive refinements viz. hierarchical integration of runtime models, the non-
functional aspects including time, concurrency, correctness, reactivity, and
heterogeneity are integrated into the design, until it can be finally synthesized to
implementation. In this infrastructure, atomic component is built from computation
blocks, and complex component is recursively built from composition of fine-grained
components. Each component communicates with others under particular model of
computation. The behavior of component is modeled as a set of transitions. A
composite component is an encapsulated framework that consists of a runtime model
and a graph of connected components. Through hierarchical integration of runtime
models, Pcanel has great capability in separating systemic design from behavior
specification, and capturing the requirements and constraints of the system.

2 Hierarchical Integration

Pcanel advocates netlist, namely component connection network, as global view of
systemic design, where the basic building block is component. A component is a
computational entity having a set of transitions. Components have interfaces defined
by a collection of abstract input/output ports. Ports are shared states that allow
components to communicate with each other via tokens. A set of connected ports
represent a channel, through which a model drives the flow of tokens. A framework
consists of a model and a graph of components, allowing for the observation and
manipulation of the runtime states and behaviors internal of components.

Furthermore, to facilitate modularity, a framework itself, together with the
components under its control, can be treated as a single component at a higher level of
hierarchy, which means that the framework can be encapsulated to a composite
component. Thus, a complete system configuration is a set of hierarchical
compositions of models and components. Figure 1 shows two hierarchies of
composition. The framework B is encapsulated into a composite component b by
introducing more states. The transitions of {(3,4), (4,5), (5,6)} in B is abstracted as an
atomic transition (1,2) in A. When applied formal models to components, the
resulting composite component maintains assurance of diversified non-functional
aspects, such as timing and deadlock.

Models are independent of implementation of components. Based on Pcanel, an
embedded system can be built rapidly by reusing existed components and customizing
netlist. Pcanel implements several models of computation for complex embedded

Hierarchical Integration of Runtime Models 591

system design, including continuous time (CT), discrete event (DE), synchronous
dataflow (SDF), communicating sequential processes (CSP), Priority-driven
multitasking (PDM), and finite state machine (FSM), etc.

Fig. 1. Hierarchical Composition

The integration of hybrid runtime models of a two wheeled vehicle is shown in
Figure 2. The vehicle, called Cyveh [11], is principally a self balancing machine with
fully automated driving capabilities, whose wheels share a common axis. To
implement the balance system of Cyveh, the control software is composed by hybrid
runtime models including CT, DE, FSM, Modal and SDF.

Fig. 2. Integration of runtime models in Cyveh

The top framework A is driven by CT model and contains two components, one is
a set of differential equations modeling the physical pendulum dynamics, and the
other is the control software. The framework B implements the control laws under DE
model, which contains the actuator, the sensor and the controller. For heterogeneous
road surface, a component serving friction compensation can be dynamically loaded
into the actuator [4]. The framework C of the controller is driven by FSM model of
two states. Any time the Cyveh enters a protected area, e.g. too close to other
vehicles, the controller switches to the soft-wall state. A force is applied in the
opposite direction to avoid collision. The framework D implements the normal
operation within a modal model of three modes. Initially, the swing-up mode brings
Cyveh from lean parking to upright position by energy control [5]. Once it is
sufficiently close to upright position, the controller switches to the catch mode that
slows down the pendulum body rotation before entering the third mode, stabilize. At
last, the Cyveh keeps balance when the stabilize component is running. The
framework E driven by SDF model implements a control algorithm that maintains the
natural equilibrium point of the Cyveh system.

592 Cheng Xie et al.

3 Component Netlist

Typical distributed embedded system consists of a network of nodes connected via
bus or network. As the platform architecture shown in Figure 3, each node consists of
the processor, an operating system, a dedicated communication layer, and one or more
application transactions. The complete software can not independently from the
hardware. The execution of software depends on the underlying processor
architecture, memory mapping, bus of SoCs, or device registers. For reuse of
components, hardware platform profile is included in the description of node.

Fig. 3. Platform architecture

The behavior of a component is modeled as component structure defined in [11].
The behavior of a system is modeled as component netlist of hierarchical runtime
models. The communication in netlist is modeled as token flow being carried out on
token basis. The token flows are scheduled under models. In a hybrid system,
hierarchical heterogeneous models cooperatively direct the token flows. A global
token flow network can be constructed from the component netlist for analysis and
verification of concurrent and real-time aspects in a hybrid system.

The distributed mapping from functionality to nodes is vertical to the netlist. The
communication between components on spatially separated nodes is wrapped by the
communication layer. The communication layer defines how software can be
integrated with given components. The integrated system model may span hybrid bus
systems, such as Controller Area Network and Local Interconnect Network. Since
each reusable component is implemented with a set of transitions that uniquely define
its functionality without side effects, components can be refined into the netlist based
on their design specifications.

Models of computation are independent of implementation of components. Thus,
Reusable components in integrated software are organized hierarchically to support
integration with different models. A complete system configuration, i.e. the
component connection network, is actually the synthesis result of hierarchical
composition of reusable components. The netlist consists with the models of
computation, thus allows for the observation and manipulation of the runtime states
and behaviors internal of components. Such a netlist supports hierarchical
composition, which is able to keep the global overview of the system.

Hierarchical Integration of Runtime Models 593

4 Synergy Between Design and Runtime

Several approaches to the composition of software from components have been
proposed in the literature [9, 7, 6]. An important contribution to this topic stems from
the field of software architecture systems. Architecture systems introduce the notion
of components, ports, and connectors as first class representations. In [8] a component
model is used for embedded software in consumer electronic devices. In [1] a
framework for dynamically reconfigurable real-time software is presented. It is based
on the concept of so called Port Based Objects. However, most of the approaches
proposed in the literature do not take into account the heterogeneous properties of
software for hybrid systems.

Systematically integrating heterogeneous components is crucial to design large-
scale distributed real-time systems. Many active research projects address this issue
and influence our design. For example, [3] proposes a globally asynchronous and
locally synchronous (GALS) architecture, that asynchronous message communication
is used to maintain the synchronous semantics of execution of components and their
composition. [10] integrates multi-rate time-triggered architecture with finite state
machines. But most of these projects only integrate two models and assume a fixed
containment relation between them. These architectures lack formal runtime models
for composite components. Our infrastructure enables hierarchical heterogeneous
compositions along well-defined models that are semantically separate from one
another. In addition, unlike these approaches, our work has a strong emphasis on
runtime systems.

It is important to advance the synergy between heterogeneous design environments
and runtime systems. Design-time environments emphasize the understandability of
models, syntax and semantics checking (like type systems), and component
polymorphism. Ptolemy II [2] supports the modeling, simulation, and design of
concurrent, real-time, embedded systems. It incorporates a number of models of
computation (such as synchronous/reactive system, communicating sequential
processes, finite state machine, continuous time, etc.) with semantics that allow
domains to interoperate. On the other hand, runtime systems emphasize physical
interface, performance, and footprint. Not all design-time models are suitable for
direct implementation on runtime systems. Except for models that only are useful for
modeling physical environment, certain models transformed to embedded software
may be nondeterministic, inefficient and deadlock.

The rough approach of integrating heterogeneous runtime models is to implement
them indirectly by a grand unified model. For example, it is possible to emulate most
models on a time-synced priority-driven model provided in traditional RTOS. The
methodology attempts to build a flat layer of abstraction fit for all applications.
However, grand unified models are usually difficult of analysis and synthesis. In
addition, an application usually does not need all the features provided by the grand
unified model. Mixed features degrade performance and take overstaffed footprint.

Code generation approach adopted in Ptolemy II project is a migration path from
certain design-time models to runtime models. The recent Ptolemy II release includes
a limited prototype of code generation facility that will generate a stand-alone
program of java class files for non-hierarchical SDF models. However, the code
generation process is a very restricted solution for the wide heterogeneity and

594 Cheng Xie et al.

irregularity of embedded systems, and the result program is not portable for variant
operating systems.

We argue that a hierarchical runtime infrastructure natively supporting executable
models will greatly help code generation and improve the quality of final software. A
runtime system can utilize hardware support (such as SMP) and communication
systems (such as CAN) to provide high responsible frameworks to applications. In
addition, there are certain assumptions, like resource reservation and timing
predictability, can only be achieved by OS-level runtime systems, but not easily by
stand-along programs.

5 Conclusion

Noticing a wide variety of design-time models for distributed, real-time, embedded
systems, this paper motivates a component-based modeling and assembly
infrastructure, Pcanel, to integrate heterogeneous executable models and support
composition of components. Pcanel proposes a runtime infrastructure for constructing
responsible systems through runtime models integration. A key principal in the
infrastructure is its component netlist, which makes the runtime system responsible
for the distributed functionality. The novel design of Pcanel advances the synergy
between heterogeneous design environments and runtime systems.

References

1. D.B.Stewart, R.A.Volpe, and P.K.Khosla. Design of Dynamically Reconfigurable Real-Time
Software Using Port-Based Objects. IEEE Transactions on Software Engineering, 1997.

2. E. A. Lee. Overview of the Ptolemy Project. Technical Memorandum UCB/ERL M03/25,
University of California, Berkeley, Berkeley, July 2, 2003.

3. E. Cheong, J. Liebman, J. Liu, and F. Zhao. TinyGALS: A programming model for event-
driven embedded systems. Proceedings of the Eighteenth Annual ACM Symposium on
Applied Computing, 2003.

4. E. Garcia, P. Gonzalez, and C Canudas de Wit. Velocity dependence in the cyclic friction
arising with gears. International Journal of Robotics Research, 21(9):761–771, 2002.

5. K. Astrom and K. Furuta. Swinging up a pendulum by energy control. IFAC 13th World
Congress, San Francisco, California, 1996.

6. M. Shaw and D. Garlan. Software Architecture - Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

7. Paul C. Clements. A survey of architecture description languages. International Workshop on
Software Specification and Design, 1996.

8. Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee. The koala
component model for consumer electronics software. IEEE Computer, 2000.

9. Robert Allen and David Garlan. A formal basis for architectural connection. ACM
Transactions on Software Engineering and Methodology, 6(3):213– 49, July 1997.

10. Thomas A. Henzinger, Christoph M. Kirsch, Marco A. Sanvido, and Wolfgang Pree. From
control models to real-time code using Giotto. IEEE Control Systems Magazine, 2003.

11. Cheng Xie, Wenzhi Chen, Jiaoying Shi. Pcanel: A Model Driven Component Framework.
IEEE Conference on Systems, Man and Cybernetics, 2004.

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 595-600, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Object-Oriented Software Loading and Upgrading
Techniques for Embedded and Distributed System

Bogus aw Cyganek

AGH - University of Science and Technology
Al. Mickiewicza 30, 30-059 Kraków, Poland

cyganek@uci.agh.edu.pl

Abstract. The paper addresses the problem of loading and upgrading
mechanisms for embedded and distributed systems. Such mechanisms for most
of the large operating systems have been developed over the recent years.
However, custom embedded systems usually lack a proper solution, mostly due
to their hardware varieties. In this paper the object-oriented design is presented
that allows for reliable software loading and upgrading for many architectures
of embedded systems regardless of their complexity and computational power.
The proposed solution was implemented and tested on the real platform and
showed great robustness. The paper can be of interest for designers of
embedded and distributed computer systems.

1 Introduction

The paper addresses the problem of software loading and upgrading of embedded and
distributed microprocessor platforms. Such systems have been developed for the well
known operating systems [7][8] and most of the commercially available embedded
platforms [11]. Specifics of loading and upgrading of distributed systems with further
references can be found in [1][2]. However, custom designs usually lack a ready
solution to this problem. In this paper we propose our solution that can pose a
common starting point for other projects as well. The presented system is defined in
object-oriented terms and therefore it is easily adaptable to custom systems regardless
of computational power of their building modules. The implementation was tested in
a real embedded system designed for the specific customer hardware.

2 Design of the Loading and Upgrading System

The proposed loading and upgrading system follows the server and client(s) pattern
[4][5]. The overall view of this system is depicted in Fig. 1. The essential thing is a
communication channel present among participants of this architecture. Fig. 2
presents internal structure of the server and clients modules. They usually consist of
many building blocks or subsystems (such as hardware modules HM or memory

596 Bogus aw Cyganek

banks, etc.). From the loader/upgrader system point of view the Flash memory and
communications facilities are essential, however.

Loader/Upgrader
Server

(System 0)

Loader/Upgrader
Server

(System 0)

Loader/Upgrader
Client

(System 1)

Loader/Upgrader
Client

(System 1)
Loader/Upgrader

Client
(System 2)

Loader/Upgrader
Client

(System 2)

E
xt

er
na

l W
or

ld
 In

te
rfa

ce
Ex

te
rn

al
 W

or
ld

 In
te

rfa
ce

B
lu

eT
oo

th
B

lu
eT

oo
th

U
S

BU
S

B
R

S
23

2
R

S2
32

Loader/Upgrader
Client

(System 3)

Loader/Upgrader
Client

(System 3)

Loader/Upgrader
Client

(System i-th)

External Communication Modules

CMC Communication Modules

Loader/Upgrader
Server/Client

Flash Memory
ModuleHardware

Module

Loader/Upgrader Modules
Communication Interface

Fig. 1. Server/Client architecture of the
upgrader/loader system

Fig. 2. Structure of the server and client
modules

The following statements describe our concept of the loader/upgrader system:
1. The loader/upgrader server (LUS) resides only on one (host) system (System 0).
2. The loader/upgrader clients (LUC) are software components present on each of the

participating systems (i.e. Systems 1 to n in Fig. 1).
3. There is a communication channel for control and data exchange among the

participants.
 There are no additional constraints on the structure of the underlying
microprocessor systems – it can be even a distributed configuration. The
communication channel (in Fig. 1 and Fig. 2) can be any data transmission channel
with a protocol. In our experiments the Control Messaging Channel (CMC) was used
[3]. It is also assumed that there are means of external communication for data
exchange. In Fig. 1 this is denoted as optional connections of the system with LUS on
board with an external environment (e.g. PCMCIA, USB, Ethernet, Internet, RS232,
etc.) [6][10].

Signature

Date

Data Length

Data Block

CRC

Signature

Date

Data Length

Data Block

CRC

Signature

Date

Data Length

Data Block

CRC

Upgrade
Frame 1

Upgrade
Frame 2

Upgrade
Frame n

Fig. 3. Format of the upgrading data modules

Object-Oriented Software Loading and Upgrading Techniques 597

 Fig. 3 depicts the proposed format of input data. The “Signature” field uniquely
identifies a given data block. This ID value governs choice of a proper software
module for subsequent load/upgrade action. The field “Date” contains a 32 bit
encoded date of a given data block. This information can be used by a right upgrade
guide entry module (an upgrade-cartridge) to judge whether existing data should be
obliterated by the new one. “Data Length” contains a number of data bytes, i.e. length
of the “Data” space. “Data” contains new data. The “CRC” field is a two- byte field
containing the CRC value computed from the whole frame except this field. In this
modified version the CRC-16 polynomial (x16+x15+x2+1) was used.
The semantic specification of the proposed L/U system is as follows:
1. The upgrade file is provided to the LUS by an external data connection.
2. The LUS analysis a upgrade frame and tries to find a proper upgrade cartridge

(previously registered to the system). The choice is made based on the signature
conveyed by each upgrade frame. If such a module is found on the server’s system
then an action is delegated to it. Otherwise, the upgrade frame is transferred to the
chain of other sub-systems by means of the control messaging channel (see Fig. 1).

3. Once a valid upgrade frame is detected on other system then again the proper
upgrade cartridge is searched that complies with the signature field of this upgrade
frame. If found, then the upgrade process is delegated to that module.

Upgrader/Loader
Server

Upgrader/Loader
Server

Upgrader/Loader
Client

Upgrader/Loader
Guide Entry

1
M

1N

Fig. 4. The mutual relationship among upgrading objects (object semantics)

Fig. 4 presents three kinds of objects participating in the described load/upgrade
scenario, as well as their mutual relations. These are:
1. The upgrade server object – responsible for communication and processing of the

upgrade file, its disassembly onto upgrade frames and resending to the available
clients, registered into this server. There is usually only one server object.

2. The upgrade client object – accountable for reception of an upgrade frame from the
server, search for an upgrade cartridge (i.e. the upgrade guide entry) and action
delegation to this cartridge (if found). There can be many clients in the system.

3. The upgrade guide entry object – a specific load/upgrade processing module that
specializes in load/upgrade for a specific frame and system. There can be many

598 Bogus aw Cyganek

such objects registered to a client. It is also possible to register a single upgrade
guide entry to many clients.

3 Object-Oriented Implementation

Realization of the proposed upgrader/loader system is presented in object-oriented
terms [9]. However, implementation can be specific to each of the sub-systems
separately. It has only to comply with the defined functionality and object semantics.

3.1 The Loader-Upgrader Servers (LUS)

The loader/upgrade servers perform two actions on account of the system:
1. Registration of upgrade client object(s).
2. Extraction of a consecutive upgrade frame from an upgrade file (Fig. 3).
3. Distribution of frames among registered client(s).
 The upgrade server class hierarchy is presented in Fig. 5. The main server actions
are defined in the virtual base class. The virtual iterators PrepareFirstUpgradeFile()
and PrepareNextUpgradeFile() are responsible for disassembly of the input upgrade
file. Both are implemented by derived classes. TransmitUpgradeFile() transmits an
upgrade frame to a registered client (if such is found) based on the “Signature” field.
The CMC_UpgradeServer prepares a connection via the communication channel (it
can be any data link; in our realization it was CMC [1]). Its implementation of the
TransmitUpgradeFile() method transmits an upgrade frame to the distributed
system(s) by established data connection.
 The Local_UpgradeServer is a specialized server accountable for communication
with clients local to that server, i.e. ones resident in the same sub-system (such as

VUpgradeServer
VUpgradeServer

PrepareFirstUpgradeFile() = 0;
PrepareNextUpgradeFile() = 0;
TransmitUpgradeFile() = 0;

Upgrade();

CMC_UpgradeServer
CMC_UpgradeServer

CMC_UpgradeServer(
 T_CMC_SimpleDispatcher &,
 CMC_LocalAddr,
 CMC_CombinedAddr);

Upgrade();

Local_UpgradeServer
Local_UpgradeServer

PrepareFirstUpgradeFile();
PrepareNextUpgradeFile();
TransmitUpgradeFile();

SystemUpgradeServer
SystemUpgradeServer

PrepareFirstUpgradeFile();
PrepareNextUpgradeFile();
TransmitUpgradeFile();

TUpgradeClient

virtual bool ProcessReceivedUpgradeBlock(
const DataBlockDescriptor input_data_block);

CMC_UpgradeClient

virtual bool Initialize(
T_CMC_SimpleDispatcher &,

 T_CMC_SystolicAction * ,
 CMC_LocalAddr ,
 CMC_CombinedAddr);

void RegisterUpgradeGuideEntry(
TUpgradeGuideEntry * orphan_entry);

Fig. 5. Diamond class hierarchy for the Upgrade Servers Fig. 6. The Clients hierarchy

Object-Oriented Software Loading and Upgrading Techniques 599

System 0 in Fig. 1). It creates its own upgrade client to which it directly delegates all
upgrade frames that concern directly its platform. This server specializes the iteration
(virtual) methods PrepareFirstUpgradeFile() and PrepareFirstUpgradeFile(), since
the iteration is done entirely on its own platform.
 The doubly inherited SystemUpgradeServer embraces functionality of its two
bases. The only specialization is done in the TransmitUpgradeFile() method. A given
upgrade frame from an upgrade file is delegated at first to the native servers’ system.
If it is accepted for an upgrade process then the action is done. Otherwise a frame is
sent to other sub-systems. There an upgrade action is then attempted. Operation
results are sent back by means of system communication facilities.

3.2 The Loader-Upgrader Clients (LUC)

Fig. 6 depicts hierarchy of the loader/upgrade clients, which are responsible for:
1. Registration of upgrade guide entries (i.e. specific upgrade cartridges).
2. Reception and consistency check of upgrade frames.
3. Distribution of upgrade frames among registered upgrade guide entry objects.

3.3 The Upgrade Guide Entry

The upgrade guide objects (Fig. 7) realize specific upgrade actions for different
modules of the systems. TUpgradeGuideEntry is a pure virtual base. Other classes are
specialized versions for specific data loading/upgrading (e.g. FPGA bits loading).

TUpgradeGuideEntry

TUpgradeGuideEntry

virtual bool operator () (const
DataBlockDescriptor &) = 0;

TUpgradeGuideEntry(ModuleSignature
 signature, Date lastUpgradeDate)

MemoryBlockUpgradeGuide
MemoryBlockUpgradeGuide

MemoryBlockUpgradeGuide(
ModuleSignature signature,
Date lastUpgradeDate,
ModuleAddr moduleStartAddr,
ModuleDataLen moduleLenInBytes) CEFileUpgradeGuide

CEFileUpgradeGuide

CEFileUpgradeGuide(
ModuleSignature signature,
Date lastUpgradeDate,
CString & fileName);

UpgradeGuideEntry_FactoryMethod
UpgradeGuideEntry_FactoryMethod

Flash_UpgradeGuide
Flash_UpgradeGuide

MemoryBlockUpgradeGuide(
ModuleSignature signature,
Date lastUpgradeDate,
ModuleAddr moduleStartAddr,
ModuleDataLen moduleLenInBytes)

Fig. 7. Class hierarchy for the Upgrade Guide Entries

 The specialized MemoryBlockUpgradeGuide class is responsible for updates on
operational memory. Its specialized derivative, the Flash_UpgradeGuide class, does
the same action but with respect to the Flash memory on sub-systems. The

600 Bogus aw Cyganek

CEFileUpgradeGuide is intended to upgrade files on the platform (in our case it was
WinCE based). Additional upgrade guides can be freely added (by means of
registration to the server) without any change to the existing configuration.

4 Software Testing and Experimental Results

The presented system was implemented in C++ and assembly. The experimental
embedded platform consisted of the following sub-systems: the main board with the
ARM processor running WinCE® 3.11, three slave-measurement boards with
PowerPC 823 processors and two sensor boards endowed with the 80552 processors.
The CMC protocol was implemented to provide the communication and data channels
[1]. For more critical systems the reliability and security should be also considered
and thoroughly tested. Especially important is a reliable operation of the LUS and
LUC modules since any failure here can cause lost of control over the whole system.

5 Conclusions

This paper presents a proposition of the loading and upgrading system for embedded
and distributed computer platforms. Description of the main three building blocks:
servers (LUS), clients (LUC), and guide entries, as well as detailed descriptions have
been also provided. The practical realization showed great robustness of the presented
loader/upgrader system. Thanks to the object-oriented notation, the techniques can be
easily implemented on any embedded platform that is able to communicate with other
modules. Presented exemplary realization showed its great robustness in practice. It
was also tested in terms of no-failure-operation-time. In future the presented loading
and upgrading system can be easily changed or extended to fit custom designs.

References

1. Ajmani, S.: A Review of Software Upgrade Techniques for Distributed Systems. Technical
Report, MIT Computer Science and Artificial Intelligence Laboratory (2004)

2. Ajmani, S.: Automatic Software Upgrades for Distributed Systems. PhD, MIT (2004)
3. Cyganek, B., Borgosz, J.: Control Messaging Channel for Distributed Computer Systems,

Proceedings of the ICCSA 2004, Assisi, Italy, Springer LNCS 3046 (2004) 261 - 270
4. Douglass, B.P.: Doing Hard Time. Developing Real-Time Systems with UML, Objects,

Frameworks, and Patterns. Addison-Wesley (1999)
5. Gamma, E., E., Helm, R., Johnson, R.: Design Patterns. Addison-Wesley (1995)
6. Halsal, F.: Data Communications, Addison-Wesley (1995)
7. Microsoft: Managing automatic updating and download technologies in Windows XP.

http://www.microsoft.com/WindowsXP (2004)
8. Red Hat up2date. http://www.redhat.com (2004)
9. Taligent Inc.: Taligent's Guide to Designing Programs: Well-Mannered Object-Oriented

Design in C++. Addison-Wesley (1994)
10. USB Org.: Universal Serial Bus Revision 2.0 specification. www.usb.org (2000)
11. Yaghmour, K.: Building Embedded Linux Systems. O’Reilly (2003)

Z. Wu et al. (Eds.): ICESS 2004, LNCS 3605, pp. 601-606, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Preserving Consistency in Distributed Embedded
Collaborative Editing Systems*

Bo Jiang1,2, Jiajun Bu1, and Chun Chen1

1College of Computer Science,
Zhejiang University, Hangzhou, P.R.China

{nancybjiang, bjj, chenc}@zju.edu.cn
2College of Computer and Information Engineering,

Zhejiang Gongshang University, Hangzhou, P.R.China

Abstract. The increasing quest for mobility bolster the integration of technol-
ogy of computer supported cooperative work and mobile computing. In coop-
erative editing systems that integrated with embedded devices, inconsistency is
one of the major problems. In this paper, locking scheme and the corresponding
algorithm of locking conflict solution are proposed to maintain consistency of
the distributed shared documents and enhance the efficiency of collaborative
users. The scheme and algorithm are realized in CoEdit – a prototype system of
collaborative editing system.

1 Introduction

Computer-based groupware systems assist groups of users working simultaneously on
common tasks by providing an interface and sets of collaborative tools for a shared
environment. One of commonly used groupware systems is the real-time collabora-
tive editing system (CES) [1], [2], [3], [4], which allows people to view and edit the
same document at the same time from geographically dispersed sites connected by
networks. CES is a very useful facility in Computer-Supported Cooperative Work
(CSCW) application, such as collaborative authoring, collaborative design, and elec-
tronic meeting.

Nowadays, the issues of “ubiquitous computing” and “mobility” have received
much attention in the CSCW literature. Mobile networks and embedded facilities
make collaborative work more conveniently and can greatly enhance the efficiency.
However, so far few researchers have explored the topic of collaborative editor with
embedded devices in mobile environment.

This paper presents a research project with the object to design a cooperative edit-
ing system integrated with embedded devices that can maintain consistency of the
shared document in mobile work. Since cooperative editing systems deployed on

* This paper is supported by National High Technology Research and Development Program of

China (863 Program, No. 2004AA1Z2390) and Key Technologies R&D Program of Zheji-
ang Province (No. 2005C23047 & No. 2004C11052)

602 Bo Jiang, Jiajun Bu, and Chun Chen

embedded devices are heavily constrained by low computing capability, limited stor-
age and unreliable network, the prototype system - CoEdit achieves collaborative
editing on such devices by means of web services [5], [6], [7], [8]. In a collaborative
editing environment, consistency of shared documents may be violated. Therefore,
maintaining consistency is one of the core issues in the design of this type of systems
and will be the focus of this paper.

The structure of this paper is as follows: Section 2 outlines the overview of the ar-
chitecture of the cooperative editing system that is integrated with embedded devices.
Section 3 analyzes the locking scheme applied in CoEdit. Section 4 proposes locking
conflict resolution in the system. Lastly, Section 5 presents conclusions of the paper.

2 Overview of CoEdit

CoEdit is a prototype system that enables users to edit document with stationary com-
puters or mobile embedded devices. Documents become the primary part in the
shared workspace of cooperative editors. Artifacts are any objects consumed or pro-
duced in a document. The artifacts defined in this system can be presented in a hierar-
chical structure. In CoEdit document can be defined as follows:

document ::= attribute | <section | section | …> | operation
section ::= attribute | < line | line | …> | operation
line ::= attribute | < word | word | …> | operation
word:=attribute | operation
The main characteristics of cooperative editing systems rely in the following three

aspects: (1) Real-time – system should respond to local site user actions as quick as
possible and latency for reflecting remote user’s actions is only determined by exter-
nal communication latency. (2) Distributed – cooperating users may reside on differ-
ent sites with diverse devices connected by different communication networks. (3)
Unconstrained – users are able to edit any part of the document at any time freely.

In the replicated architecture, documents in the shared workspace are replicated at
the local storage of each participating site. For the traits of good responsiveness and
unconstrained collaboration of the replicated architecture, it is always adopted [9],
[10]. However, there will always be limited storage space and computational power
on embedded devices. Adopting fully replicated architecture in cooperative editing
systems integrated with embedded devices will not be suitable any more. In CoEdit,
we adopt the partial replicated architecture as shown in Figure 1.

CoEdit deploys the system on desktop computers as well as embedded devices,
such as PDA and mobile phone. In order to obtain real-time and unconstrained char-
acteristics of CES, shared documents and collaborative tools that enable cooperating
work are replicated on PCs and server. However, it is not reasonable and possible for
embedded devices to keep the whole document for its limited storage resources.
Therefore, only fractions that are mostly related to the users editing tasks are re-
mained on mobile embedded sites. And the means of accessing CoEdit resources
stored in the server by embedded devices is Web Services for the small storage space
that mobile devices have.

Preserving Consistency in Distributed Embedded Collaborative Editing Systems 603

Fig. 1. Architecture of CoEdit

3 Consistency Preservation In CoEdit

In cooperative editing system, to preserve consistency of replicated documents is one
of the major challenges in designing and implementing real-time cooperative editing
systems. Consistency violation problem has been deeply researched and lots of
schemes and algorithms have been presented in former systems [4]. Therefore, we
only focus on the locking scheme which enables embedded sites to cooperate with
each other.

According to the hierarchical structure of documents in CoEdit, locks can be set at
different levels of granularity (e.g. document, section, line, etc.). In CoEdit both pes-
simistic locking and optimistic locking are adopted, also users can issue a locking
operation to obtain the exclusive locking at random granularity level or lock set by
system dynamically. Users can issue locking operations in certain granularity to avoid
intrusion from other sites. The pessimistic locking can be simply expressed as follows:

PL:= (R_Id/R_Range)
R_Id represents the identification of the region, while R_Range denotes the range

of locking region.
Besides pessimistic locking, optimistic locking is also adopted in CoEdit. A novel

optimistic locking scheme that is proposed in this paper is dynamic locking. With
dynamic optimistic locking, lock can be classified into two categories: shared or ex-
clusive. Users may freely edit any unlocked region without issuing a locking com-
mand on it. While at the same time an implicit shared lock is placed on the region that
the user is editing. The category and granularity of the lock will be changed dynami-

604 Bo Jiang, Jiajun Bu, and Chun Chen

cally during the collaborative editing session. When one user edits a section, he will
automatically gain a shared lock and the granularity of the lock will be sectioned.
However, the section lock may be changed into fine granularity exclusive lock if
multiple users are editing the same section. For example, as shown in Figure two,
while two users cooperatively edit the same paragraph in different lines, they own
exclusive locks on line 2 and line 4 respectively.

Computer-Supported Cooperative Work (CSCW) systems are computer-based sys-

tems that support groups of people engaged in a common task and provide an inter-
face to a shared environment. Real-time collaborative editing systems (CES) are very
useful groupware tools in the rapidly expanding areas of CSCW systems

Fig. 2. An example of dynamic locking

4 Locking Conflict Resolution

In a collaborative editing session, locking operations may arrive concurrently and
lead to conflict. For instance, suppose two users edit the same sentence or two ex-
plicit pessimistic locking operations are issued but the locking regions are overlapped.
Locking conflict problems may occur in these cases. Therefore, conflict should be
detected and corresponding problems should be solved at the time when concurrent
locking operations are issued no matter whether the locking operation is explicit or
implicit.

There exist two classes of locking operation relation: one is conflicting and the
other is compatible. The definition of conflicting relation and compatible relation are
as follows:

Definition 1: Conflicting relation “ ”
Given two locking operations LO1 and LO2 generated from site i and j, they are

conflict with each other, expressed as LO1 LO2, iif (1) LO1 and LO2 are concurrent;
(2) the regions related to LO1 and LO2 are overlapped.

Given two locking operations LO1 and LO2 generated from site i and j each, they
are conflict with each other, expressed as LO1 LO2, iif (1) LO1 and LO2 are concur-
rent; (2) the regions related to LO1 and LO2 are overlapped.

In contrast, if two locking operations are not conflicting, then they are compatible,
as defined below.

Definition 2: Compatible relation “ ”
Given two operations LO1 and LO2 generated from site i and j each, if and only if

LO1 and LO2 are not conflicting, they are compatible, expressed as LO1 LO2.
Moreover, a group of operations may have rather arbitrary and complex conflict

relationships among them in a highly concurrent real-time collaborative editing envi-
ronment. Consider the following scenario, LO1 LO2, LO2 LO3, but LO2 LO3.
In order to solve such kinds of problem, a multi-version approach is proposed.

Preserving Consistency in Distributed Embedded Collaborative Editing Systems 605

Given a group of n locking operations, LO1, LO2, , LOn, targeting the common
section, their locking conflict relationship can be fully and uniquely expressed by a n
× n matrix, in which element M[i, j], 1 i, j n is filled with “ ” and “ ”. For ex-
ample, 4×4 matrix for four operations is shown in Table 1.

Table 1. Relation between four locking operations

Relation LO1 LO2 LO3 LO4
LO1
LO2
LO3
LO4

Algorithm 1: Given a matrix of a group of N concurrent LOs. Locking Compati-

ble Group Sets (LCGS) can be expressed as follows:
LCGS = {LCG1, LCG2, …, LCGn}

All operations in a single LCGk are mutually compatible.
1. LCGS={};
2. For 1 i N, and i < j N

If M[i, j-1]= ,
Then LCGS=LCGS+{{ LOi , LOj }}

3. For 1 i N
If LOi is not in LCGk, 1 k |LCGS|
Then LCGS=LCGS {{LOi}}.

By using the above algorithm, the LCGS is formed. Through users’ negotiation,
only one LCG is selected to be applied if there are more than one LCG in the LCGS.

5 Conclusion

With the current proliferation of embedded technologies and rapid move towards use
of mobile technologies, cooperative editing activities are expanded to embedded
devices. In this paper, we present a cooperative editing system that can be deployed
on both traditional stationary PCs and embedded devices. Embedded sites are able to
access the remote server by means of web services to participate in the collaborative
editing process. To tackle the problem that multiple embedded users may edit the
same region in the shared document and maintain consistency, we present the locking
scheme that can either be pessimistic or optimistic. And the algorithm to solve the
locking conflict problem is proposed in the paper. The algorithm has been tested in
CoEdit prototype system and the schemes make collaborative edit more efficiently.

606 Bo Jiang, Jiajun Bu, and Chun Chen

References

1. Bo Jiang, Chun Chen, Jiajun Bu: CoDesign-A collaborative pattern design system based on
agent. Proceedings of the Sixth International Conference on Computer Supported Coopera-
tive Work in Design, Canada, (2001) 319-323

2. R.E. Newman-Wolfe et al.: MACE: A Fine Grained Concurrent Editor. Proceedings of ACM
COCS Conf. Organizational Computing Systems. 240-254

3. M. Ressel, D. Nitsche-Ruhland, and R. Gunzenbauser: An Integrating, Transformation-
Oriented Approach to Concurrency Control and Undo in Group Editors. Proceedings of
ACM Conf. Computer Supported Cooperative Work. (1996) 288-297

4. C. Sun and D. Chen: Consistency Maintenance in Real-Time Collaborative Graphics Editing
Systems. ACM Transactions on Computer-Human Interaction. (2002) 1-41

5. S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, andR. Weber: Active XML: Peer-to-
Peer Data and Web ServicesIntegration (demo). Proc. of VLDB, (2002)

6. Curbera, F., Mukhi, N., Weerawarana, S.: On theEmergence of a Web Services Component
Model. InProc. of the WCOP 2001 workshop at ECOOP 2001(Budapest, Hungary, June
2001)

7. Tosic, V., Esfandiari, B., Pagurek, B., Patel, K.: On Requirements for Ontologies in Man-
agement of Web Services. Proceedings of the Workshop on Web Services, e-Business, and
the Semantic Web - WES (at CaiSE’02), Toronto, Canada, May 2002

8. Curbera, F., Duftler, M., Khalaf, R., Mukhi, N., Nagy, W., Weerawarana, S.: Unraveling the
Web Services Web - An Introduction to SOAP, WSDL, and UDDI. IEEE Internet Comput-
ing, Vol.6 Issue 2, (2002) 86-93

9. R. Kanawati. Licra: a replicated-data management algorithm for distributed synchronous
groupware application. Parallel Computing, Vol. 22, (1997) 1733-1746.

10. Y. Yang, C. Sun, Y. Zhang, and X. Jia: Real-time cooperative editing on the Internet. IEEE
Internet Computing, May/June, (2000).

Author Index

 Amamiya, Makoto 30, 94
 Amamiya, Satoshi 94
 An, Jianfeng 514
 Angelov, Christo 388

 Bae, Hae-Young 81
 Bae, Sang-Hyun 381
 Bao, Kejin 124
 Berthing, Jesper 388
 Bian, Jinian 74, 150, 542
 Bu, Jiajun 287, 601

 Cai, Jiamei 576
 Chang, Naehyuck 44
 Chen, Bo 103
 Chen, Chun 287, 294, 601
 Chen, Hongzhou 474
 Chen, Jia 443
 Chen, Jihua 216
 Chen, Qingfang 25
 Chen, Shuoying 418
 Chen, Tianzhou 222, 462
 Chen, Tieming 576
 Chen, Wei 437
 Chen, Wenzhi 236, 563, 589
 Chen, Xi 318
 Chen, Xian 582
 Chen, Xiangqun 423, 430
 Chen, Yu 456
 Chen, Yunji 528
 Chen, Zhang-Long 570
 Chung, Warnill 81

 Cong, Yu-chang 203

 Cyganek, Bogus aw 595

 Dai, Gui-lan 443
 Dai, Kui 158
 Dai, Yiqi 456
 de Macedo Mourelle, Luiza 196
 Deng, Qingxu 494
 Deng, Yu 210
 Dong, Xiao-Ming 110
 Dong, Yuan 443
 Du, Kejun 355
 Du, Wei 570

 Fan, Xiaoya 514
 Feng, David 180

 Gao, Yue 274
 Gao, Zhigang 266
 Gu, Guochang 474
 Gu, Hongying 103
 Gu, Yintang 300
 Guan, Xiaohong 318, 333
 Guo, Lili 165
 Guo, Qing-ping 508
 Guo, Yizun 474

 Han, Dianfei 333
 Hao, SongXia 522
 Hu, GuangHuan 400
 Hu, Hanying 374

608 Author Index

 Huang, Jiangwei 222, 462
 Huang, Jing 528

Jalili-Kharaajoo, Mahdi 347
Jeong, Hwa-Young 65, 258
Jeong, Sam Jin 88
Jia, Zhiping 362
Jiang, Bo 601
Jiang, Zhou 236
Jin, Cheng 287

Kang, Shuo 456
Ke, Huacheng 294
Kim, Daeyoung 502
Kim, Dong Hwa 137
Kim, Ho-Sook 243
Kiselyov, Oleg 488

Lai, Ming-che 158
Lee, Dae-Young 381
Lee, Hyun Chang 251
Lee, Yann-Hang 502
Li, Changyun 582
Li, Fangmin 368
Li, Hai-yan 412
Li, Jianjun 143
Li, Min 449
Li, Mingshu 229
Li, Ping 449
Li, Shanbin 130
Li, Shining 355
Li, Sikun 216
Li, Xi 203
Li, Xin 362
Li, Xin-ming 412

Li, Yun 280
Li, Zhigang 355
Lian, Yi 222, 462
Liang, Ke 143
Liao, Yuan 229
Liu, Gang 355
Liu, Guanghui 210
Liu, Rui-Fang 110
Liu, Wei 570
Luo, Lei 280
Luo, Qinghui 118
Luo, Xiaohua 326
Lv, Mingsong 494

Ma, Bo 406
Muzio, Jon 15

Nedjah, Nadia 196
Niu, Yawen 74

Pan, Yunhe 103, 326
Park, Soon-Young 81

Qiu, Yanfei 368
Qu, Liuying 274

Ren, XuePing 400
Roudsari, Farzad Habibipour 347

Sadri, Mohammad Reza 347
Sang, Nan 188
Seo, Young-Jun 65
Shah, Ravi 502
Shen, Haihua 528
Shen, Li 158

Author Index 609

Shentu, Hao 124
Shi, Jiaoying 563, 589
Shi, Xingguo 406
Song, Mingli 287
Song, Young-Jae 65, 258
Stepanov, Alexander 14
Stroustrup, Bjarne 1
Sun, Caixia 172
Sun, Jie 266
Sun, Ninghui 165
Sun, Youxian 130, 339

Taha, Walid 38, 488
Takahashi, Kenichi 94
Tan, Zhi-Hu 110
Tang, Zhiqiang 395
Teng, Qiming 423, 430
Teng, Xiaoyun 374
Tong, Kun 74
Tong, Weiqin 118
Tu, Shiliang 395, 570

 Verdoscia, Lorenzo 59

Wan, Jian 400
Wan, Ji-Guang 110
Wang, Danghui 514
Wang, Dongsheng 549
Wang, Haili 74
Wang, Huayong 456
Wang, Jinglei 549
Wang, Lei 437
Wang, Qing 180
Wang, Sheng-yuan 443
Wang, Xiaoge 456

Wang, Yongcai 333
Wang, Yun 522
Wang, Yunfeng 74
Wang, Zhi 130, 339
Wang, Zhi-gang 203
Wang, Zhi-ying 158
Wu, Bin 266
Wu, Gang 395
Wu, Guowei 557
Wu, Huifeng 582
Wu, Minghui 582
Wu, Qi 468
Wu, Qiang 150
Wu, Qing 266
Wu, Weimin 542
Wu, Xiaobo 449
Wu, Zhaohui 236, 266, 326, 437

Xia, Fei 210
Xia, Li 318
Xian, Yuqiang 481
Xie, Cheng 563, 589
Xiong, Guangze 188, 468, 481
Xiong, Zhihui 216
Xu, Wen-bo 306
Xue, Hongxi 150
Xue, Ligong 368

Yan, La-mei 508
Yan, Lu 536
Yan, Xiaolang 449
Yang, Guoqing 437
Yang, Laurence T. 15
Yang, Xiaojun 165
Yang, Xuejun 210

610 Author Index

Yang, Yang 443
Yao, Lin 557
Ye, Lü 589
Ye, Minjiao 462
Yin, Hongxia 339
Yin, Zhijie 118
Ying, Jing 582
Yong, Hwan-Seung 243
You, Mingyu 287
Yu, Ge 494
Yu, Hongyi 374
Yu, Wenge 312
Yu, Yingxi 418
Yuan, You-wei 508
Yue, Sicong 180

Zhan, Jinyu 188
Zhang, Bin 274
Zhang, Haixiang 294
Zhang, Huanchuen 124
Zhang, Kailong 143
Zhang, Maojun 216
Zhang, Minxuan 172
Zhang, Ning 481
Zhang, Peiheng 165
Zhang, Shengbing 514

Zhang, Xi-huang 306
Zhang, Yanjun 374
Zhang, Yi 406
Zhang, Youhui 549
Zhao, Heng 210
Zhao, Menglian 449
Zhao, Mingde 266, 437
Zhao, Qianchuan 333
Zhao, Rongchun 180
Zhao, Xia 423, 430
Zheng, Dazhong 333
Zheng, Kougen 326
Zheng, Weimin 549
Zhi, Xiaoli 118
Zhong, Guoqiang 94
Zhong, Xichang 274, 300, 522
Zhou, Haifang 210
Zhou, Kangqu 312
Zhou, Xingshe 143, 355
Zhu, Liying 576
Zhu, Ming 542
Zhu, Mingyuan 418
Zhu, Yun 203
Zhuang, Yueting 103
Zong, Yuwei 118

	Frontmatter
	Keynote Speeches and Invited Talks Abstracts (Partial)
	Abstraction and the C++ Machine Model
	Keynote Speech: Industrializing Software Development
	Testing Methodologies for Embedded Systems and Systems-on-Chip
	China Putian Promote Commercial TD-SCDMA Services
	Agent-Oriented Approach to Ubiquitous Computing
	Resource-Aware Programming
	In-House Tools for Low-Power Embedded Systems
	CODACS Project: A Development Tool for Embedded System Prototyping

	Track 1 Distributed Embedded Computing
	A Study on Web Services Selection Method Based on the Negotiation Through Quality Broker: A MAUT-based Approach
	CA-Ex: A Tuning-Incremental Methodology for Communication Architectures in Embedded Systems
	Efficient Parallel Spatial Join Processing Method in a Shared-Nothing Database Cluster System
	Maximizing Parallelism for Non-uniform Dependence Loops Using Two Parallel Region Partitioning Method
	The KODAMA Methodology: An Agent-Based Distributed Approach

	Track 2 Embedded Systems
	A New Iris Recognition Approach for Embedded System
	A RAID Controller: Software, Hardware and Embedded Platform Based on Intel IOP321
	Component-Based Integration Towards a Frequency-Regulating Home Appliance Control System
	Design and Implementation of the System for Remote Voltage Harmonic Monitor
	Guaranteed Cost Control of Networked Control Systems: An LMI Approach
	Robust Tuning of Embedded Intelligent PID Controller for Induction Motor Using Bacterial Foraging Based Optimization
	The Customizable Embedded System for Seriate Intelligent Sewing Equipment

	Track 3 Embedded Hardware and Architecture
	A Distributed Architecture Model for Heterogeneous Multiprocessor System-on-Chip Design
	A New Technique for Program Code Compression in Embedded Microprocessor
	Design of System Area Network Interface Card Based on Intel IOP310
	Dual-Stack Return Address Predictor
	Electronic Reading Pen: A DSP Based Portable Device for Offline OCR and Bi-linguistic Translation
	Formal Co-verification for SoC Design with Colored Petri Net
	Hardware for Modular Exponentiation Suitable for Smart Cards
	PN-based Formal Modeling and Verification for ASIP Architecture
	The Design and Performance Analysis of Embedded Parallel Multiprocessing System
	Use Dynamic Combination of Two Meta-heuristics to Do Bi-partitioning

	Track 4 Middleware for Embedded Computing
	A New Approach for Predictable Hard Real-Time Transaction Processing in Embedded Database
	A QoS-aware Component-Based Middleware for Pervasive Computing
	AnyCom: A Component Framework Optimization for Pervasive Computing
	Association Based Prefetching Algorithm in Mobile Environments
	Integration Policy in Real-Time Embedded System
	Prism-WM Based Connector Interaction for Middleware Systems
	ScudWare: A Context-Aware and Lightweight Middleware for Smart Vehicle Space

	Track 5 Mobile Systems
	Application of Cooperating and Embedded Technology for Network Computer Media Player
	QoS Adaptive Algorithms Based on Resources Availability of Mobile Terminals
	Semi-Videoconference System Using Real-Time Wireless Technologies
	Smart Client Techniques for Online Game on Portable Device
	The Implementation of Mobile IP in Hopen System

	Track 6 Transducer Network
	A New CGI Queueing Model Designed in Embedded Web Server
	A New Embedded Wireless Microcensor Network Based on Bluetooth Scatternet and PMCN
	A New Gradient-Based Routing Protocol in Wireless Sensor Networks
	A Sensor Media Access Control Protocol Based on TDMA
	Clusters Partition and Sensors Configuration for Target Tracking in Wireless Sensor Networks
	Enhanced WFQ Algorithm with ({\itshape m,k})-Firm Guarantee
	Fuzzy and Real-Time Queue Management in Differentiated Services Networks
	Issues of Wireless Sensor Network Management
	OPC-based Architecture of Embedded Web Server
	Synchronized Data Gathering in Real-Time Embedded Fiber Sensor Network
	The Energy Cost Model of Clustering Wireless Sensor Network Architecture
	Traffic Control Scheme of VCNs' Gigabit Ethernet Using BP

	Track 7 Embedded Operating System
	A Jitter-Free Kernel for Hard Real-Time Systems
	A New Approach to Deadlock Avoidance in Embedded System
	A Novel Task Scheduling for Heterogeneous Systems
	Applying Component-Based Meta-service in Liquid Operating System for Pervasive Computing
	Embedded Operating System Design: The Resolved and Intelligent Daemon Approach
	New Approach for Device Driver Development -- Devil+ Language
	On Generalizing Interrupt Handling into a Flexible Binding Model for Kernel Components
	Research Directions for Embedded Operating Systems
	SmartOSEK: A Real-Time Operating System for Automotive Electronics

	Track 8 Power-Aware Computing
	A Functionality Based Instruction Level Software Power Estimation Model for Embedded RISC Processors
	Robust and Adaptive Dynamic Power Management for Time Varying System
	Skyeye: An Instruction Simulator with Energy Awareness
	The Modeling for Dynamic Power Management of Embedded Systems
	Why Simple Timeout Strategies Work Perfectly in Practice?

	Track 9 Real-Time System
	An Adaptive Fault Tolerance Scheme for Applications on Real-Time Embedded System
	Concurrent Garbage Collection Implementation in a Standard JVM for Real-Time Purposes
	Relating FFTW and Split-Radix
	Selecting a Scheduling Policy for Embedded Real-Time Monitor and Control Systems
	Sharing I/O in Strongly Partitioned Real-Time Systems
	The Efficient QoS Control in Distributed Real-Time Embedded Systems

	Track 10 Embedded System Verification and Testing
	An Efficient Verification Method for Microprocessors Based on the Virtual Machine
	EFSM-based Testing Strategy for APIs Test of Embedded OS
	EmGen: An Automatic Test-Program Generation Tool for Embedded IP Cores
	Formal Verification of a Ubiquitous Hardware Component
	Model Optimization Techniques in a Verification Platform for Classified Properties
	Using Model-Based Test Program Generator for Simulation Validation

	Track 11 Software Tools for Embedded Systems
	A New WCET Estimation Algorithm Based on Instruction Cache and Prefetching Combined Model
	A Component-Based Model Integrated Framework for Embedded Software
	A Cooperative Web Framework of Jini into OSGi-based Open Home Gateway
	A Structure Modeling Method for Multi-task Embedded Software Design
	Chaos-Model Based Framework for Embedded Software Development
	Hierarchical Integration of Runtime Models
	Object-Oriented Software Loading and Upgrading Techniques for Embedded and Distributed System
	Preserving Consistency in Distributed Embedded Collaborative Editing Systems

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

